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• Inflation is usually described as a scalar field rolling on top of a flat potential

• When potential is flat, universe expands as quasi de Sitter space

• when inflaton reaches the bottom, inflation ends

The usual theory of Inflation
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• The only observable we are testing from the background inflationary dynamics is 

• All the rest, comes from the fluctuations

• For the fluctuations

–they are primordial

– they are scale invariant

– they have a tilt

– they are quite gaussian 

• Just 2 numbers

• Is this enough to conclude it is slow-roll Inflation? Indeed, there are other models

–and in general, what is the dynamics of this inflaton?
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What we have tested so far about Inflation



• Non-Gaussianities:

• as much as the nature of interactions is revealed in scattering

• so it is revealed in non-Gaussian correlations of primordial density fluctuations

• and for example, by their functional form, reveal the presence of additional light 
particles

–  as do poles in ordinary scattering amplitudes

• EFT of Inflation and Multifield Inflation

• quasi single field inflation

• cosmological collider 

What are we looking for 
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Example: 3-point function

φ φ

A function of two variables: like a scattering amplitude, very non-trivial.

Presence of signal in squeezed limit           additional fields
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Ḣ

H
� M̄M2

M2
Pl

� H (5)

1

c2
s

= 1� M4
2

M2
PlḢ
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Ḣ > 0 (18)

Tµ⇥n
µn⇥ > 0 (19)

⇧�⌃(x, t)2⌃ ⇥ H3 t (20)

Pr(t) ⇥ e�
(⇥r�⇥cl(t))

2

H3t ⇥ e�
⇥̇2

H3 t (21)

P (�⌃, t) ⇥ e�
�⇥2

H3t (22)

9 ⇧ (23)

WMAP team
Planck teamNG ⇠

h
�

�T
T

�3i
h
�

�T
T

�2i3/2
. 10

�3
(1)

�̇/H
2 . 1 (2)

�� ⇠ H ) �tinflation ⇠
��

�̇
) �⇢

⇢
⇠ �Expansion ⇠ H�tinflation ⇠

H
2

�̇
(3)

�t ⇠ ��

�̇
⇠ H

�̇
(4)

�(~x, tr) = �r (5)

Number modes ⇠ Vsurvey k
3
max (6)

h
✓

�⇢

⇢

◆2

k

i (7)

�n

n

����
galaxy

(~x, t) ⇠
Z

dt
0

"
X

i

Ki(t, t
0
)

✓
�⇢

⇢

����
matter

(xfl(t, t
0
), t

0
)

◆i

+ . . .

#
(8)

k
3
P (k) ⇠

✓
�⇢

⇢

◆2

(9)

NG ⇠ 1

c2
s

(10)

P2 loops =

Z
d

3
k pintegrant(k)P11(k)

3
(11)

P2 loops; new cosmology = P2 loops; reference (12)

+

Z
d

3
k pintegrant(k)

�
P11,new cosmology(k)

3 � P11,reference(k)
3
�

⇢r(x) ⇠ ⇢(x)(1 + @v(x)) ) [⇢(x)@v(x)]q ⇠
Z

d
3
k ⇢k[@v]q�k ) Need renormalization (13)

V̄ ⇠ e
3Nc for ⌦ � 1 , V̄ ⇠ e

6Nc for ⌦ ' 1 , V̄ ⇠ Exp. small for ⌦ < 1 (14)

h��(~x, t)i ⇠ H
3
t (15)

⇣(x) = F ({�}) ! ⇣(x) = f (�(x)) (16)

⇣(x) = H⇡(x) +
@⇣

@�
� +

@
2
⇣

@�2
�

2
+ . . . (17)

(@i⇡)
4

(18)

(@i⇡)
2
⇡̇

2
(19)

⇡ ! �⇡ (20)

⇠ h⇣ni
h⇣2in/2

⇠ Ln

L2

����
!res

⇠
⇣

⇡c

⇤

⌘n

⇠
⇣

!res

⇤

⌘n

(21)

!res & ⇤ ! NG ⇠ 1 ) ruled out (22)

!background ⇠ �̇/⇤ ⇠ !res (23)

4-point4-point

3-point



– The normal approach to Inflation, and also to Supersymmetric Inflation is

–first: find a background solution that gives rise to an inflationary spacetime (a quasi 
de-Sitter space)

–second: study the fluctuations

• For SUGRA, huge literature with very-large number of authors

• This usually gives rise to a very-rich, but also quire-obscure long expressions

–  that make it to unclear to explore the physics in generality

–  confusion about particle content and signature (ex: additional light scalar field)

The Normal approach



–We will instead focus on what is observable, that is the theory of the fluctuations.

–We will take the point of view that Inflation is a period where time-translations are 
spontaneously broken. This leads us to the so-called EFT of Inflation, where the 
inflationary fluctuations are described by the associated Goldstone boson.

–This approach has several practical advantages

• by focusing on the theory of the obs., it makes connection to obs. very easy.

• for the same reason, the description is very general

– does not rely on our capabilities to describe the background solution 

• ….

–We wish now to ask what happens if the fundamental description of Nature is 
supersymmetric, and explore the resulting phenomenological consequences 

–Since gravity is clearly important, we will be lead into the world of Supergravity

–this is a notoriously complicated subject, so that mainly specialists work on it.

–we will instead make it quite simple (we hope)

The EFT approach



–Gravity is the theory of a massless spin-2 particles. To have a local, Lorentz invariant 
description, we impose the particular gauge invariance called diff. invariance.

–In the EFT of Infl., motivated by the presence of a physical clock, we assume that there 
is not invariance under time diffs.,                       , but only under time-dependent spatial 
diffs.:                                       .

–We write down the most general Lagrangian respecting this smaller gauge invariance, 
using the metric operator:

Review of Bosonic EFT of Inflation
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–It is useful to reintroduce non-linearly-realized time-diff. invariance by the Stuckelberg 
trick: we perform a broken gauge transformation, and promote the parameter of the 
transformation to a field:

–  and we declare that 

Review of Bosonic EFT of Inflation
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–It is useful to reintroduce non-linearly-realized time-diff. invariance by the Stuckelberg 
trick: we perform a broken gauge transformation, and promote the parameter of the 
transformation to a field:

–  and we declare that 

–We call                                             a dressed field.

–  Under a time diff., it transforms as if under a spatial diff. (in this case it is a scalar)

–  If we build a Lagrangian out of dressed fields and invariant under the linearly realized 
gauge invariance, then the Lagrangian is automatically invariant under the non-linearly 
realized ones (CCWZ construction for gauge invariances). So:

Review of Bosonic EFT of Inflation
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–Why this non-linearly-realized gauge invariance is useful? If the terms that are not 
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ḢM2

Pl (@⇡)
2 +M4

2

�
⇡̇2 + ⇡̇(@⇡)2 + (@⇡)4

�
+ . . .

i
(1)

gµ⌫ (2)
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–Recipe to construct a Lagrangian invariant under a non-linearly realized invariance:

–  Write the Lagrangian invariant only under the linearly-realized gauge invariance,

–  Interpret the fields as a dressed fields, i.e. as combinations of the original fields and 
the Goldstones (i.e. perform a Stuckelberg transformation).

–  If situation allows so, go to the decoupling limit, and dynamical description is 
simplified.

–We are now going to repeat the same steps for SUGRA

– but we will face additional subtleties.

Non-linearly-realized Gauge Invariances



–As General Relativity is the theory of a massless spin-2 particle (the graviton), SUGRA 
is the theory of a massless spin-2 particles (the graviton) and a massless spin-3/2 
particle (the gravitino). So, we will deal with these two fields.

SUGRA



Non-linear Representation of SUGRA algebra
with Delacretaz and Gorbenko JHEP2017



–Since we deal with curved spacetime and spinors, we introduce local lorentz invariance

–.

–The defining representation of the SUSY transformation is given by the action on the 
gravity multiplet:                          :   
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–Since we deal with curved spacetime and spinors, we introduce local lorentz invariance

–.
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ḢM2

Pl (@⇡)
2 +M4

2

�
⇡̇2 + ⇡̇(@⇡)2 + (@⇡)4

�
+ . . .

i
(5)

gµ⌫ (6)
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–Since we deal with curved spacetime and spinors, we introduce local lorentz invariance

–.

–The defining representation of the SUSY transformation is given by the action on the 
gravity multiplet:                          :   

– from which we deduce the SUGRA algebra:
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Notice: algebra is field dependent!
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–Since we deal with curved spacetime and spinors, we introduce local lorentz invariance

–.

–The defining representation of the SUSY transformation is given by the action on the 
gravity multiplet:                          :   

– from which we deduce the SUGRA algebra:
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Notice: algebra is field dependent!
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– We are interested in the case of non-linear realization of time translations

–  Since                                   , also SUSY is non-linearly realized

– We have to introduce a Goldstino     , which transforms as

–Thanks to the Goldstino, we can construct SUGRA-dressed fields.

–If       is a field transforming in some representation of a group      , where      is the 
linearly-realized subgroup, we can define a dressed field 

–which transforms under a general      transformation, as under  

– from 

– again, this is the slightly-generalized CCWZ construction (see footnotes).

–In particular the dressed                             transforms in a reducible rep. of diffs. now. 

The Goldstino and a minimal Multiplet
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ḢM2

Pl (@⇡)
2 +M4

2

�
⇡̇2 + ⇡̇(@⇡)2 + (@⇡)4

�
+ . . .

i
(6)

gµ⌫ (7)
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� Ḣ (4)

E2 & E2
mix ⇠ Ḣ (5)Z
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– It is a well-known nuisance the presence of the auxiliary fields in SUSY/SUGRA. 

–Their presence is dictated by enforcing an equal number of off-shell bosonic and 
fermionic DOF, and by common lore that `the algebra does not close without them’.

–But when SUGRA is non-linearly realized, boson-fermion degeneracy does not need to 
hold. So, can we do without the auxiliary fields?!

–In fact, if      is the dressed gravity supermultiplet, we can set to zero the dressed 
auxiliary fields                                         : this is a SUSY inv. constraint.

–This amounts to expressing the original aux. fields in terms of the dynamical ones:

–we just got rid of the aux. fields:

–we constructed a smaller multiplet                   that realizes SUGRA off-shell

–Subtlety: the algebra does not change upon substituting the aux. fields with these  

–This construction was never done before in SUGRA, but was done for SUSY by Rocek 
(as we found out after the construction). 
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g00 ! ĝ00[g, ⇡] = @µ(t+ ⇡)@⌫(t+ ⇡)gµ⌫ (12)

⇡ ! ⇡ + ⇠0, as t ! t� ⇠0 (13)

|upper zero uncontracted (14)

t ! t� ⇠0 (15)

xi
! xi

� ⇠i(t, ~x) (16)

k/Hi & 1 (17)

k/Hi ⌧ 1 (18)

⇢ > |p| (19)

⇤ > 0 (20)

as
@
p
h

@t
= K

p

h (21)

�i (22)

�1 < 0 everywhere (23)

R(3) =
X

i

�i > 0 everywhere (24)

R(3)
ij (25)

R(3) < 0 somewhere ex : S2
⇥R (26)

⇠

Z

V

(⇢�M2
PlH

2)  0 (27)

⌃ (28)

hV 0(�)i � V 0(h�i) (29)

�� �0 (30)

k/H & 1 (31)



–  Intuitively, thanks to the Goldstino, we can construct operators out of it that, under 
SUSY, transform exactly as                  ; so, we can replace                  . 

–  This removal of the aux. fields is different than common procedures where one 
`integrates out’  the auxiliary fields (for example, see Friedmann).

–  In this case the induced transformations rules for the fields are Lagrangian 
dependent (while for us are Lagrangian independent)

–  The algebra closes only on-shell (while for us it closes off-shell)

–We indeed have defined a new multiplet realizing SUGRA off-shell:
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– For later purposes, we field-redefine the gravitino

–Subtlety: field redefinitions do not change the algebra 

–and here is our minimal SUGRA multiplet:

–  where          is a generalized covariant derivative we will define later

– for maximally symmetric spacetimes, it is

– and the field redefinition is 

Eliminating the auxiliary fields



Construction of the Action:
the Supersymmetric Effective Field Theory of Inflation 

with Delacretaz and Gorbenko JHEP2017



–We are now ready to construct the action for the Supersymmetric EFT of Inflation

–We repeat the steps of the bosonic theory:

–In terms of symmetries, this is the action where we have a graviton and a gravitino 
(no auxiliary fields), and the only gauge invariance is 

–We therefore have:

Constructing the Action
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–We are now ready to construct the action for the Supersymmetric EFT of Inflation

–We repeat the steps of the bosonic theory:

–In terms of symmetries, this is the action where we have a graviton and a gravitino 
(no auxiliary fields), and the only gauge invariance is 

–We therefore have:

–The presence of the gravitino does not precludes any term we could write in the non-
SUSY EFT

–Notice also that                                                     : we can just write these terms

–we wrote mass terms and non-minimal couplings 
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–We wrote mass terms and non-minimal couplings 

–All SUSY-breaking contributions (for ex from SM) go into 

–if                  , we can integrate out the Gravitino and be left with the standard single 
field EFTofI

–cosmologically interesting only for 

Constructing the Action

m
0s & ⇤0s (1)

h@µ�i = �
0
µ
�̇0(t) (2)

W &Z (3)

Time-Local QFT: c1(t)
⇥
�⇢(~x)(1) + �⇢(~x)(2) + . . .

⇤
(4)

m
0s � H (1)

m
0s & ⇤0s (2)

h@µ�i = �
0
µ
�̇0(t) (3)

W &Z (4)

Time-Local QFT: c1(t)
⇥
�⇢(~x)(1) + �⇢(~x)(2) + . . .

⇤
(5)

m
0s . H (1)

m
0s � H (2)

m
0s & ⇤0s (3)

h@µ�i = �
0
µ
�̇0(t) (4)

W &Z (5)

Time-Local QFT: c1(t)
⇥
�⇢(~x)(1) + �⇢(~x)(2) + . . .

⇤
(6)

m
0s

) (1)

h�T (~x1)�T (~x2)�T (~x3)i (2)

klong ⌧ kshort (3)

D̂� ⇠ D�+m� (4)

c
2
s

(5)

E
2 & H

2 ) Gravitino is always necessary (6)

P11(k) =
X

n

cn k
µ+i n )

P1�loop =

Z
d
3
q1

Z
d
3
q2 �

(3)(~k � ~q1 � ~q2) F (~k, ~q) P (q1)P (q2)

=
X

n,m

cn cm

Z
d
3
q1

Z
d
3
q2 �

(3)(~k � ~q1 � ~q2) F (~k, ~q) qµ+in

1 q
µ+in

2 =
X

n,m

cn cm Fn,m, analytical(k)

) �g
µ⌫
Tµ⌫ = as in GR & amplitudes saturate when UV enters (7)

) ⇤ ⇠ 10�1 Km�1 (8)

⇠) No R
3
µ⌫⇢�

(9)

R
(3)(~x) < 0 ) K(~x) >

q
⇢/M

2
Pl (10)

c
2
s
⌧ cs,dark matter (11)

T
00 (12)

cs ! 0 (13)

) (14)

M
4
2 (t) ⇠

⇢Q + pQ

c2
s

(15)

⇡ (16)

(17)



–Suggestively, put the kinetic terms in (apart for        )

–can be written as 

–where

Unitary gauge action
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–can be written as 

–where

Unitary gauge action



–With the same logic as before, but now with larger group, we can think of this action

–as written in terms of the dressed-fields. Then we get non-linearly realized SUGRA for 
free

–Notice, from CWZ construction,       transforms under SUSY as under a time-diff. (the 
symmetries `linearly’ realized: i.e. realized before the introduction of the Goldstones):

Reintroducing non-linear SUGRA
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–This action

–is the most general action where time-diffs and SUSY are non-linearly realized.

–Several technical achievements:

–automatically coupled to gravity (a well known difficulty is standard approaches)

–no auxiliary fields

–no superspace

–no exponentials of Kahler potential in the potential

–not many many fields

–this is quite simple (to us)

–In particular: no second scalar field is needed (and therefore its presence cannot be 
claimed to be a signature of SUSY in Inflation, as apparently suggested in literature)
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–Reintroducing a non-linearly realized gauge invariance is useful only because of the 
decoupling limit (why otherwise bother ourselves with a redundancy!).

–Let us open up our Lagrangian. The              forces cancellations and we get:

–This action has manifest decoupling as

–Schematically:

–  The wavefunction of the Goldstino is                     as dS breaks SUSY  

–  The decoupling energy is at least as big as                             (as dS breaks SUSY)

– This means that for inflation, the mixing with the gravitino is crucial (a lot of literature 
on SUSY inflation neglects coupling to gravity (due to usual difficulties). Not clear 
what can be saved of those results). Here, coupling to gravity is trivial.
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mix ⇠ Ḣ (12)Z

d4x
p
�g

h
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–Obtaining decoupling was non trivial at all

–First, we make a field redefinition                , so that       appears only where 
gravitino was present, as otherwise it would appear also in the bosonic sector

–field redefinition do not change the algebra

–Second, more importantly, for fermionic symmetries, decoupling does not occurs 
automatically by power counting
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–In bosonic theories, decoupling is trivial, as it is just dictated by power counting:

–But for case spinorial symmetry:

–We need to keep track of the subleading terms. So we redefined the gravitino so that it  
transform as

–Simple reasons (in max symmetric spacetimes):

–We know that AdS with                                      our gravitino transformation is 
linearly realized. Therefore the breaking must be proportional to                              , 
which is a dimension-two parameter (instead of a dimension-one one), just like the 
curvature. Once it is dimension-two, we have guaranteed (quadratic) decoupling.

–Similar reason is somewhat true also in non-maximal symmetric case. 

Subtlety with Decoupling Limit

Â ⇠ A+ @⇡ ) m2(@⇡)2 +m2⇡@A ) Manifest decoupling (1)

✏µ⌫⇢� (2)

E � Emix ⇠ H (3)

S ⇠

Z
d4x

p
�g

⇥
M2

Pl  @ + (H2 +m2)M2
Pl �@�+ (H2 +m2)M2

Pl  �
⇤

(4)

[D,D]� ⇠
�
H2 +m2

�
� (no derivatives!) (5)

{e, ,�} (6)

A (7)

H (8)

G (9)

K ⇠   (10)

di↵. ⇥ (local lorentz) ⇥ SUSY (11)

E2
⇠ H2
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–In bosonic theories, decoupling is trivial, as it is just dictated by power counting:

–But for case spinorial symmetry:

–We need to keep track of the subleading terms. So we redefined the gravitino so that it  
transform as

–Simple reasons (in max symmetric spacetimes).

–We know that AdS with                                      our gravitino transformation is 
linearly realized. Therefore the breaking must be proportional to                              , 
which is a dimension-two parameter (instead of a dimension-one one), just like the 
curvature. Once it is dimension-two, we have guaranteed (quadratic) decoupling.

–Similar reason is somewhat true also in non-maximal symmetric case. 

Subtlety with Decoupling Limit
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–Adding additional fields is trivial. Suppose you have an additional scalar field

–Write action in unitary gauge

–Write it in terms of dressed fields, but make the field redefinition so that

–In particular, knowledge of transformations of      under the non-linearly realized group 
is not needed (again, CCWZ construction)

–Goldstino only present where gravitino is present

– it decouples

Multifield Inflation
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ĝ = g + �di↵.⇡ g + . . . (20)
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Phenomenology



–Dispersion relation of Goldstino                       and 

–Interactions: we do not see directly fermions, and their bilinears do not have in general 
scale invariant perturbations. But they can affect the fluctuations that we see,      , in a 
loop (and this effect will be scale invariant by its time-translation invariance).

–All our operators are irrelevant (i.e. non-renormalizable, but observationally relevant)
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ḢM2

Pl (@⇡)
2 +M4

2

�
⇡̇2 + ⇡̇(@⇡)2 + (@⇡)4

�
+ . . .

i
(19)

gµ⌫ (20)
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–There are two contributions:

–This effect is degenerate with the effect from operators in the pure bosonic case (by 
renormalizability).

–Their size cannot be predicted by the EFT, as it is UV dependent; but upper bound is 
obtained by cutting off the loop at the unitarity bound.

–This gives                                       , and even, for non minimal couplings, 
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Â ⇠ A+ @⇡ ) m2(@⇡)2 +m2⇡@A ) Manifest decoupling (8)

✏µ⌫⇢� (9)

E � Emix ⇠ H (10)

S ⇠

Z
d4x

p
�g

⇥
M2

Pl  @ + (H2 +m2)M2
Pl �@�+ (H2 +m2)M2

Pl  �
⇤

(11)

[D,D]� ⇠
�
H2 +m2

�
� (no derivatives!) (12)

{e, ,�} (13)

A (14)

H (15)

G (16)

K ⇠   (17)

di↵. ⇥ (local lorentz) ⇥ SUSY (18)

E2
⇠ H2

� Ḣ (19)

E2 & E2
mix ⇠ Ḣ (20)Z
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–There are two contributions:

–This is a non-degenerate signal, a sort of smoking gun for SUSY

–Induce signal estimated to be very very small.
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mix ⇠ Ḣ (20)Z

d4x
p
�g

h
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– We have explored the role of Supersymmetry in Inflation

– Its non-linear realization has allowed for a series of tremendous simplifications that 
make the construction of the general EFT rather straightforward. In unitary gauge:

– no auxiliary fields, no superspace, no superpotential, no conformal compensator

– coupling to gravity made trivial

–  After a careful field redefinition, we have reintroduced a Goldstino that decouples at 

– inflationary predictions cannot in general be made without including the gravitino

– no need of additional light scalar fields:                  are enough to realize SUGRA

– Goldstino appears only in association with the gravitino: there is no constraint on 
purely bosonic terms 

–  Phenomenology:

–further motivation for large purely bosonic operators (large non-Gaussianities)

–if something known as the EFT of Large-Scale Structure, we might have enough 
data to see them.

Conclusions on the Supersymmetric EFTofI
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Extra



–We did a lot of field redefinitions. Field redefinitions matter for in-in correlation 
functions for observables in cosmology.

–But the additional fields could have contributed anyway to perturbations by affecting 
reheating.

–Luckily, this contribution occurs only when modes are outside of the horizon and 
gradients can be neglected. The expression is therefore very simple: it is local:

–  where 

–analogous to what was done in the EFT of multifield inflaton

Reheating
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Maximally Symmetric Case



–For clarity, let us give again the results in the case we break only SUSY (time-diffs are 
unbroken)

Constructing the Action



–For clarity, let us give again the results in the case we break only SUSY (time-diffs are 
unbroken)

–Tadpole cancellation

• notice that there is no field taking a vev and originating a cosmological constant

Constructing the Action



– We can combine the above action as

–  Where 

Constructing the Action



– We can think of this action

–as written in terms of dressed fields, and then the action is automatically invariant  
under non-linearly-realized SUGRA:

–Subtlety: since the importance of the Goldstino is to describe the helicity-1/2 state 
within the gravitino, we field-redefine the vielbein, so that the fundamental vielbein 
is the dressed one:  

• We obtain:

Reintroducing non-linear SUGRA
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–SUGRA-action:

–Focus on

–Manifest decoupling.

–Kinetic term has to be proportional to deviation from AdS SUGRA.

–so, decoupling is guaranteed to happen, but for the right Gravitino field

Reintroducing non-linear SUGRA


