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Motivation

The oscillation data, the bounds on the sum of the light neutrino
masses and ββ0ν decay experiments severely constrain the flavour
structures of the light neutrino mass matrix.

Admissible mass matrices satisfying above constraints can be tested
further based on their predictions about the yet unresolved issues
such as the:
(i)hierarchy of light neutrino masses,
(ii)octant of θ23, and particularly,
(iii)CP violation in the leptonic sector.

Moreover, if neutrino is a Majorana particle, the prediction of
Majorana phases will also serve as an added ingredient to
discriminate different models.

We address these issues using the approach of a generalized Z2 ×Z2
residual symmetry for a scaling neutrino Majorana mass matrix.
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Residual Symmetry

An arbitrary light Majorana neutrino mass matrix Mν enjoys
Z2 ×Z2 residual symmetry1 which is a remnant of some high energy
flavour group.

A linear unitary transformation of the νLα fields νLα → GαβνLβ
leads to an invariance of effective neutrino Majorana mass term

−Lνmass =
1

2
ν̄CLα(Mν)αβνLβ

if the mass marix Mν satisfies the invariance equation

GTMνG = Mν .

Furthermore, since Mν is a complex symmetric, it can be
diagonalized by an unitary matrix U as

UTMνU = Md
ν = diag(m1,m2,m3).

1C.S. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193
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Residual Symmetry (contd.)

It’s simple to see that if U diagonalize Mν so does U ′ = GU.

If m1,m2 and m3 are non-degenerate, then G has eigenvalues ±1,
and is diagonalized by U i.e.,

GU = Ud , with dlm = ±δlm. (1)

From Eq.(1)
det(G ) = det(d) = ±1.

Without any loss of generality we can confine to det G = +1 which
corresponds to

d1 = diag (1,−1,−1) −→ G1,

d2 = diag (−1, 1,−1) −→ G2,

d3 = diag (−1,−1, 1) −→ G3.
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Residual Symmetry (contd.)

All three G matrices, G1,G2 and G3, out of which only two are
independent on account of a relation

GaGb = GbGa = Gc with a 6= b 6= c .

Since G 2 = I , these two independent Ga matrices define a Z2 × Z2
symmetry.

Given a mass matrix Mν in flavour space, one can obtain the PMNS
matrix U, consistent with the symmetries of Mν .

From U, G ′as can be obtained as

Ga = UdaU† with a = 1, 2, 3.

The explicit form of the Z2 generators will depend on the specific
flavour structure of Mν .
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Strong Scaling Ansatz (SSA)

We explore the Strong Scaling Ansatz2 (SSA) which proposes a
column-wise scaling relations in the elements of Mν :

(M0
ν)eµ

(−M0
ν)eτ

=
(M0

ν)µµ
(−M0

ν)µτ
=

(M0
ν)τµ

(−M0
ν)ττ

= k.

The structure of Mν dictated by this ansatz is given by

M0
ν =

(
P −Qk Q
−Qk Rk2 −Rk

Q −Rk R

)

which is diagonalized by

U0 =

 c0
12 s0

12e iα 0

− ks0
12√

1+k2

kc0
12√

1+k2
e iα/2 1√

1+k2
e iβ/2

s0
12√

1+k2
− c0

12√
1+k2

e iα/2 k√
1+k2

e iβ/2


2R.N Mohapatra and W. Rodejohann, Phys. Lett. B 644, 59 (2007).
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Strong Scaling Ansatz (Contd.)

Explicit form of the Z2 generators Ga can be calculated as

G (k)
a = U0daU0†.

G
(k)
1 =

 cos 2θ0
12 −k(1 + k2)−1/2 sin 2θ0

12 −(1 + k2)−1/2 sin 2θ0
12

−k(1 + k2)−1/2 sin 2θ0
12 −(1 + k2)−1(k2 cos 2θ0

12 + 1) −k(1 + k2)−1(1 − cos 2θ0
12)

−(1 + k2)−1/2 sin 2θ0
12 −k(1 + k2)−1(1 − cos 2θ0

12) −(1 + k2)−1(k2 + cos 2θ0
12)



G
(k)
2 =

 − cos 2θ0
12 k(1 + k2)−1/2 sin 2θ0

12 −(1 + k2)−1/2 sin 2θ0
12

k(1 + k2)−1/2 sin 2θ0
12 (1 + k2)−1(k2 cos 2θ0

12 − 1) −k(1 + k2)−1(1 + cos 2θ0
12)

−(1 + k2)−1/2 sin 2θ0
12 −k(1 + k2)−1(1 + cos 2θ0

12) −(1 + k2)−1(k2 − cos 2θ0
12)



G
(k)
3 =

−1 0 0

0 (1 − k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1 − k2)(1 + k2)−1

 .
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Modification of SSA with nonstandard CP

The SSA predicts θ13 = 0 (ruled out at more than 5.2σ) and
therefore, no measurable Dirac CP-violation.

We have to sacrifice scaling symmetry.

A possible modification to SSA, was proposed3,4 by combining the
Z2 × Z2 residual symmetry with the non-standard CP
transformation on the neutrino fields

νLα → i(G (k)
a )αβγ

0νCLβ .

This extends the real invariance of Mν in (3) to its complex
counterpart, i.e.

(G (k)
a )TMνG (k)

a = M∗ν .

Since only two of the three G
(k)
a ’s (a = 1, 2, 3) are independent,

there are 3 ways in which generalized CP symmetry can be
implemented: G1,2,G2,3 and G1,3.

3R. Samanta, P. Roy and A. Ghosal, Eur. Phys. J. C 76, no. 12, 662 (2016)
4W. Grimus and L. Lavoura, Phys. Lett. B 579 (2004) 113
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Case I: Complex extension of G
(k)
2,3 Invariance

The complex invariance relations of Mν related to G
(k)
2,3 is now written as

(G
(k)
2,3 )TMνG

(k)
2,3 = M∗

ν ,

which in turn implies

(G
(k)
1 )TMνG

(k)
1 = Mν .

The most general form of Majorana neutrino mass matrix becomes

Mν1 =


p −q1k + iq2k−1 q1 + iq2

−q1k + iq2k−1 r − sk−1(k2 − 1) + i
2q2κ+√

1+k2
s + i

q2κ+(k2−1)

k
√

1+k2

q1 + iq2 s + i
q2κ+(k2−1)

k
√

1+k2
r − i

2q2κ+√
1+k2


It has already been shown that (G

(k)
3 )TMνG

(k)
3 = M∗

ν leads to the results

tan θ23 = k−1,

sinα = sinβ = cos δ = 0.

The overall real G1 invariance of Mν fixes the first column of UPMNS to the first
column of U0. Therefore,

sin2 θ12 = 1− cos2 θ0
12(1 + tan2 θ13).
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Case II: Complex extension of G
(k)
1,3 Invariance

In this case, the complex invariance relations of Mν due to G
(k)
1,3 can be written as

(G
(k)
1,3 )TMνG

(k)
1,3 = M∗

ν ,

which leads to
(G

(k)
2 )TMνG

(k)
2 = Mν .

Most general Majorana neutrino mass matrix

Mν2 =


p −q1k + iq2k−1 q1 + iq2

−q1k + iq2k−1 r − sk−1(k2 − 1) + i
2q2κ−√

1+k2
s + i

q2κ−(k2−1)

k
√

1+k2

q1 + iq2 s + i
q2κ−(k2−1)

k
√

1+k2
r − i

2q2κ−√
1+k2


with

κ− = −
1

κ+
.

Now the overall real G2 (10) invariance of Mν fixes the second column of UPMNS to
the second column of U0 which gives

sin2 θ12 = sin2 θ0
12(1 + tan2 θ13).
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Case III: Complex extension of G
(k)
1,2 Invariance

The complex invariance of Mν related to G
(k)
1,2

(G
(k)∗
1,2 )TMνG

(k)
1,2 = M∗ν ,

which implies

(G
(k)
3 )TMνG

(k)
3 = Mν .

Since G
(k)
3 fixes the third column of UPMNS to the third column of

U0. But that leads to a vanishing value of θ13 and therefore, must
be discarded.
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Modified Scaling with type-I seesaw

To discss leptogenesis, we implement the non-standard CP in the
context of type-I seesaw.

We define two separate ‘G ’ matrices GL and GR :

νLα → i(GL)αβγ
0νCLβ , NRα → i(GR)αβγ

0NC
Rβ . (2)

The Lagrangian of type-I seesaw in a weak basis can be written as

−Lmass = N̄iR(mD)iαlLα +
1

2
N̄iR(MR)iδijN

C
jR + h.c.

The invariance of the Lagrangian Lmass under Eq.(2) lead to

G †RmDGL = m∗D , G †RMRG∗R = M∗R .

With MR = diag (M1,M2,M3), we obtain

(GR)lm = ±δlm ⇒ mDG3 = −m∗D , and mDG1,2 = m∗D . (3)
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Modified Scaling with type-I seesaw

For both both case-I and II, the most general form of mDs that
satisfy the above constraints can be parameterized as

mD =

(
a b1 + ib2 −b1/k + ib2k
e c1 + ic2 −c1/k + ic2k
f d1 + id2 −d1/k + id2k

)

In terms of the parameters of (mD)1,2, and MR , the parameters of

effective Mν = −mT
DM−1

R mD are given by

p = −( a2

M1
+ e2

M2
+ f 2

M3
)

q1 = − κ±p√
1+k2

q2 = −k( ab2

M1
+ ec2

M2
+ fd2

M3
)

s = −κ
2
±pk

1+k2 + k((
b2

2

M1
+

c2
2

M2
+

d2
2

M3
))

r = (sk + p)− 2q1

√
1 + k2(κ± − 1

κ±
)
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Numerical Analysis

We utilize the (3σ) values of globally fitted neutrino
oscillation data.

Table : Predictions on the light neutrino masses and
∑

i mi .

Case-I
Normal Ordering Inverted Ordering

m1/10−3 m2/10−3 m3/10−3 m1/10−3 m2/10−3 m3/10−3

(eV) (eV) (eV) (eV) (eV) (eV)
4.0− 8.5 9.28− 12.0 49− 52 47− 61 49− 62 9− 36∑

i mi < 0.08 eV
∑

i mi < 0.16 eV

Case-II
Normal Ordering Inverted Ordering

m1/10−3 m2/10−3 m3/10−3 m1/10−3 m2/10−3 m3/10−3

(eV) (eV) (eV) (eV) (eV) (eV)
4.1− 8.8 9.23− 13.1 48− 52 47− 60 49− 61 10− 38∑

i mi < 0.08 eV
∑

i mi < 0.16 eV
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Neutrinoless double beta decay (Case-I)

Figure : Plot of |Mee | vs. the lightest neutrino mass: the top two figures
represent Case A: α = π, β = 0 (left) and Case B: α = π, β = π (right)
while the figures in the lower panel represent Case C: α = 0, β = 0 (left)
and Case D: α = 0, β = π (right).
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Baryogenesis via Leptogenesis

Bayogenesis via leptogenesis through the decays of the RH
neutrinos, is governed by the Lagrangian

−L = λiαN̄Ri φ̃
†lLα +

1

2
N̄iR(MR)iδijN

C
jR + h.c.

We assume a hierarchical scenario, e.g., M1 � M2 � M3.

The decays of N1 matter for the creation of lepton asymmetry.

The standard expression for CP asymmetry parameter due to the
decay of Ni is given by

εαi =
1

4πv 2hii

∑
j 6=i

{
Im[hij(mD)iα(m∗D)jα]g(xij)+

Im[hji (mD)iα(m∗D)jα]

1− xij

}

where h ≡ mDm†D , mD = vλ/
√

2, xij = M2
j /M2

i .
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Leptogenesis in three temperature regimes

I) T ∼ M1 > 1012 GeV In this case, all the flavors are
indistinguishable, and the total CP asymmetry is a sum over
individual flavors εi =

∑
α ε

α
i .

In our model, εi = 0⇒ unflavoured leptogenesis does not occur.

II) T ∼ M1 < 109 GeV when all the flavors (e, µ, τ) are in
equilibrium and distinguishable.

The final baryon asymmetry in this regime is approximated with

YB ' −
12

37g∗

[
ε

(e)
i η
(151

179
m̃e

)
+ ε

(µ)
i η

(344

537
m̃µ

)
+ ε

(τ)
i η

(344

537
m̃τ

)]
(4)

In our model, εe1 = 0. Numerically, the maximum value of |εµ,τ1 | is
found to be ∼ 10−8. YB in the observed range cannot be generated
with such a small CP asymmetry parameter.

Fully flavored leptogenesis is numerically ruled out.
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III) 109 GeV < T ∼ M1 < 1012 GeV, when only the τ flavor are in
equilibrium: τ -flavored leptogenesis. In this regime there are two
relevant CP asymmetry parameters; ετi and ε2

i = εei + εµi .

The final baryon asymmetry in this regime is approximated with

YB ' −
12

37g∗

[
ε

(2)
i η
(417

589
m̃2

)
+ ε

(τ)
i η

(390

589
m̃τ

)]
where m̃α = |(mD )1α|2

M1
and η(m̃α) is the efficiency factor that

accounts for the inverse decay and the lepton number violating
scattering process.

It turns out that only this scenario is viable in our model.
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Leptogenesis with normal mass ordering (Case-I and II)

Figure : The plot on the LHS shows a variation of YB vs k. The red
band in the same plot indicates the observed range of YB .
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Leptogenesis with inverted mass ordering (Case-I and II)

Figure : The plot on the LHS shows a variation of YB vs k. The red
band in the same plot indicates the observed range of YB .
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Summary

Definite analytical relations between θ12 and θ13.

Predict maximal Dirac CP violation (cos δ = 0), vanishing Majorana
phases (α, β = 0).

The model offers predictions for ββ0ν decay matrix element |Mee |
and the light neutrino masses m1,2,3 in the experiments such as
nEXO, LEGEND, GERDA-II, T2K, NOνA, DUNE etc.

With the assumption that the required CP asymmetry is created by
the decay of the lightest (N1) of the heavy Majorana neutrinos, only
τ -flavored leptogenesis is found to be allowed in this model.

For a normal ordering of light neutrino masses, θ23 is found be less
than its maximal value, for the final baryon asymmetry YB to be in
the observed range.

An upper and a lower bound on the mass of N1 have also been
estimated.
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Thank You
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