

Consequences of generalized residual $\mathbb{Z}_2 \times \mathbb{Z}_2$ in scaling neutrino Majorana mass matrix

Roopam Sinha

Co-authors: Rome Samanta, Ambar Ghosal
JHEP12(2017) 030

Saha Institute of Nuclear Physics
SUSY17

Motivation

- The oscillation data, the bounds on the sum of the light neutrino masses and $\beta\beta_{0\nu}$ decay experiments severely constrain the flavour structures of the light neutrino mass matrix.
- Admissible mass matrices satisfying above constraints can be tested further based on their predictions about the yet unresolved issues such as the:
 - (i) *hierarchy* of light neutrino masses,
 - (ii) *octant of θ_{23}* , and particularly,
 - (iii) *CP violation* in the leptonic sector.
- Moreover, if neutrino is a Majorana particle, the *prediction of Majorana phases* will also serve as an added ingredient to discriminate different models.
- We address these issues using the approach of a *generalized $\mathbb{Z}_2 \times \mathbb{Z}_2$ residual symmetry* for a scaling neutrino Majorana mass matrix.

Residual Symmetry

- An arbitrary light Majorana neutrino mass matrix M_ν enjoys $\mathbb{Z}_2 \times \mathbb{Z}_2$ residual symmetry¹ which is a remnant of some high energy flavour group.
- A linear unitary transformation of the $\nu_{L\alpha}$ fields $\nu_{L\alpha} \rightarrow G_{\alpha\beta}\nu_{L\beta}$ leads to an invariance of effective neutrino Majorana mass term

$$-\mathcal{L}_{mass}^\nu = \frac{1}{2} \bar{\nu}_{L\alpha}^C (M_\nu)_{\alpha\beta} \nu_{L\beta}$$

if the mass matrix M_ν satisfies the invariance equation

$$G^T M_\nu G = M_\nu.$$

- Furthermore, since M_ν is a complex symmetric, it can be diagonalized by an unitary matrix U as

$$U^T M_\nu U = M_\nu^d = \text{diag}(m_1, m_2, m_3).$$

¹C.S. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193

Residual Symmetry (contd.)

- It's simple to see that if U diagonalize M , so does $U' = GU$.
- If m_1, m_2 and m_3 are non-degenerate, then G has eigenvalues ± 1 , and is diagonalized by U i.e.,

$$GU = Ud, \text{ with } d_{lm} = \pm \delta_{lm}. \quad (1)$$

- From Eq.(1)

$$\det(G) = \det(d) = \pm 1.$$

- Without any loss of generality we can confine to $\det G = +1$ which corresponds to

$$d_1 = \text{diag} (1, -1, -1) \rightarrow G_1,$$

$$d_2 = \text{diag} (-1, 1, -1) \rightarrow G_2,$$

$$d_3 = \text{diag} (-1, -1, 1) \rightarrow G_3.$$

Residual Symmetry (contd.)

- All three G matrices, G_1 , G_2 and G_3 , out of which only two are independent on account of a relation

$$G_a G_b = G_b G_a = G_c \quad \text{with} \quad a \neq b \neq c.$$

- Since $G^2 = I$, these two independent G_a matrices define a $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry.
- Given a mass matrix M_ν in flavour space, one can obtain the PMNS matrix U , consistent with the symmetries of M_ν .
- From U , G'_a 's can be obtained as

$$G_a = U d_a U^\dagger \quad \text{with } a = 1, 2, 3.$$

- The explicit form of the \mathbb{Z}_2 generators will depend on the specific flavour structure of M_ν .

Strong Scaling Ansatz (SSA)

- We explore the *Strong Scaling Ansatz*² (SSA) which proposes a column-wise scaling relations in the elements of M_ν :

$$\frac{(M_\nu^0)_{e\mu}}{(-M_\nu^0)_{e\tau}} = \frac{(M_\nu^0)_{\mu\mu}}{(-M_\nu^0)_{\mu\tau}} = \frac{(M_\nu^0)_{\tau\mu}}{(-M_\nu^0)_{\tau\tau}} = k.$$

- The structure of M_ν dictated by this ansatz is given by

$$M_\nu^0 = \begin{pmatrix} P & -Qk & Q \\ -Qk & Rk^2 & -Rk \\ Q & -Rk & R \end{pmatrix}$$

which is diagonalized by

$$U^0 = \begin{pmatrix} c_{12}^0 & s_{12}^0 e^{i\alpha} & 0 \\ -\frac{kc_{12}^0}{\sqrt{1+k^2}} & \frac{kc_{12}^0}{\sqrt{1+k^2}} e^{i\alpha/2} & \frac{1}{\sqrt{1+k^2}} e^{i\beta/2} \\ \frac{s_{12}^0}{\sqrt{1+k^2}} & -\frac{c_{12}^0}{\sqrt{1+k^2}} e^{i\alpha/2} & \frac{k}{\sqrt{1+k^2}} e^{i\beta/2} \end{pmatrix}$$

²R.N. Mohapatra and W. Rodejohann, Phys. Lett. B **644**, 59 (2007).

Strong Scaling Ansatz (Contd.)

- Explicit form of the \mathbb{Z}_2 generators G_a can be calculated as

$$G_a^{(k)} = U^0 d_a U^{0\dagger}.$$

$$G_1^{(k)} = \begin{pmatrix} \cos 2\theta_{12}^0 & -k(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & -(1+k^2)^{-1/2} \sin 2\theta_{12}^0 \\ -k(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & -(1+k^2)^{-1}(k^2 \cos 2\theta_{12}^0 + 1) & -k(1+k^2)^{-1}(1 - \cos 2\theta_{12}^0) \\ -(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & -k(1+k^2)^{-1}(1 - \cos 2\theta_{12}^0) & -(1+k^2)^{-1}(k^2 + \cos 2\theta_{12}^0) \end{pmatrix}$$

$$G_2^{(k)} = \begin{pmatrix} -\cos 2\theta_{12}^0 & k(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & -(1+k^2)^{-1/2} \sin 2\theta_{12}^0 \\ k(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & (1+k^2)^{-1}(k^2 \cos 2\theta_{12}^0 - 1) & -k(1+k^2)^{-1}(1 + \cos 2\theta_{12}^0) \\ -(1+k^2)^{-1/2} \sin 2\theta_{12}^0 & -k(1+k^2)^{-1}(1 + \cos 2\theta_{12}^0) & -(1+k^2)^{-1}(k^2 - \cos 2\theta_{12}^0) \end{pmatrix}$$

$$G_3^{(k)} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & (1-k^2)(1+k^2)^{-1} & 2k(1+k^2)^{-1} \\ 0 & 2k(1+k^2)^{-1} & -(1-k^2)(1+k^2)^{-1} \end{pmatrix}.$$

Modification of SSA with nonstandard CP

- The SSA predicts $\theta_{13} = 0$ (ruled out at more than 5.2σ) and therefore, no measurable Dirac CP-violation.
- *We have to sacrifice scaling symmetry.*
- A possible modification to SSA, was proposed^{3,4} by combining the $\mathbb{Z}_2 \times \mathbb{Z}_2$ residual symmetry with the non-standard CP transformation on the neutrino fields

$$\nu_{L\alpha} \rightarrow i(G_a^{(k)})_{\alpha\beta} \gamma^0 \nu_{L\beta}^C.$$

- This extends the real invariance of M_ν in (3) to its complex counterpart, i.e.

$$(G_a^{(k)})^T M_\nu G_a^{(k)} = M_\nu^*.$$

- Since only two of the three $G_a^{(k)}$'s ($a = 1, 2, 3$) are independent, there are 3 ways in which generalized CP symmetry can be implemented: $G_{1,2}$, $G_{2,3}$ and $G_{1,3}$.

³R. Samanta, P. Roy and A. Ghosal, Eur. Phys. J. C **76**, no. 12, 662 (2016)

⁴W. Grimus and L. Lavoura, Phys. Lett. B **579** (2004) 113

Case I: Complex extension of $G_{2,3}^{(k)}$ Invariance

The complex invariance relations of M_ν related to $G_{2,3}^{(k)}$ is now written as

$$(G_{2,3}^{(k)})^T M_\nu G_{2,3}^{(k)} = M_\nu^*,$$

which in turn implies

$$(G_1^{(k)})^T M_\nu G_1^{(k)} = M_\nu.$$

The most general form of Majorana neutrino mass matrix becomes

$$M_{\nu_1} = \begin{pmatrix} p & -q_1 k + i q_2 k^{-1} & q_1 + i q_2 \\ -q_1 k + i q_2 k^{-1} & r - s k^{-1} (k^2 - 1) + i \frac{2 q_2 \kappa_+}{\sqrt{1+k^2}} & s + i \frac{q_2 \kappa_+ (k^2 - 1)}{k \sqrt{1+k^2}} \\ q_1 + i q_2 & s + i \frac{q_2 \kappa_+ (k^2 - 1)}{k \sqrt{1+k^2}} & r - i \frac{2 q_2 \kappa_+}{\sqrt{1+k^2}} \end{pmatrix}$$

It has already been shown that $(G_3^{(k)})^T M_\nu G_3^{(k)} = M_\nu^*$ leads to the results

$$\tan \theta_{23} = k^{-1},$$

$$\sin \alpha = \sin \beta = \cos \delta = 0.$$

The overall real G_1 invariance of M_ν fixes the first column of U_{PMNS} to the first column of U_0 . Therefore,

$$\sin^2 \theta_{12} = 1 - \cos^2 \theta_{12}^0 (1 + \tan^2 \theta_{13}).$$

Case II: Complex extension of $G_{1,3}^{(k)}$ Invariance

In this case, the complex invariance relations of M_ν due to $G_{1,3}^{(k)}$ can be written as

$$(G_{1,3}^{(k)})^T M_\nu G_{1,3}^{(k)} = M_\nu^*,$$

which leads to

$$(G_2^{(k)})^T M_\nu G_2^{(k)} = M_\nu.$$

Most general Majorana neutrino mass matrix

$$M_{\nu_2} = \begin{pmatrix} p & -q_1 k + iq_2 k^{-1} & q_1 + iq_2 \\ -q_1 k + iq_2 k^{-1} & r - sk^{-1}(k^2 - 1) + i \frac{2q_2 \kappa_-}{\sqrt{1+k^2}} & s + i \frac{q_2 \kappa_- (k^2 - 1)}{k \sqrt{1+k^2}} \\ q_1 + iq_2 & s + i \frac{q_2 \kappa_- (k^2 - 1)}{k \sqrt{1+k^2}} & r - i \frac{2q_2 \kappa_-}{\sqrt{1+k^2}} \end{pmatrix}$$

with

$$\kappa_- = -\frac{1}{\kappa_+}.$$

Now the overall real G_2 (10) invariance of M_ν fixes the second column of U_{PMNS} to the second column of U_0 which gives

$$\sin^2 \theta_{12} = \sin^2 \theta_{12}^0 (1 + \tan^2 \theta_{13}).$$

Case III: Complex extension of $G_{1,2}^{(k)}$ Invariance

- The complex invariance of M_ν related to $G_{1,2}^{(k)}$

$$(G_{1,2}^{(k)*})^T M_\nu G_{1,2}^{(k)} = M_\nu^*,$$

which implies

$$(G_3^{(k)})^T M_\nu G_3^{(k)} = M_\nu.$$

Since $G_3^{(k)}$ fixes the third column of U_{PMNS} to the third column of U_0 . But that leads to a vanishing value of θ_{13} and therefore, must be discarded.

Modified Scaling with type-I seesaw

- To discuss leptogenesis, we implement the non-standard CP in the context of type-I seesaw.
- We define two separate 'G' matrices G_L and G_R :

$$\nu_{L\alpha} \rightarrow i(G_L)_{\alpha\beta} \gamma^0 \nu_{L\beta}^C, \quad N_{R\alpha} \rightarrow i(G_R)_{\alpha\beta} \gamma^0 N_{R\beta}^C. \quad (2)$$

- The Lagrangian of type-I seesaw in a weak basis can be written as

$$-\mathcal{L}_{mass} = \bar{N}_{iR}(m_D)_{i\alpha} l_{L\alpha} + \frac{1}{2} \bar{N}_{iR}(M_R)_i \delta_{ij} N_{jR}^C + \text{h.c.}$$

- The invariance of the Lagrangian \mathcal{L}_{mass} under Eq.(2) lead to

$$G_R^\dagger m_D G_L = m_D^*, \quad G_R^\dagger M_R G_R^* = M_R^*.$$

- With $M_R = \text{diag}(M_1, M_2, M_3)$, we obtain

$$(G_R)_{lm} = \pm \delta_{lm} \Rightarrow m_D G_3 = -m_D^*, \quad \text{and} \quad m_D G_{1,2} = m_D^*. \quad (3)$$

Modified Scaling with type-I seesaw

- For both both case-I and II, the most general form of m_D s that satisfy the above constraints can be parameterized as

$$m_D = \begin{pmatrix} a & b_1 + ib_2 & -b_1/k + ib_2 k \\ e & c_1 + ic_2 & -c_1/k + ic_2 k \\ f & d_1 + id_2 & -d_1/k + id_2 k \end{pmatrix}$$

- In terms of the parameters of $(m_D)_{1,2}$, and M_R , the parameters of effective $M_\nu = -m_D^T M_R^{-1} m_D$ are given by

$$\boxed{\begin{aligned} p &= -\left(\frac{a^2}{M_1} + \frac{e^2}{M_2} + \frac{f^2}{M_3}\right) \\ q_1 &= -\frac{\kappa_\pm p}{\sqrt{1+k^2}} \\ q_2 &= -k\left(\frac{ab_2}{M_1} + \frac{ec_2}{M_2} + \frac{fd_2}{M_3}\right) \\ s &= -\frac{\kappa_\pm^2 pk}{1+k^2} + k\left(\left(\frac{b_2^2}{M_1} + \frac{c_2^2}{M_2} + \frac{d_2^2}{M_3}\right)\right) \\ r &= (sk + p) - 2q_1\sqrt{1+k^2}\left(\kappa_\pm - \frac{1}{\kappa_\pm}\right) \end{aligned}}$$

Numerical Analysis

- We utilize the (3σ) values of globally fitted neutrino oscillation data.

Table : Predictions on the light neutrino masses and $\sum_i m_i$.

Case-I					
Normal Ordering			Inverted Ordering		
$m_1/10^{-3}$ (eV)	$m_2/10^{-3}$ (eV)	$m_3/10^{-3}$ (eV)	$m_1/10^{-3}$ (eV)	$m_2/10^{-3}$ (eV)	$m_3/10^{-3}$ (eV)
4.0 – 8.5	9.28 – 12.0	49 – 52	47 – 61	49 – 62	9 – 36
$\sum_i m_i < 0.08$ eV			$\sum_i m_i < 0.16$ eV		
Case-II					
Normal Ordering			Inverted Ordering		
$m_1/10^{-3}$ (eV)	$m_2/10^{-3}$ (eV)	$m_3/10^{-3}$ (eV)	$m_1/10^{-3}$ (eV)	$m_2/10^{-3}$ (eV)	$m_3/10^{-3}$ (eV)
4.1 – 8.8	9.23 – 13.1	48 – 52	47 – 60	49 – 61	10 – 38
$\sum_i m_i < 0.08$ eV			$\sum_i m_i < 0.16$ eV		

Neutrinoless double beta decay (Case-I)



Figure : Plot of $|M_{ee}|$ vs. the lightest neutrino mass: the top two figures represent Case A: $\alpha = \pi, \beta = 0$ (left) and Case B: $\alpha = \pi, \beta = \pi$ (right) while the figures in the lower panel represent Case C: $\alpha = 0, \beta = 0$ (left) and Case D: $\alpha = 0, \beta = \pi$ (right).

Baryogenesis via Leptogenesis

- Baryogenesis via leptogenesis through the decays of the RH neutrinos, is governed by the Lagrangian

$$-\mathcal{L} = \lambda_{i\alpha} \bar{N}_{Ri} \tilde{\phi}^\dagger L_{\alpha} + \frac{1}{2} \bar{N}_{iR} (M_R)_i \delta_{ij} N_{jR}^C + \text{h.c.}$$

- We assume a hierarchical scenario, e.g., $M_1 \ll M_2 \ll M_3$.
- The decays of N_1 matter for the creation of lepton asymmetry.
- The standard expression for CP asymmetry parameter due to the decay of N_i is given by

$$\epsilon_i^\alpha = \frac{1}{4\pi v^2 h_{ii}} \sum_{j \neq i} \left\{ \text{Im}[h_{ij} (m_D)_{i\alpha} (m_D^*)_{j\alpha}] g(x_{ij}) + \frac{\text{Im}[h_{ji} (m_D)_{i\alpha} (m_D^*)_{j\alpha}]}{1 - x_{ij}} \right\}$$

where $h \equiv m_D m_D^\dagger$, $m_D = v\lambda/\sqrt{2}$, $x_{ij} = M_j^2/M_i^2$.

Leptogenesis in three temperature regimes

- I) $T \sim M_1 > 10^{12}$ GeV In this case, all the flavors are indistinguishable, and the total CP asymmetry is a sum over individual flavors $\varepsilon_i = \sum_\alpha \varepsilon_i^\alpha$.

In our model, $\varepsilon_i = 0 \Rightarrow$ unflavoured leptogenesis does not occur.

- II) $T \sim M_1 < 10^9$ GeV when all the flavors (e, μ, τ) are in equilibrium and distinguishable.

The final baryon asymmetry in this regime is approximated with

$$Y_B \simeq -\frac{12}{37g^*} \left[\varepsilon_i^{(e)} \eta \left(\frac{151}{179} \tilde{m}_e \right) + \varepsilon_i^{(\mu)} \eta \left(\frac{344}{537} \tilde{m}_\mu \right) + \varepsilon_i^{(\tau)} \eta \left(\frac{344}{537} \tilde{m}_\tau \right) \right] \quad (4)$$

- In our model, $\varepsilon_1^e = 0$. Numerically, the maximum value of $|\varepsilon_1^{\mu, \tau}|$ is found to be $\sim 10^{-8}$. Y_B in the observed range cannot be generated with such a small CP asymmetry parameter.

Fully flavored leptogenesis is numerically ruled out.

- III) $10^9 \text{ GeV} < T \sim M_1 < 10^{12} \text{ GeV}$, when only the τ flavor are in equilibrium: τ -flavored leptogenesis. In this regime there are two relevant CP asymmetry parameters; ε_i^τ and $\varepsilon_i^2 = \varepsilon_i^e + \varepsilon_i^\mu$.
- The final baryon asymmetry in this regime is approximated with

$$Y_B \simeq -\frac{12}{37g^*} \left[\varepsilon_i^{(2)} \eta\left(\frac{417}{589} \tilde{m}_2\right) + \varepsilon_i^{(\tau)} \eta\left(\frac{390}{589} \tilde{m}_\tau\right) \right]$$

where $\tilde{m}_\alpha = \frac{|(m_D)_{1\alpha}|^2}{M_1}$ and $\eta(\tilde{m}_\alpha)$ is the efficiency factor that accounts for the inverse decay and the lepton number violating scattering process.

- It turns out that only this scenario is viable in our model.

Leptogenesis with normal mass ordering (Case-I and II)

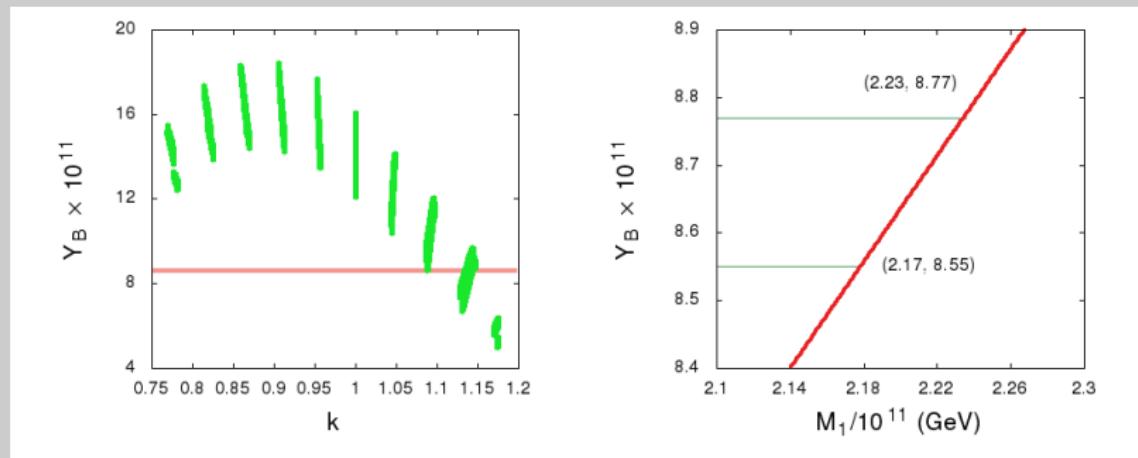


Figure : The plot on the LHS shows a variation of Y_B vs k . The red band in the same plot indicates the observed range of Y_B .

Leptogenesis with inverted mass ordering (Case-I and II)

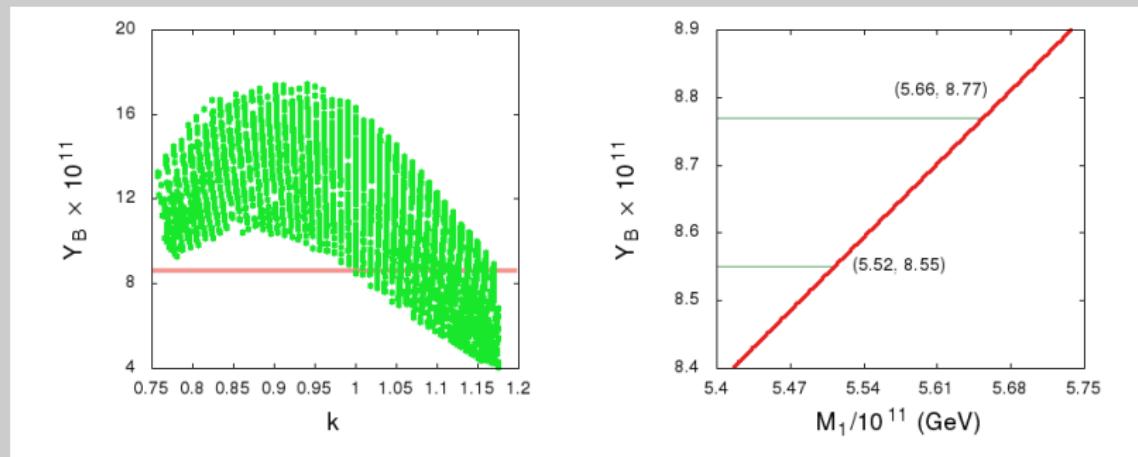


Figure : The plot on the LHS shows a variation of Y_B vs k . The red band in the same plot indicates the observed range of Y_B .

Summary

- Definite **analytical relations** between θ_{12} and θ_{13} .
- Predict **maximal Dirac CP violation** ($\cos \delta = 0$), **vanishing Majorana phases** ($\alpha, \beta = 0$).
- The model offers **predictions** for $\beta\beta_{0\nu}$ decay matrix element $|M_{ee}|$ and the light neutrino masses $m_{1,2,3}$ in the experiments such as nEXO, LEGEND, GERDA-II, T2K, NO ν A, DUNE etc.
- With the assumption that the required CP asymmetry is created by the decay of the lightest (N_1) of the heavy Majorana neutrinos, **only τ -flavored leptogenesis is found to be allowed in this model**.
- For a **normal ordering** of light neutrino masses, θ_{23} is found to be less than its maximal value, for the final baryon asymmetry Y_B to be in the observed range.
- An **upper and a lower bound** on the mass of N_1 have also been estimated.

Thank You