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Standard framework and some

limitations

» Weakly Interacting Massive Particle (WIMP).

thermal freeze-out (early Univ.)

indirect detection (now)
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production at colliders :

X No direct search signal.

X Small scale controversies.

x=m/T (time =)



WIMP Higgs portal : Status of minimal

model
» Real singlet scalar charged under Zs -
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WIMP Higgs portal : Complex scalar under Zs

» Complex Singlet scalar charged under Zg
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Multipartite Zo

» Two non-degenerate particle ¢1 , ¢2 under

same Zi5 symmetry. ZERN L SM
» Annihilation, mediated-annihilaton, Co- “;_____*l’f____{
annihilation operative here.
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Multipartite Zs E—
@senmtw@
> Two non-degenerate particle ®1, @2 charged - DD
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Beyond 2 ~2

> Recently, processes like e Assisted annihilation
3(DM) — 2(DM) has been DM
considered. With very tin - SM/EM
. . : .y Y p,{@}{ like
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sector. [Hochberg et al. PRL | g
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Novel features of Assisted Annihilation
DM Assister SM/SM like

O,....0,5,....85 =>Y,..., ¢
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» For simplicity, lets assume r = 2
—~1 — 4
<0p+q—>2Vp+q > ~ {M 3(pta)+ }

» This suppression in cross section naturally leads to light DM.
» No direct detection, indirect detection signal.

» Unlike coannihilation here assister is not charged under the
symmetry which makes DM stable.

> Region of interest : My < Mg, My,
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Aps

4592 keV scale DM
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There will be strong constraint on such low mass DM from BBN & CMB.
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3+ 2 :MeV scale DM

> Lets introduce a term
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Summary

e Minimal scalar singlet DM models are considerably constarined
by recent reults of direct detection experiments.

* We show that the non-standard annihilation topologies like co-

annihilation, semi-annihilation etc. play crucial role to evade
such constarint.

 The interplay of this kind process yields plenty of region in the

parameter space that is unconstrained by present and future
direct detection experiments.

« Going beyond 2 — 2 secenario, we propose a non-standard
annihilation mechanism “assisted annihilation” by which we can
get sub-GeV dark matter.

 Such a light cold dark matter with self interaction may solve
small scale structure formation issue.






Lagarangian: Multiparticle Z»
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Lagarangian: Multiparticle Zs
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