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[ The Yukawa sector:  mass spectrum ]
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neutrino mass states ν1, ν2, and ν3 with (real and positive) masses m1, m2, and m3 [3],
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According to quantum mechanics it is not necessary that the Standard Model states νe, νµ,

ντ be identified in a one-one way with the mass eigenstates ν1, ν2, and ν3, and the matrix

elements of U give the quantum amplitude that a particular Standard Model state contains

an admixture of a particular mass eigenstate. The probability that a particular neutrino

mass state contains a particular SM state may be represented by colours as in Fig. 1. Note

that neutrino oscillations are only sensitive to the differences between the squares of the

neutrino masses ∆m2
ij ≡ m2

i −m2
j , and gives no information about the absolute value of

the neutrino mass squared eigenvalues m2
i . There are basically two patterns of neutrino

mass squared orderings consistent with the atmospheric and solar data as shown in Fig. 1.
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Figure 1: The probability that a particular neutrino mass state contains a particular SM state
may be represented by colours as shown in the key. Note that neutrino oscillation experiments
only determine the difference between the squared values of the masses. Also, while m2

2 > m2
1, it is

presently unknown whether m2
3 is heavier or lighter than the other two, corresponding to the left

and right panels of the figure, referred to as normal or inverted mass squared ordering, respectively.
Finally the value of the lightest neutrino mass (sometimes referred to as the neutrino mass scale)
is presently unknown and is represented by a question mark in each case.
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✤ Quark masses generically hierarchical 
✤ Charged lepton masses generically hierarchical 
✤ Neutrino mass generation not known…high-energy see-saw? 
✤ Absolute neutrino mass not yet known, only mass-squared differences up to a sign
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Figure 2: Lepton and quark masses.

consistent pattern of deviations to restrict possible theoretical explanations, and to be sure the new
phenomena is real.

2. Use of flavour physics as a new physics discovery tool

While measurements of CKM parameters and masses are important, as they are fundamental
constants of nature, the main purpose of flavour physics is to find and/or define the properties of
physics beyond the SM. Flavour physics probes large mass scales via virtual quantum loops. Ex-
amples of the importance of such loops are changes in the W boson mass (MW ) from the existence
of the t quark of mass mt , dMW � m2

t , and changes due to the existence of the Higgs boson of mass
MH , dMW � ln(MH).

Strong constraints on NP are provided by individual processes. Each process provides a dif-
ferent constraint. Consider for example the inclusive decay b � s� . The SM diagrams are shown
in Fig. 3(a). The SM calculation considers either a B� or B0 meson and then sums over all decays
where a hard photon emerges. The Feynman diagrams corresponding to a NP process with a virtual
charged Higgs boson are shown in Fig. 3(b).
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Figure 3: (a) SM diagrams for the quark level process b � s� and (b) NP diagrams mediated by a charged
Higgs boson.

3

Only neutrino mass-
squared differences 
known

Figure 4.1: Schematic showing the relative hierarchies amongst the charged SM fermions [222].
Note of course that determining these masses is scheme dependent in quantum field theory, and
hence the exact placement of the points above should not be treated too seriously.

and –i are CP-violating Majorana phases). Yet, the actual numbers associated to these

matrices are given by:
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The numbers for the CKM (quark) mixings, taken from the PDG [224], are exceptionally

well measured and represent 1‡ bounds, and the numbers for the PMNS (lepton) mixings

are presented in [225] but taken from a global fit of neutrino data reflecting 99.7% CL

bounds [226]. Some care should be taken with these global fits, however, as they are

somewhat sensitive to the (unknown) mass hierarchy [226, 227], not to mention the fact

that the octant of ◊l
23

and value of ”l are still uncertain. Regardless, it is clear that

mixing in the quark sector is small and hierarchical, whereas neutrinos exhibit large and

non-hierarchical mixings. Quantizing the observed values and thereby understanding

the striking discrepancies between UCKM and UP MNS constitutes another aspect of the

flavour problem.

Of course, one way of addressing the questions surrounding fermionic masses and mix-
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[ The Yukawa sector:  mixing matrices ]
Mixing matrices have 3 mixing angles and a CP violating phase (+2 for Maj. neutrino)

✤ CKM mixing small and hierarchical.  
✤ PMNS mixing large and varied.  Special patterns emerging? E.g.TBM, GR, BM… 
✤ CP violation is large in the quark sector, and still unknown in the leptonic sector!
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The PMNS and CKM matrices are phenomenologically close to symmetric, and a symmetric form
could be used as zeroth order approximation for both matrices. We study the possible theoretical
origin of this feature in flavor symmetry models. We identify necessary geometric properties of
discrete flavor symmetry groups which can lead to symmetric mixing matrices. Those properties
are actually very common in discrete groups such as A4, S4 or �(96). As an application of our
theorem, we generate a symmetric lepton mixing scheme with ✓12 = ✓23 = 36.21

�
; ✓13 = 12.20

� and
� = 0, realized with the group �(96).

I. INTRODUCTION

The properties of the fermion mixing matrices are ex-
pected to give important hints on the underlying flavor
physics. Flavor symmetries [1] are an attractive and
most often studied approach to explain the rather differ-
ent structure of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) and Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrices. Literally hundreds of models have been
proposed in the literature, applying many possible dis-
crete groups in order to explain lepton and quark mixing.
Instead of adding simply another model to that list, we
study in this paper an interesting possible property of
both the CKM and PMNS matrix. Namely, despite the
fact that the CKM mixing is a small while the PMNS
mixing is large, both can to reasonable precision be es-
timated to be symmetric. The symmetric form of the
CKM matrix has early been noticed and studied in many
references [2–10]. After neutrino oscillation was well es-
tablished the possible symmetric PMNS matrix also at-
tracted some attention [11–16]. The symmetric form dis-
cussed in these references includes the manifestly sym-
metric case (U = UT ) and the hermitian case (U = U †).
It is easy to get the following relation by taking absolute
values

(U = UT
) ) (|U | = |U |T ) ( (U = U†

) (1)

which implies any physical prediction from |U | = |U |T
can also be used in the other two cases U = UT or U =

U †. Both of them are special cases of |U | = |U |T , which
is what we mean with symmetric mixing matrix from now
on.

Using the global fits of the CKM [17] and PMNS [18]
matrices, one finds:
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Here the upper (lower) values in each entries are upper
(lower) bounds of the matrix elements. The CKM matrix
has been measured to a high precision (here we show the
1� range) and the relations |U12| = |U21|, |U23| = |U32|
are still well compatible with data. The relation |U13| =
|U31| is however not fulfilled by data. As a symmetric
mixing matrix requires that [2, 11]

|U31|2 � |U13|2 = |U12|2 � |U21|2 = |U23|2 � |U32|2 = 0 ,
(4)

we have however an interesting option: namely that some
flavor symmetry or other mechanism generates |U12| =
|U21|, |U23| = |U32| but U13 = U31 = 0. Higher or-
der corrections, which are frequently responsible for the
smallest mixing angles, are then the source of non-zero
|U13| 6= |U31|, as well as for CP violation. Rather triv-
ially, matrices with only one mixing angle are symmetric,
the same holds for the unit matrix.

The symmetry conjecture for the PMNS mixing is less
compatible with data, as shown by the 3� bounds in Eq.
(3) [19]. Similar to the quark sector, the 13- and 31-
elements are incompatible with symmetry (the other two
relations between the elements are also not favored by
data), and a similar situation as mentioned above for the
CKM matrix might be realized. Of course, one could also
imagine that an originally symmetric mixing matrix is
modified by higher order corrections, VEV-misalignment,
RG-effects or other mechanisms that have been studied
in the literature.

For completeness, we give the phenomenological pre-
diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
[11]:

|U13| =
sin ✓12 sin ✓23p

1� sin

2 � cos

2 ✓12 cos

2 ✓23 + cos � cos ✓12 cos ✓23
(5)
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New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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τ

CKM                             PMNS

Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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[ Symmetries as solutions ]

ously unknown two-loop anomalous dimensions and matching corrections, before finally

presenting the resummed distributions and comparing them to LEP data from the L3

Collaboration. The novel research in Chapter 4 is described in the following publications:

• Automated Calculation of Dijet Soft Functions in Soft-Collinear E�ective Theory,

G. Bell, R.Rahn, and JT, submitted to PoS (Radcor-Loopfest 2015), arXiv:1512.06100

— [21]

• Angularity Distributions at NNLLÕ Accuracy, G. Bell, A. Hornig, C. Lee, and JT,

paper in preparation — [22]

1.1.2 Attempts at BSM Symmetry Enhancements

On the other hand, we might want to speculatively venture back along the unknown

dynamics of the first arrow in (1.1), thereby exploring explicit new physics possibilities

and treating the SM as an e�ective theory itself. There are an infinite number of ways to

do so, governed only by theoretical consistency and the data relevant to the given problem.

From the symmetry perspective, we generically insist that more SM parameters be related

to one another. Indeed, while (1.4) represents a success of electroweak unification, the

hypercharge assignments Y are still arbitrary! However, Georgi and Glashow famously

showed that if the SM is embedded in an even larger gauge group like SU(5), these too

become consequences of the overarching theory [23]. Using their foundational analysis

as inspiration, one can enhance the SM with additional symmetry structure in order to

explain some of its failings:

BSM theory ≥ GBSM ◊ SM (1.6)

where the direct product symbol ‘◊’ can represent additional structure in either the

external or internal symmetry sectors. As an example of the former, supersymmetry

(SUSY) enlarges the well-known Poincaré algebra of spacetime, intimately relating the

physics of bosons and fermions. Its simplest field theoretic implementation, the minimal-

supersymmetric-SM, is the canonical approach to solving the hierarchy problem [24,25].

Additional internal symmetries are also readily employed in (1.6); for example, BSM U(1)

structures can be used to address aspects of the strong CP problem a lá Peccei-Quinn [26],

5

? ? ?
✤ New dynamical scalar sector to realize its breaking patterns?

✤ Can we address this by appending the SM with a new symmetry?

✤ Such a symmetry would presumedly relate fermions in a given family— i.e. a `horizontal’ 
or `family’ or `flavour’ symmetry

✤ Also, what are the mathematical properties of the required symmetry?
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✤ 9 charged fermion masses + 3 active neutrino masses 
✤ 6 mixing angles and 2 - 4 CP violating phases

20-22 free and unexplained parameters exist in the SM 
Yukawa sector



[ The discrete approach ]
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Figure 7: Examples of subgroups of SU(3) with triplet representations discussed in this review.
A line connecting two groups indicates that the smaller is a subgroup of the bigger one.

from these groups in a direct or semi-direct way, see Subsection 6.3. Yet, from the model

building point of view it can still be useful to change to a basis in which the order three

generator becomes diagonal [96], analogously to the case of S4. In Appendix C we list the

generators and Clebsch-Gordan coefficients of the groups S4, A4 and T7 in the T diago-

nal basis. Their relation to SU(3) and some of its subgroups is schematically illustrated

in Fig. 7.

6. Discrete family symmetries and model building approaches

6.1 Family symmetries and flavons

The masses and mixings of the three families of quarks and leptons result from the form

of the respective Yukawa matrices formulated in the flavour basis. Is there an organising

principle which dictates the family structure of these Yukawa couplings? While this review

takes the view that the observed mass and mixing patterns can be traced back to a family

symmetry, we remark that some authors answer this question negatively, referring to a

landscape of parameter choices out of which Nature has picked one that is compatible with

the experimental measurements. In particular, the observation of a large reactor angle

has been interpreted as a sign for an anarchical neutrino mass matrix [97]. Following

the symmetry approach, it is clear that the family symmetry must be broken in order

to generate the observed non-trivial structures. This is achieved by means of Higgs-type

fields. These so-called flavon fields φ are neutral under the SM gauge group and break

the family symmetry spontaneously by acquiring a VEV. This VEV in turn introduces an

expansion parameter

ϵ =
⟨φ⟩
Λ

, (6.1)

– 39 –

Reviews: King, Luhn:  hep-ph/1301.1340, 
Grimus, Ludl:  hep-ph/1110.6376, Altarelli, 

Feruglio: hep-ph/1002.0211

✤ Huge literature:  Pakvasa, Sugawara (1977) use S3 for Cabibbo angle.  Resurgence(?) in early 90s 
(Kaplan, Schmaltz; Frampton, Kephart), TBM and GUT models established early-mid 00s (Ma, 
Rajasekaran; Altarelli, Feruglio, de M. Varzielas, King, Ross +), new flood in 2012/13 after non-
zero reactor angle…also see talk by Kumar Rey

✤ U(1)FN symmetries difficult to reconcile with large neutrino mixing -> non-Abelian groups
✤ Discrete symmetries avoid Goldstone modes that could spoil phenomenology, easily embedded 

in SUSY GUTs, extra dimensional theories — naturally pumped out of orbifold compactifications!

Encyclopedia: Ishimori et al.:  hep-ph/1003.3552

All of these 
symmetries 
have been 
explored in 
models…

✤ Easier facilitation of vacuum alignment than with continuous symmetries

Today we focus here!
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[ SUSY and discrete flavour models]
Discrete flavour models generally do not rely on SUSY, but it (can) make life simpler:

✤ SUSY helps to align flavoured vacua via “F-Type” or “D-Type” mechanisms:

✤ In the current study we also find that we need SUSY (or some other BSM spectrum) to obtain 
successful predictions in the UV, where our model holds (radiative corrections to mass and mixing)

in order to leave invariant the Z2 symmetries associated with S and U . Here ϕ denotes the

overall VEV of a flavon φ. Inserting all three flavons into Eq. (6.10), assuming the lepton

doublets L to transform in the 3 representation, we end up with a neutrino mass matrix

which comprises three terms,

mν
LL ≈

⎡

⎢⎣ϕν
3′

⎛

⎜⎝
2 −1 −1

−1 2 −1

−1 −1 2

⎞

⎟⎠+ ϕν
1

⎛

⎜⎝
1 0 0

0 0 1

0 1 0

⎞

⎟⎠+ ϕν
2

⎛

⎜⎝
0 1 1

1 1 0

1 0 1

⎞

⎟⎠

⎤

⎥⎦
v2u
Λ2

. (7.3)

Using the matrices S and U of Eq. (6.8), one can easily check explicitly that STmν
LLS =

UTmν
LLU = mν

LL as required. Clearly, the alignments of Eq. (7.2) depend on the chosen

basis. In particular the basis of the doublet representation could have been chosen differ-

ently without affecting the basis of the triplet representation (which we fixed by demanding

a diagonal T generator). This, however, would also change the Clebsch-Gordan coefficients

such that the form of the neutrino mass matrix in Eq. (7.3) remains unchanged. We em-

phasise that the same procedure of identifying the flavon alignments of direct models can

be applied to arbitrary choices of the Klein symmetry.

7.2 Vacuum alignment mechanism in direct models

Having determined the alignments required in a given direct models, the next step is to

derive them from minimising a flavon potential. In the context of direct models, the most

popular and perhaps natural approach to tackle the problem of the flavon alignment is

provided by the so-called F -term alignment mechanism [30,103]. The idea is to couple the

flavons to so-called driving fields in a supersymmetric setup. Like flavons, driving fields are

neutral under the SM gauge group and transform in general in a non-trivial way under the

family symmetry G. Introducing a U(1)R symmetry under which the chiral supermultiplets

containing the SM fermions carry charge +1, allows to distinguish flavons from driving

fields by assigning a charge of +2 to the latter while keeping the former neutral. With this

U(1)R charge assignment, the driving fields can only appear linearly in the superpotential

and cannot couple to the SM fermions. The set of superpotential operators involving the

driving fields Xi is usually referred to as the driving or simply flavon potential Wflavon.

Assuming that supersymmetry remains unbroken at the scale where the flavons develop

their VEVs, we can obtain the flavon alignments from the terms of Wflavon by setting the

F -terms of the driving fields to zero, i.e.

−F ∗
Xi

=
Wflavon

Xi
= 0 , (7.4)

by which the scalar potential is minimised.

To illustrate the F -term alignment mechanism we give two simple examples based on

the family symmetry group S4. First, consider a driving field X1 and a flavon field φ2
transforming in the 1 and 2 representations of S4, respectively. Expanding the resulting

term of the driving superpotential in terms of the component fields φ2,i we obtain

X1φ2φ2 = X1(φ2,1φ2,2 + φ2,2φ2,1) = 2X1φ2,1φ2,2 . (7.5)
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The F -term condition of Eq. (7.4) then gives rise to the following two solutions,

⟨φ2⟩ ∝

(
1

0

)

, ⟨φ2⟩ ∝

(
0

1

)

. (7.6)

Notice that these two alignments are related by the S4 symmetry transformation U , while a

transformation induced by T does not change the alignment but only the phase of the VEV.

It is a general feature of any G symmetric theory that one particular solution for the flavon

alignments will automatically imply a whole set of solutions which are related by symmetry

transformations. However, the reverse need not be true, i.e. there may be cases in which

two or more solutions exist which are not related through symmetry transformations.

As a second example let us consider the alignments of Eq. (7.2). One possible way

to derive these using the F -term alignment mechanism consists in introducing two driving

fields, one transforming in the 3 of S4, the other in the 3′ [106]. The corresponding terms

of the flavon superpotential then read

g0X3φ
ν
3′φν2 + X3′ (g1φ

ν
3′φν3′ + g2φ

ν
3′φν2 + g3φ

ν
3′φν1) , (7.7)

where gi are dimensionless coupling constants. Denoting the VEVs of φν
3′ , φν2 and φν

1
by

ci, bi and a, respectively, the F -term conditions take the form

g0

⎡

⎢⎣b1

⎛

⎜⎝
c2
c3
c1

⎞

⎟⎠− b2

⎛

⎜⎝
c3
c1
c2

⎞

⎟⎠

⎤

⎥⎦ =

⎛

⎜⎝
0

0

0

⎞

⎟⎠ , (7.8)

2g1

⎛

⎜⎝
c21 − c2c3
c23 − c1c2
c22 − c3c1

⎞

⎟⎠+ g2

⎡

⎢⎣b1

⎛

⎜⎝
c2
c3
c1

⎞

⎟⎠+ b2

⎛

⎜⎝
c3
c1
c2

⎞

⎟⎠

⎤

⎥⎦+ g3a

⎛

⎜⎝
c1
c2
c3

⎞

⎟⎠ =

⎛

⎜⎝
0

0

0

⎞

⎟⎠ . (7.9)

Restricting to solutions in which all of the three flavons develop a VEV, Eq. (7.8) requires

non-zero values for all bi and all ci. Using this, it is straightforward to find the most general

solution to the set of F -term equations. Up to symmetry transformations, we obtain

⟨φν3′⟩ = ϕν
3′

⎛

⎜⎝
1

1

1

⎞

⎟⎠ , ⟨φν2⟩ = ϕν
2

(
1

1

)

, ϕν
2 = −

g3
2g2

ϕν
1 . (7.10)

We remark that the trivial vacuum, that is the vacuum configuration where none of

the flavons develops a VEV, typically provides a solution to the F -term equations as well.

This can be eliminated by including soft supersymmetry breaking effects. Then the scalar

potential relevant for the flavon alignments takes the general form

Vflavon =
∑

i

∣∣∣∣
Wflavon

Xi

∣∣∣∣
2

+

∣∣∣∣
Wflavon

φi

∣∣∣∣
2

+m2
Xi
|Xi|2 +m2

φi
|φi|2 + · · · , (7.11)

where m2
Xi

and m2
φi

denote the soft breaking masses of the driving fields Xi and the

flavons φi. The dots stand for additional soft breaking terms. Assuming positive m2
Xi
,
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A special case of FD is obtained if the three contributions to the neutrino mass matrix

of Eq. (8.1) feature a hierarchy m0
1 ≪ m0

2 ≪ m0
3. In such a scenario, which is called

sequential dominance [51,52,76], see Subsection 4.3, the first term, and with it the vector

Φ1, can be ignored to good approximation. In fact, one can even remove the flavon φν1
from the theory altogether. This would set m0

1 automatically to zero, without affecting the

pattern of the 3×3 mixing. The latter can be understood by realising that the first column

of the mixing matrix is uniquely determined by requiring orthogonality to the other two

columns Φ2 and Φ3. As above, SD is a general concept applicable to arbitrary two (or

three) orthogonal flavon alignments. Choosing Φ2 and Φ3 as given in Eq. (8.2) leads to

constrained sequential dominance (CSD) [70], and predicts tri-bimaximal neutrino mixing.

8.2 Vacuum alignment mechanism in indirect models

We have discussed in Subsection 7.2 how flavons of direct models can be aligned using the

F -term alignment mechanism. In indirect models, the same mechanism is available, how-

ever, if a triplet representation of the family symmetry is real, it is mandatory to work in a

basis where this is explicitly realised, i.e. where all group generators are real. Applications

of the F -term alignment mechanism in indirect models can be found e.g. in [107,115,116].

In addition to the usual F -term alignment mechanism, indirect models offer an elegant al-

ternative possibility for achieving particular flavon vacuum configurations. This so-called

D-term alignment mechanism, as the name suggests, was first implemented in supersym-

metric models [87, 117], however it is also possible to apply it in a non-supersymmetric

context.

The starting point is a flavon scalar potential field which may or may not arise in a

supersymmetric model from D-terms,

V = −m2
∑

i

φi
†
φi + λ

(
∑

i

φi
†
φi
)2

+ ∆V , (8.3)

where the index i labels the components of a particular flavon triplet φ and

∆V = κ
∑

i

φi
†
φiφi

†
φi . (8.4)

Ignoring the term ∆V in Eq. (8.3), the potential features an SU(3) symmetry and, as

a consequence, no direction of the flavon alignment would be preferred. Inclusion of the

term ∆V breaks the SU(3) symmetry of the potential and leads to minima which single

out particular vacuum alignments. With the scale of the flavon VEV depending on m2, λ

and κ, it is sufficient to consider the extrema of the quartic term in Eq. (8.4) for a unit

vector Φ. If κ > 0, it is necessary to minimise the sum
∑

i |Φi|4, leading to the solution

κ > 0 −→ Φ+ =
1√
3

⎛

⎜
⎝
eiϑ1

eiϑ2

eiϑ3

⎞

⎟
⎠ , (8.5)
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ever, if a triplet representation of the family symmetry is real, it is mandatory to work in a

basis where this is explicitly realised, i.e. where all group generators are real. Applications

of the F -term alignment mechanism in indirect models can be found e.g. in [107,115,116].

In addition to the usual F -term alignment mechanism, indirect models offer an elegant al-

ternative possibility for achieving particular flavon vacuum configurations. This so-called

D-term alignment mechanism, as the name suggests, was first implemented in supersym-

metric models [87, 117], however it is also possible to apply it in a non-supersymmetric

context.

The starting point is a flavon scalar potential field which may or may not arise in a

supersymmetric model from D-terms,

V = −m2
∑
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φi
†
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(
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†
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+ ∆V , (8.3)

where the index i labels the components of a particular flavon triplet φ and

∆V = κ
∑

i

φi
†
φiφi

†
φi . (8.4)

Ignoring the term ∆V in Eq. (8.3), the potential features an SU(3) symmetry and, as

a consequence, no direction of the flavon alignment would be preferred. Inclusion of the

term ∆V breaks the SU(3) symmetry of the potential and leads to minima which single

out particular vacuum alignments. With the scale of the flavon VEV depending on m2, λ

and κ, it is sufficient to consider the extrema of the quartic term in Eq. (8.4) for a unit

vector Φ. If κ > 0, it is necessary to minimise the sum
∑

i |Φi|4, leading to the solution

κ > 0 −→ Φ+ =
1√
3

⎛

⎜
⎝
eiϑ1

eiϑ2

eiϑ3

⎞

⎟
⎠ , (8.5)
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where ϑi are arbitrary phases.17 Such an alignment is of the form of Φ2 in Eq. (8.2). In

fact, in indirect models, where the alignment of Eq. (8.5) appears as a column of the Dirac

neutrino Yukawa matrix, the phases ϑi can be removed by a field redefinition of the charged

leptons. In the case where κ < 0, the sum
∑

i |Φi|4 has to be maximised. This gives rise to

the alignment

κ < 0 −→ Φ− =

⎛

⎜⎝
eiϑ1

0

0

⎞

⎟⎠ , (8.6)

and permutations thereof. Such alignments are typically useful for constructing a diagonal

charged lepton sector. They are furthermore necessary to obtain the alignments Φ3 in

Eq. (8.2) via SU(3) invariant orthogonality conditions. Introducing a new flavon field φ

which couples to the flavons φ+ (with alignment Φ+ = Φ2) and φ− (with alignment Φ−)

as

κ′
∣∣∣∣
∑

i

φi−
†
φi
∣∣∣∣
2

+ κ′′
∣∣∣∣
∑

i

φi+
†
φi
∣∣∣∣
2

, (8.7)

we generate the alignment ⟨φ⟩ ∝ Φ3 if κ′ and κ′′ are taken to be positive. An alignment

proportional to Φ1 of Eq. (8.2) can be obtained subsequently from orthogonality conditions

involving flavons with alignments along the directions Φ2 and Φ3.

The preceding discussion illustrates the importance of the SU(3) breaking term in

Eq. (8.3). It is therefore natural to identify finite groups G which have the operator in

Eq. (8.4) as an invariant. Obviously, the family symmetry G must admit at least one

triplet representation, with generators which are symmetry transformations of Eq. (8.4).

As was shown in [101], possible candidate symmetries include the groups ∆(3n2) [82, 86],

∆(6n2) [82,83] and Tn [91], cf. also Eqs. (5.8,5.12).

All these symmetries allow for at least two quartic invariants of type 3333, namely

the SU(3) invariant and the operator of Eq. (8.4). However, four of them have additional

independent quartic invariants. These are ∆(24) = S4 with one extra invariant, as well

as ∆(12) = A4, ∆(27) and ∆(54) with two additional invariants each [101]. These new

invariants may spoil the structure of the vacuum derived from ∆V of Eq. (8.4) unless they

are sufficiently suppressed. From this perspective, the groups ∆(3n2) and ∆(6n2) with

n > 3, as well as the groups Tn are preferred candidates for the underlying discrete family

symmetry of indirect models.

We conclude the discussion of the alignments in indirect models with a possible alter-

native to the invariant of Eq. (8.4), which has not received any attention yet. A cubic term

of the form φ1φ2φ3 is left invariant under the groups ∆(3n2) and Tn. As such a term is

generally not real, the new term in the flavon potential reads

∆V = κ(φ1φ2φ3 +H.c.) , (8.8)

17In principle these phases could be rotated away by an SU(3) transformation, however, this would

generally change the basis of the assumed discrete symmetry. Yet, in specific models, these phases can

typically be absorbed into a redefinition of the physical fields that accompany these flavons.
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hep-ph/1301.1340

We utilize this 
type of 

mechanism!

or

✤ Holomorphicity constrains the form of the Yukawa sector (superpotential).

✤ Also, interesting phenomenology depending on relative SUSY and flavour breaking scales (see 
hep-ph/1607.06827 and hep-ph/1710.02593 for recent thoughts…)

tree level flavour violating effects possible -> 
interesting hints for flavour from SUSY signals…
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Most models assume a very high 
scale for flavour, often relating it to 
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having to deal with other 

phenomenological effects…

however…
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✤ In the IR, we can build effective mass matrices with higher dimensional operators:

✤ In the UV, each vertex is part of the full Lagrangian (messengers A integrated out):

✤ Hence by assigning the messengers to trivial singlets, one can form family symmetry 
invariants:
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JT

July 10, 2017

� =
1p
2

(1)

LY = �ye ¯EL� eR � yd ¯QL� dR � yu ¯QL�
c uR

(2)

LY = �ye
vp
2
ēLeR

✓
1 +

h

v

◆
(3)

� ! 1p
2

✓
0

v + h(x)

◆
(4)

R (GBSM) ⇠ 3, ¯3, 2, 1, ... (5)

✓3   c H ¯A A (6)

LUV ⇠  ✓3A +

¯AH A + ... (7)

LIR ⇠  ✓3H ✓3  
c

(8)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ⇠ 1 (9)

1



[ Mass matrices from flavons ] 
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✤ Flavons acquire vacuum expectation values along specific directions in flavour 
space:

Alignment is 
generally non-

trivial to 
achieve, but 

facilitated with 
the NADS 

✤ Mass matrices then follow from the form of the effective 
operator:

✓3 ! h✓3i · (0, 0, 1) (10)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ) M /h✓3i2

0

@
0 0 0

0 0 0

0 0 1

1

A

(11)

LY ( , c, H, ✓i) , M ( , c, hH, ✓ii) (12)

2

Family symmetries shape the Yukawa sector, align VEVs, and thereby 
control fermionic mass and mixing matrices

✤ Let’s use phenomenologically successful mass patterns to guide the construction of 
our model…

LUV ⇠  ✓3A +

¯AH A + ... (9)

LIR ⇠  ✓3H ✓3  
c

(10)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ⇠ 1 (11)

3⌦ ¯

3⌦ 1 ! 1 (12)

h✓3i = v3 · (0, 0, 1) (13)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ) M / v23

0

@
0 0 0

0 0 0

0 0 1

1

A

(14)

LY ( , c, H, ✓i) , M ( , c, hH, ✓ii) (15)

⌫L = (⌫e, ⌫µ, ⌫⌧) (16)

G⌫ = Z2 (17)

G⌫ = Z2 ⇥ Z2 (18)

2

LUV ⇠  ✓3A +

¯AH A + ... (9)

LIR ⇠  ✓3H ✓3  
c

(10)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ⇠ 1 (11)

3⌦ ¯

3⌦ 1 ! 1 (12)

h✓3i = v3 · (0, 0, 1) (13)

L ⇠  i ✓
i
3 ✓

j
3  

c
j H ) M / v23

0

@
0 0 0

0 0 0

0 0 1

1

A

(14)

LY ( , c, H, ✓i) , M ( , c, hH, ✓ii) (15)

⌫L = (⌫e, ⌫µ, ⌫⌧) (16)

G⌫ = Z2 (17)

G⌫ = Z2 ⇥ Z2 (18)

2



[ A universal texture zero (UTZ) for fermions ]
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✤ If so, can we realize this phenomenology in a concrete model that also addresses 
the leptons?

Neutrino sum rule

August 27, 2016

1 Charged fermion mass structure

Quark and charged lepton masses and mixings are consistent with a symmetric mass matrix structure

of the form

MD

a

⇡ m3

0

BB@

0 "3
a

"3
a

"3
a

r
a

"2
a

r
a

"2
a

"3
a

r
a

"3
a

1

1

CCA , r
u,d

= 1, r
l

= �3 (1.1)

This describes the observed masses and mixings provided the parameters ✏
a

, a = u, d, l are di↵erent

in the up quark, down quark and charged lepton sector, ✏
u

⇡ 0.15, ✏
d

, l ⇡ 0.15. This symmetric

structure has a (1,1) texture zero and implements the GST relation for the Cabibbo angle. The

factor r
i

implements the Georgi Jarlskog mechanism giving m
b

= m
⌧

, m
µ

= 3m
s

, m
e

= 1
3md

at the

unification scale, a reasonable (though not perfect) starting point.

1.1 Familon description

This structure can be obtained by coupling the fermions to familons, ✓
i

, with a quantised vev structure

that can be obtained if there is an underlying discrete family symmetry. The di↵erence between the

down quark and charged lepton matrices can be derived from an underlying GUT structure. As an

example of this consider the e↵ective Lagrangian of the form

Leff

a,mass

=  
i

 
1

M2
3,a

✓i3✓
j

3 +
1

M3
23,a

✓i23✓
j

23⌃+
1

M3
123,a

(✓i123✓
j

23 + ✓i23✓
j

123)S

!
 c

j

H5 (1.2)

where a = u, d, l and

✓3 = (0, 0, 1) < ✓3 >, ✓23 = (0, 1, 1) < ✓23 >, ✓123 = (1, 1,�1) < ✓123 > (1.3)

The field ⌃ is associated with the breaking of the underlying GUT with vev / B � L + TR

3 . It

implements the Georgi Jarlskog relation with rl
rd

= �3 for  = 0. For the case  = 2, plus domination

by the RH messengers, it gives rl
rd

= 3. Since the sign is irrelevant both cases are viable. Here I will

1

IDEA:  Can this successful texture be extended to the neutrino sector?

✤ A (1,1) texture zero can accurately reproduce the phenomenology of the charged 
fermions.

Equations for UTZ

JT

July 11, 2017

� =
1p
2

(1)

✏u ' 0.05, ✏d,l ' 0.15 (2)

LY = �ye ¯lL� eR � yd q̄L� dR � yu q̄L�
c uR (3)

LY = �ye
vp
2
ēLeR

✓
1 +

h

v

◆
(4)

� ! 1p
2

✓
0

v + h(x)

◆
(5)

hh(x)i = 0 (6)

LY = � ye
vp
2| {z }

me

ēL eR � yd
vp
2| {z }

md

¯dL dR � yu
vp
2| {z }

mu

ūL uR

(7)

R (GBSM) ⇠ 3, ¯3, 2, 1, ... (8)

1

✤ It implements the well known Georgi-Jarlskog (PLB 86 1979) mass relation and 
also the successful Gatto-Sartori-Tonin (PLB 28 1968) relation:

See  e.g Roberts, Romanino, Ross,  Velasco-Sevilla:  hep-ph/0104088

Equations for UTZ

JT

July 11, 2017

sin ✓c =

r
md

ms
� ei�

r
mu

mc
(1)

GF = �(27)⇥ ZN (2)

✏u ' 0.05, ✏d,l ' 0.15 (3)

LY = �ye ¯lL� eR � yd q̄L� dR � yu q̄L�
c uR (4)

LY = �ye
vp
2
ēLeR

✓
1 +

h

v

◆
(5)

� ! 1p
2

✓
0

v + h(x)

◆
(6)

hh(x)i = 0 (7)

LY = � ye
vp
2| {z }

me

ēL eR � yd
vp
2| {z }

md

¯dL dR � yu
vp
2| {z }

mu

ūL uR

(8)

1

Equations for UTZ

JT

July 11, 2017

sin ✓c =

r
md

ms
� ei�

r
mu

mc
(1)

mb ⇡ 3m⌧ (2)

ms ⇡ 3⇥ 1

3
mµ (3)

md ⇡ 3⇥ 3me (4)

GF = �(27)⇥ ZN (5)

SO(10) �! SU(4)⇥ SU(2)L ⇥ SU(2)R �! SU(3)c ⇥ SU(2)L ⇥ U(1)Y (6)

✏u ' 0.05, ✏d,l ' 0.15 (7)

LY = �ye ¯lL� eR � yd q̄L� dR � yu q̄L�
c uR (8)

LY = �ye
vp
2
ēLeR

✓
1 +

h

v

◆
(9)

� ! 1p
2

✓
0

v + h(x)

◆
(10)

1

Red indicates 
RGE 



[ The UTZ model ]
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✤ A Type-I See-saw generates active light neutrinos:

4

However, Graham instead writes the Dirac mass matrix in the i = (⌫123, ⌫23) , j = (⌫1, ⌫2) basis, with ⌫123,23 =
⌫i✓i123,23, such that:

MD,eff
⌫ /

✓
0

p
3/2

1 1

◆
, (15)

One can easily check that the parameterizations yield equivalent mass mixing terms. Applying the Type-I see-saw
gives the light neutrino mass matrix:

MD
⌫ ·MM,�1

⌫ ·MD,T
⌫ =) M⌫ / � 1

�2

✓
0 �p

3/2�
�p

3/2� ↵

◆
X (16)

which has (basis-independent) mass eigenvalues m1,2:

m1,2 =
1

2

⇣
↵±

p
↵2 + 6�2

⌘
(17)

with m1 the heaviest active neutrino. Expanding in �/↵ (assuming ↵ � �), one finds m1 ⇡ ↵ and the ratio of mass
eigenvalues:

|m2

m1
|⇡ 3

2

�2

↵2
)

r
m2

m1
=

r
3

2

�

↵
X (18)

Now, the prediction from Sequential Dominance is that m3 = 0, such that one can use the measured mass squared-
di↵erences to obtain a prediction for the mass ratio in (18). Using �m2

23 ' 7.5⇥ 10�5 and �m2
12 ' 2.5⇥ 10�3 (note

that I have relabeled m1 $ m3 from the standard notation), I find:
p

m2/m1 ⇡ .413 X (19)

B. Mixing Matrices

The see-saw contracts the (⌫1, ⌫2) indices of MM
⌫ , leaving the mass matrix (16) in the (⌫123, ⌫23) (⌫123, ⌫23) basis.

We can therefore diagonalize (16) to find the relationship between ⌫123,23 and ⌫1,2 eigenstates, just as UPMNS provides
the relationship between mass and flavour eigenstates. Dividing out ↵, (16) takes the form:

M⌫ /
✓

0 �p
3/2�

↵e
i�

�p
3/2�

↵e
i� 1

◆
=

✓
ei� 0
0 1

◆✓
0 �p

3/2�
↵

�p
3/2�

↵ 1

◆

| {z }
M 0

⌫

✓
ei� 0
0 1

◆
(20)

where � is the phase between � and ↵, � ⌘ �� � �↵ and where ↵,� on the RHS of (20), and thus M 0
⌫ , are now real.

In fact, M 0
⌫ is a real and symmetric matrix, which means it is diagonalizable with the simple 2⇥ 2 rotation matrix:

V =

✓
c� �s�
s� c�

◆
, c2� =

�1p
1 + 4 · 3/2 · �2/↵2

= 2 cos2 �� 1 (21)

Again expanding in �/↵, one finds that cos� ⇡ p
3/2 · �/↵ =

p
m2/m1 and sin� ⇡ 1, such that the two eigenstates

are related up to O (m2/m1) by:

✓
⌫1
⌫2

◆
=

0

@
ei�

q
m2
m1

�1

ei�
q

m2
m1

1

A
✓

⌫123
⌫23

◆
(22)

though I believe there are ± ambiguities in (22) from the choice of rotation direction in (21) and in taking square
roots. We now see that

⌫1 = ei�
r

m2

m1
⌫123 � ⌫23 / ⌫23 � ei�

r
m2

m1
⌫123 X? (23)

⌫2 = ei�⌫123 +

r
m2

m1
⌫23 (24)

3

as desired (cf. with Majorana terms).
Graham does a mixed approach using the special basis for LH and the standard for RH and gets the same result

in terms of operators and his MR and m⌫ are also the same form, so the methods are probably all valid. there are
only 2 parameters (plus one for the lightest neutrino mass which is almost zero) in the the e↵ective terms so it is very
predictive scenario. As a SD model, this leads to Normal Ordering. The predictiveness is well understood from the
fact that the deviations from TBM and in particular ✓13 is related to the ratio of m3 and m2. If we were already in
the basis where charged leptons are diagonal, this gives a bit too large (but correct order of magnitude) sin ✓13 ' 0.24.
With charged lepton diagonalisation this can be brought into the experimental values depending on the phase.

Discrete symmetry can be �(27), or according to Jim’s suggestion, probably can be T7 with the same SU(3)-like
rule of 3̄⇥ 3 to trivial singlet.

II. REPRODUCING GRAHAM’S NUMBERS -JT

A. Mass Matrices

I take the e↵ective Dirac Lagrangian for a 2 {u, d, l, ⌫} to be

LD
a =  i

 
1

M2
3,a

✓i3✓
j
3 +

1

M3
23,a

✓i23✓
j
23⌃+

1

M3
123,a

⇣
✓i123✓

j
23 + ✓i23✓

j
123

⌘
S

!
 c
jH5 (6)

and the (RH) Majorana mass matrix for neutrinos to be

LM
⌫ =  c

i

✓
1

M
✓i✓j +

1

M4

h
↵✓i23✓

j
23 (✓

a✓a✓a123) + �
⇣
✓i23✓

j
123 + ✓i123✓

j
23

⌘
(✓a✓a✓a23)

i◆
 c
j (7)

as in (at least two versions of) Graham’s notes/talks. Assuming the flavons develop vevs along

✓3 = h✓3i (0, 0, 1) , ✓23 = h✓23i (0, 1, 1) (8)

✓123 = h✓123i (1, 1,�1) , ✓ = M (0, 0, 1) (9)

and that the additional ✓a✓a✓a23,123 terms contract in a to singlets / M2 ✓23,123, I achieve the following Dirac and
Majorana mass matrices in the i = (a1, a2, a3) , j = (a1, a2, a3) basis after symmetry breaking:

MD
a ' h✓3i2

M2
3,a

0

@
0 ✏3a ✏3a
✏3a 2✏3a + ✏2a ✏2a
✏3a ✏2a 1� 2✏3a + ✏2a

1

A hH5i (10)

where

✏2a ⌘ h⌃ih✓23i2
M3

⌫,23

M2
⌫,3

h✓3i2 , ✏3a ⌘ hSih✓123ih✓23i
M3

⌫,123

M2
⌫,3

h✓3i2 =) ✏2⌫ = 0 (11)

and

MM
⌫ '

0

@
0 �✏M �✏M

�✏M (↵+ 2�)✏M ↵✏M
�✏M ↵✏M M + ↵✏M � 2�✏M

1

A (12)

where

✏M ⌘ h✓23i2h✓123i
M2

(13)

Assuming that ✏M ⌧ M , it’s clear from (12) that any mass mixing term of the form ⌫ci ⌫
c
3 (i 2 {1, 2}) will be negligible

in comparison to the ⌫c3⌫
c
3 / M term. Then the LH neutrino mass matrix generated via a see-saw with have a

negligible contribution from ⌫c3 exchange, leading to e↵ective 2 ⇥ 2 mass matrices a lá Sequential Dominance. From
the (1, 2) block of (10) and (12) one then reads o↵:

MD,eff
⌫ /

✓
0 1
1 2

◆
, MM,eff

⌫ /
✓

0 �
� ↵+ 2�

◆
(14)

Additional flavon allows for LNV

3

as desired (cf. with Majorana terms).
Graham does a mixed approach using the special basis for LH and the standard for RH and gets the same result

in terms of operators and his MR and m⌫ are also the same form, so the methods are probably all valid. there are
only 2 parameters (plus one for the lightest neutrino mass which is almost zero) in the the e↵ective terms so it is very
predictive scenario. As a SD model, this leads to Normal Ordering. The predictiveness is well understood from the
fact that the deviations from TBM and in particular ✓13 is related to the ratio of m3 and m2. If we were already in
the basis where charged leptons are diagonal, this gives a bit too large (but correct order of magnitude) sin ✓13 ' 0.24.
With charged lepton diagonalisation this can be brought into the experimental values depending on the phase.

Discrete symmetry can be �(27), or according to Jim’s suggestion, probably can be T7 with the same SU(3)-like
rule of 3̄⇥ 3 to trivial singlet.

II. REPRODUCING GRAHAM’S NUMBERS -JT

A. Mass Matrices

I take the e↵ective Dirac Lagrangian for a 2 {u, d, l, ⌫} to be

LD
a =  i

 
1

M2
3,a

✓i3✓
j
3 +

1

M3
23,a

✓i23✓
j
23⌃+

1

M3
123,a

⇣
✓i123✓

j
23 + ✓i23✓

j
123

⌘
S

!
 c
jH5 (6)

and the (RH) Majorana mass matrix for neutrinos to be

LM
⌫ =  c

i

✓
1

M
✓i✓j +

1

M4

h
↵✓i23✓

j
23 (✓

a✓a✓a123) + �
⇣
✓i23✓

j
123 + ✓i123✓

j
23

⌘
(✓a✓a✓a23)

i◆
 c
j (7)

as in (at least two versions of) Graham’s notes/talks. Assuming the flavons develop vevs along

✓3 = h✓3i (0, 0, 1) , ✓23 = h✓23i (0, 1, 1) (8)

✓123 = h✓123i (1, 1,�1) , ✓ = M (0, 0, 1) (9)

and that the additional ✓a✓a✓a23,123 terms contract in a to singlets / M2 ✓23,123, I achieve the following Dirac and
Majorana mass matrices in the i = (a1, a2, a3) , j = (a1, a2, a3) basis after symmetry breaking:

MD
a ' h✓3i2

M2
3,a

0

@
0 ✏3a ✏3a
✏3a 2✏3a + ✏2a ✏2a
✏3a ✏2a 1� 2✏3a + ✏2a

1

A hH5i (10)

where

✏2a ⌘ h⌃ih✓23i2
M3

⌫,23

M2
⌫,3

h✓3i2 , ✏3a ⌘ hSih✓123ih✓23i
M3

⌫,123

M2
⌫,3

h✓3i2 =) ✏2⌫ = 0 (11)

and

MM
⌫ '

0

@
0 �✏M �✏M

�✏M (↵+ 2�)✏M ↵✏M
�✏M ↵✏M M + ↵✏M � 2�✏M

1

A (12)

where

✏M ⌘ h✓23i2h✓123i
M2

(13)

Assuming that ✏M ⌧ M , it’s clear from (12) that any mass mixing term of the form ⌫ci ⌫
c
3 (i 2 {1, 2}) will be negligible

in comparison to the ⌫c3⌫
c
3 / M term. Then the LH neutrino mass matrix generated via a see-saw with have a

negligible contribution from ⌫c3 exchange, leading to e↵ective 2 ⇥ 2 mass matrices a lá Sequential Dominance. From
the (1, 2) block of (10) and (12) one then reads o↵:

MD,eff
⌫ /

✓
0 1
1 2

◆
, MM,eff

⌫ /
✓

0 �
� ↵+ 2�

◆
(14)

Messenger masses distinguish 
fermion species

3

as desired (cf. with Majorana terms).
Graham does a mixed approach using the special basis for LH and the standard for RH and gets the same result

in terms of operators and his MR and m⌫ are also the same form, so the methods are probably all valid. there are
only 2 parameters (plus one for the lightest neutrino mass which is almost zero) in the the e↵ective terms so it is very
predictive scenario. As a SD model, this leads to Normal Ordering. The predictiveness is well understood from the
fact that the deviations from TBM and in particular ✓13 is related to the ratio of m3 and m2. If we were already in
the basis where charged leptons are diagonal, this gives a bit too large (but correct order of magnitude) sin ✓13 ' 0.24.
With charged lepton diagonalisation this can be brought into the experimental values depending on the phase.

Discrete symmetry can be �(27), or according to Jim’s suggestion, probably can be T7 with the same SU(3)-like
rule of 3̄⇥ 3 to trivial singlet.

II. REPRODUCING GRAHAM’S NUMBERS -JT

A. Mass Matrices

I take the e↵ective Dirac Lagrangian for a 2 {u, d, l, ⌫} to be

LD
a =  i
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1
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1
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⇣
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and the (RH) Majorana mass matrix for neutrinos to be

LM
⌫ =  c

i

✓
1
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1

M4
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↵✓i23✓
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a✓a✓a123) + �
⇣
✓i23✓

j
123 + ✓i123✓

j
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⌘
(✓a✓a✓a23)
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j (7)

as in (at least two versions of) Graham’s notes/talks. Assuming the flavons develop vevs along

✓3 = h✓3i (0, 0, 1) , ✓23 = h✓23i (0, 1, 1) (8)

✓123 = h✓123i (1, 1,�1) , ✓ = M (0, 0, 1) (9)

and that the additional ✓a✓a✓a23,123 terms contract in a to singlets / M2 ✓23,123, I achieve the following Dirac and
Majorana mass matrices in the i = (a1, a2, a3) , j = (a1, a2, a3) basis after symmetry breaking:

MD
a ' h✓3i2

M2
3,a

0
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0 ✏3a ✏3a
✏3a 2✏3a + ✏2a ✏2a
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1

A hH5i (10)

where

✏2a ⌘ h⌃ih✓23i2
M3

⌫,23
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h✓3i2 , ✏3a ⌘ hSih✓123ih✓23i
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where

✏M ⌘ h✓23i2h✓123i
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(13)

Assuming that ✏M ⌧ M , it’s clear from (12) that any mass mixing term of the form ⌫ci ⌫
c
3 (i 2 {1, 2}) will be negligible

in comparison to the ⌫c3⌫
c
3 / M term. Then the LH neutrino mass matrix generated via a see-saw with have a

negligible contribution from ⌫c3 exchange, leading to e↵ective 2 ⇥ 2 mass matrices a lá Sequential Dominance. From
the (1, 2) block of (10) and (12) one then reads o↵:

MD,eff
⌫ /

✓
0 1
1 2

◆
, MM,eff

⌫ /
✓

0 �
� ↵+ 2�

◆
(14)

VEV provides contact with GUTs 
—- implements Georgi-Jarlskog

Needed for shaping symmetry
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� =
1p
2

(1)

GF = �(27)⇥ ZN (2)

✏u ' 0.05, ✏d,l ' 0.15 (3)

LY = �ye ¯lL� eR � yd q̄L� dR � yu q̄L�
c uR (4)

LY = �ye
vp
2
ēLeR

✓
1 +

h

v

◆
(5)

� ! 1p
2

✓
0

v + h(x)

◆
(6)

hh(x)i = 0 (7)

LY = � ye
vp
2| {z }

me

ēL eR � yd
vp
2| {z }

md

¯dL dR � yu
vp
2| {z }

mu

ūL uR

(8)

1

4

Fields  
q,e,⌫

 c

q,e,⌫

H5 ⌃ S ✓3 ✓23 ✓123 ✓ ✓X

�(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3

Z
N

0 0 0 2 -1 0 -1 2 0 x

TABLE I: Fields and their family symmetry assignments. The field ✓
X

only plays a role in the vacuum alignment. Hence the
only requirement of its Z

N

charge is that it be assigned so that the field does not contribute significantly to the fermionic mass
matrices – we have therefore left it generic.

and charged lepton matrices can be derived from an underlying GUT structure. As an example of this consider the
e↵ective Lagrangian of the form

Leff
a,mass =  i

 
1

M2
3,a

✓i3✓
j
3 +

1

M3
23,a

✓i23✓
j
23⌃+

1

M3
123,a

(✓i123✓
j
23 + ✓i23✓

j
123)S

!
 c
jH5 (II.3)

where a = u, d, e and

h✓3i = v3(0, 0, 1), h✓23i = v23(0, 1, 1)/
p
2, h✓123i = v123(1, 1,�1)/

p
3 (II.4)

The restricted form of eq(II.3) is determined by a simple ZN shaping symmetry under which the fields with non-zero
ZN are shown in Table I, along with the full symmetry assignments of our model. The field S is ZN charged and
indirectly a↵ects the Majorana terms such that the UTZ is preserved (see Section III). The field ⌃ is associated with
the breaking of the underlying GUT with a vev / B�L+ TR

3 . It implements the Georgi-Jarlskog relation [26] with
re/rd = �3 for  = 0. For the case  = 2, plus domination by the RH messengers, it gives re/rd = 3. Since the sign is
irrelevant both cases are viable. Here we concentrate on the case  = 0 which gives r⌫ = �1 and ru/rd = 1. Finally,
the Mi,a are the heavy mediator masses that have been integrated out when forming the e↵ective Lagrangian. There
is a subtlety in that at least the top Yukawa coupling should not be suppressed and to do this one must take ✓3/M3

large, a known issue in this type of model [28]. This is the case if ✓3 is the dominant contribution to the messenger
mass, and we assume here that this applies to the u, d and e sectors. An alternative that solves this issue is through
the use of Higgs mediators as described in [29], although this is beyond the scope of the present paper as it requires
an entirely di↵erent set of superfields.

B. Mass matrix parameters and messenger masses

The parameters of eq(II.1) in the (2,3) block are given by

✏2a =
h✓23i2h⌃i
M3

23,a

.
M2

3,a

h✓3i2 (II.5)

Referring to the ZN charges of the fields as Q, if the Q = 0/Q = �1 mediator mass ratio M3,a
M23,a

is smaller in the

up sector than in the down sector, one will have ✏u < ✏d. Of course equality of the down quark and charged lepton
matrix elements in the (1,2), (2,1), and (3,3) positions requires that the expansion parameters be the same in the two
sectors. This is consistent with an underlying spontaneously broken SU(2)R symmetry because the down quarks and
leptons are both TR,3 = �1/2 states and, in SUSY, both acquire their mass from the same Higgs doublet, Hd.

Here we consider the case that the messengers carry quark and lepton quantum numbers. For the messengers
carrying left-handed quantum number, SU(2)L requires the up and down messenger masses should be equal. Thus
the only way the expansion parameters can be di↵erent in the up and down sectors is if the right-handed messengers
dominate. In this case, if the underlying symmetry breaking pattern is

SO(10) ! SU(4)⇥ SU(2)L ⇥ SU(2)R ! SU(3)⇥ SU(2)L ⇥ U(1) (II.6)

the down quarks and charged leptons will have the same expansion parameter after SU(2)R breaking.
Up to signs and O(1) coe�cients allowed by the ZN symmetry, the (1,j), (j,1) entries of eq(II.1) are given by

✏3a =
h✓23ih✓123ihSi

M3
123,a

.
M2

3,a

h✓3i2 , (II.7)

to be consistent with the form of eq(II.1). Since they involve both the Q = 1 and Q = �1 mediator masses there is
su�cient freedom for this to be the case.
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✤ A longstanding argument of Krauss and Wilczek suggests that discrete symmetries must be gauged 
in the UV.  This means anomaly cancellation must be enforced.
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Banks, Dine : PRD 45 (1992)
Araki et al. : NPB 805 (2008)

Anomaly Freedom in the Universal Texture Zero (UTZ)

Framework

JT

May 19, 2017

I attempt to calculate the relevant anomalies associated to the two flavour symmetries
we employ, �(27) (or T7) and the shaping symmetry ZN . In the following, G denotes an
arbitrary non-Abelian gauge group, g denotes gravity, D a non-Abelian discrete symmetry
group, and Z an Abelian discrete symmetry group.

1 Background

In the IR, discrete symmetries (Z or D) of gauge or global origin cannot be distinguished—
they masquerade as the latter. While there can be anomaly contributions in both cases,
the anomalies of global symmetries are not insidious. However, a long-standing argument
of Krauss and Wilzcek [1] suggests that global discrete symmetries must be local/gauged
in order to avoid complications with quantum gravity (wormhole) e↵ects. Assuming this
argument holds, one can then claim that an apparent global symmetry (e.g. R-Parity
in standard SUSY models or our discrete flavour symmetries) must be gauged at some
point in the UV. In this instance, the anomaly constraints from the (low-energy) global
symmetry translate directly to the more severe (high-energy) gauge anomaly, a situation
first explored by Ross and Ibanez [2, 3] for the case of Abelian discrete symmetries.

Since then, a number of studies have formalized the analogous computation for non-
Abelian discrete symmetries (NADS). I follow the path-integral [5, 6] approaches of [7, 8, 9],
where it is concluded that calculating the anomalies of NADS amounts to independent
calculations of the Abelian anomalies associated to the (finite number of) generators of the
group (or conjugacy classes). Furthermore, the path-integral reveals that the only relevant
anomalies in the IR assuming a fully massless spectrum are mixed (non-Abelian) gauge
and mixed gravitational anomalies:

D �G�G, D � g � g, Z �G�G, Z � g � g (1)

For example, there are no IR anomaly constraints of the form [Z]2 U(1)Y and [U(1)Y ]
2 Z

because the corresponding discrete charge ↵ of any group element transformation is always

1

coe�cient for Z �G�G or D �G�G:

Z/D �G�G :
X

r(f),d(f)

tr
h
⌧(d(f))

i
· l(r(f)) !

= 0 mod
N

2
(4)

The notation is such that the summation is only over chiral fermions living in representa-
tions that are non-trivial with respect to both G and D. l(r(f)) is the Dynkin index for
a fermion living in a representation r(f) of the gauge group. It is normalized such that
l(M) = 1/2, 1 for SU(M) and SO(M), respectively. Of course, Abelian discrete symmetries
only have singlet irreducible representations, and therefore the summation over d(f) can
be neglected in this case. Here it is clear that tr

⇥
⌧(d(f))

⇤
is a charge (called �(f) in [8]),

and from (3) one notes that it can be written in terms of a (multi-valued) logarithm:

tr
h
⌧(d(f))

i
= N

ln detU(d(f))

2⇡i
(5)

For the Abelian case, tr
⇥
⌧(d(f))

⇤
! q(f), with q(f) the standard charge of the fermion.

From (4) and (5) we conclude that anomalous transformations correspond to those with
det

⇥
U(d(f))

⇤
6= 1.

The mixed gravitational anomaly constraints are similarly straightforward and are given
by:

D � g � g :
X

d(f)

tr
h
⌧(d(f))

i
!
= 0 mod

N

2
(6)

and

Z � g � g :
X

f

q(f) =
X

m

q(m) · dimR(m) !
= 0 mod

N

2
(7)

where R(m) denotes the representations of all internal symmetries and the sum is such that
each representation R(m) only appears once.

3 Discrete Anomalies for the UTZ Setup

The particle and symmetry content of our model (as I understand it after some chats with
Ivo) is given in Table 1, which should be checked. I have listed the assignments for the
entire GUT breaking chain we assume (ignoring hypercharge for the reasons stated above):

SO(10) �! SU(4)PS ⇥ SU(2)L ⇥ SU(2)R �! SU(3)c ⇥ SU(2)L ⇥ U(1)Y (8)

For some of the assignments, I was not sure of the correct representation, in particular for
the ⌃ field in the Pati-Salam era, and therefore its subsequent breaking to the Standard
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3

�(3N2) 1k,l 3[k][l]

det(b) !k 1

det(a) !l 1

det(a0) !l 1

TN 10 11 12 3m 3̄m

det(a) 1 1 1 1 1

det(b) 1 ! !2 1 1

Table 2: LEFT: Determinants over the generators of �(3N2) where N/3 2 Z, for all
irreducible representations of the group. It’s clear that only fields in non-trivial singlet
irreps can contribute an anomaly coe�cient. RIGHT: Determinants over the generators of
TN , for all irreducible representations of the group. It’s clear that only the b generator can
contribute an anomaly coe�cient, and only for fields in the 11 and 12 representations.

group.2

Let’s now look at Table 1 for our UTZ model. We only ever assign fields to the (anti-
)triplet or trivial singlet representations. Yet from Table 2, we see that determinants
over these representations are unit in both �(27) and T7. As the summation in (4) and
(6) is only over fields that are non-trivial with respect to both D and G (or just D for
the gravitational anomalies), and since the coe�cients are always / det(h), we can make a
strong claim: we are free of all NAD anomalies from the triangles D�G�G and D�g�g,
regardless of the form of the gauge group G and regardless of whether or not we take �(27)
or T7 as the NADS.

This means that in the following we are only concerned with Z �G�G and Z � g� g
anomalies.

3.1 SO(10)⇥�(27)⇥ ZN

3.1.1 Z-G-G

The only field with non-zero ZN charge and non-trivial SO(10) representation is ⌃. Using
(4) with tr

⇥
⌧(d(f))

⇤
! q(f), I find that:

X

r(f)

q(f) · l(r(f)) = 2 · l(120,45) !
= 0 mod

N

2
X (9)

where l(120,45) = 28, 8 is the Dynkin index for the SO(10) 120,45. This equation can
be satisfied for N = 2M ;M 2 Z � 2

2
This is why perfect groups like A5 are trivially anomaly safe. The analog to Table 2 for A5 has unit

entries universally.
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Fields  
q,e,⌫

 c

q,e,⌫

H5 ⌃ S ✓3 ✓23 ✓123 ✓ ✓X

�(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3

Z
N

0 0 0 2 -1 0 -1 2 0 x

TABLE I: Fields and their family symmetry assignments. The field ✓
X

only plays a role in the vacuum alignment. Hence the
only requirement of its Z

N

charge is that it be assigned so that the field does not contribute significantly to the fermionic mass
matrices – we have therefore left it generic.

and charged lepton matrices can be derived from an underlying GUT structure. As an example of this consider the
e↵ective Lagrangian of the form

Leff
a,mass =  i

 
1

M2
3,a

✓i3✓
j
3 +

1

M3
23,a

✓i23✓
j
23⌃+

1

M3
123,a

(✓i123✓
j
23 + ✓i23✓

j
123)S

!
 c
jH5 (II.3)

where a = u, d, e and

h✓3i = v3(0, 0, 1), h✓23i = v23(0, 1, 1)/
p
2, h✓123i = v123(1, 1,�1)/

p
3 (II.4)

The restricted form of eq(II.3) is determined by a simple ZN shaping symmetry under which the fields with non-zero
ZN are shown in Table I, along with the full symmetry assignments of our model. The field S is ZN charged and
indirectly a↵ects the Majorana terms such that the UTZ is preserved (see Section III). The field ⌃ is associated with
the breaking of the underlying GUT with a vev / B�L+ TR

3 . It implements the Georgi-Jarlskog relation [26] with
re/rd = �3 for  = 0. For the case  = 2, plus domination by the RH messengers, it gives re/rd = 3. Since the sign is
irrelevant both cases are viable. Here we concentrate on the case  = 0 which gives r⌫ = �1 and ru/rd = 1. Finally,
the Mi,a are the heavy mediator masses that have been integrated out when forming the e↵ective Lagrangian. There
is a subtlety in that at least the top Yukawa coupling should not be suppressed and to do this one must take ✓3/M3

large, a known issue in this type of model [28]. This is the case if ✓3 is the dominant contribution to the messenger
mass, and we assume here that this applies to the u, d and e sectors. An alternative that solves this issue is through
the use of Higgs mediators as described in [29], although this is beyond the scope of the present paper as it requires
an entirely di↵erent set of superfields.

B. Mass matrix parameters and messenger masses

The parameters of eq(II.1) in the (2,3) block are given by

✏2a =
h✓23i2h⌃i
M3

23,a

.
M2

3,a

h✓3i2 (II.5)

Referring to the ZN charges of the fields as Q, if the Q = 0/Q = �1 mediator mass ratio M3,a
M23,a

is smaller in the

up sector than in the down sector, one will have ✏u < ✏d. Of course equality of the down quark and charged lepton
matrix elements in the (1,2), (2,1), and (3,3) positions requires that the expansion parameters be the same in the two
sectors. This is consistent with an underlying spontaneously broken SU(2)R symmetry because the down quarks and
leptons are both TR,3 = �1/2 states and, in SUSY, both acquire their mass from the same Higgs doublet, Hd.

Here we consider the case that the messengers carry quark and lepton quantum numbers. For the messengers
carrying left-handed quantum number, SU(2)L requires the up and down messenger masses should be equal. Thus
the only way the expansion parameters can be di↵erent in the up and down sectors is if the right-handed messengers
dominate. In this case, if the underlying symmetry breaking pattern is

SO(10) ! SU(4)⇥ SU(2)L ⇥ SU(2)R ! SU(3)⇥ SU(2)L ⇥ U(1) (II.6)

the down quarks and charged leptons will have the same expansion parameter after SU(2)R breaking.
Up to signs and O(1) coe�cients allowed by the ZN symmetry, the (1,j), (j,1) entries of eq(II.1) are given by

✏3a =
h✓23ih✓123ihSi

M3
123,a

.
M2

3,a

h✓3i2 , (II.7)

to be consistent with the form of eq(II.1). Since they involve both the Q = 1 and Q = �1 mediator masses there is
su�cient freedom for this to be the case.

✤ D-G-G and D-g-g anomalies trivially satisfied 
✤ Z-G-G and Z-g-g only involve massive state contributions
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Numerical Analysis of UTZ Mass and Mixing Predictions
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The core predictions of our model are complex symmetric mass matrices with a common
(universal) texture zero in the (1,1) position for all fermion species. We will show that the
predictions coming from these matrices, upon application of a Type-I seesaw for neutrinos,
gives acceptable GUT scale predictions for the entirety of the fermionic mass and mixing
spectrum.

1 Numerical Mass and Mixing Matrices

As our model cannot determine the overall mass scale of the fermions, we instead work
with matrices that have been rescaled by a factor from the (3,3) position that provides the
bulk of the contribution to the third (heavy) generation. For the Dirac masses, one obtains
matrices of the form

MD

i

⌘ M

D

i

c

'
0

@
0 a e

i(↵+�+�)
a e

i(�+�)

a e

i(↵+�+�) (b e�i� + 2a e�i�) ei(2↵+�+�)
b e

i(↵+�)

a e

i(�+�)
b e

i(↵+�) 1� 2a ei� + b e

i�

1

A (1)

where i 2 {u, d, e, ⌫} 1. The phases ↵, � are the those allowed from our generic complex
vacuum alignment vectors while � and � are the implicit phases of our complex mass matrix:

a

0 = |a
c

| ei� , b

0 = |b
c

| ei� (2)

The overall form is the same for the heavy singlet Majorana neutrinos, but the scale is
di↵erent and, to keep track of parameters during the see-saw, we write it as:

MM

⌫

R

⌘ M

M

⌫

R

m

'
0

@
0 y e

i(↵+�+⇢)
y e

i(�+⇢)

y e

i(↵+�+⇢)
�
x e

�i⇢ + 2y e�i�

�
e

i(2↵+�+⇢)
x e

i(↵+�)

y e

i(�+⇢)
x e

i(↵+�) 1 + x e

i� � 2y ei⇢

1

A (3)

1
Note that I treat the Dirac neutrinos equivalently to the other species, as Graham suggests in his notes

1

✤ Generic vacuum alignment vectors depend on complex phases:

✤ The UTZ Lagrangian then generates Dirac matrices of the following form:

✤ Heavy Majorana singlet mass matrix is of the same form, and active light neutrinos 
generated with a Type-I See-saw. 

The phases ↵, � again come from the vacuum alignment and we have similarly defined the
complex phases of the ratios as:

x

0 = | x
m

| ei�, y

0 = | y
m

| ei⇢ (4)

All told, this means that a priori there are (4 + 2) ⇥ 5 = 30 di↵erent parameters in the
entire flavour sector of our model: 20 phases and 10 mass parameters.2 However, we
are imbedded within a GUT construction, and therefore {a0

e

, b

0
e

} = 3{a0
d

, b

0
d

} in order to
realize the successful Georgi-Jarlskog relations. This removes two free mass ratios and two
free phases, reducing us to 26 free parameters. I then turn o↵ the phases of the vacuum
alignment, {↵,�}

i

= 0, giving 16 parameters to fiddle with (though to my knowledge there
is no theoretical demand for this). The individual mass matrices for a given fermion species
then have the following functional dependence:
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The notation makes it clear that our active Majorana neutrino mass matrix will have the
combined parameter dependence as its Dirac and Majorana parents after a Type-I See-saw.

Of course, we should not need all of this dependence to actually fit the observed data.
I will show below that far fewer degrees of freedom are necessary to constrain the flavour
sector; my best fits to date use 6 parameters in the charged fermion sector to predict the
13 Standard Model parameters and then 6 additional parameters in the neutrino sector to
predict 7-8 neutrino oscillation results, depending on how one counts neutrino mass ratios.
This is a very predictive scenario.

Having parameterized the mass matrices, one must then reliably calculate the associated
mixing matrices. The procedure I use to do so largely follows Graham’s analysis in his notes
and his Mathematica files. I write the explicit steps for our internal notes:

1. Find the matrix with *rows* as eigenvectors ofM2 ⌘ M·M†, U = Eigenvectors[M2]

2. Be sure that this matrix numerically diagonalizes M by defining M̂ = U

? · M · U †

and having a look at its entries.

3. Define P = diag{Exp[I Arg[M̂[1, 1]]/2, Exp[I Arg[M̂[2, 2]]/2, Exp[I Arg[M̂[3, 3]]/2}.
U can now be made generic by U ! U

0 = P · U .

4. Be sure that U 0 diagonalizes the combination M2 by calculating U

0? · M2 · U 0T and
checking its entries.

2
Should the vacuum alignment phases be the same for Dirac and Majorana neutrinos? If so, then there

are two fewer d.o.f.s here...

2
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To complete the model it is necessary to arrange the alignment of the ✓23 field vev. The field ✓X can readily be
made orthogonal to ✓123 if its dominant e↵ective coupling is

V3 = k1✓X,i✓
†i
123✓123,j✓

†j
X , k1 > 0. (A.3)

However this term does not distinguish between (0, 1,�1)/
p
2 and (2,�1,�1)/

p
6 (up to permutations of the ele-

ments). The latter vev is chosen if the dominant term sensitive to the di↵erence is

V4 = k2m0✓
1
X✓2X✓3X (A.4)

Although a cubic term in the superpotential involving the ✓X superfield is forbidden by R-symmetry, it is generated
with coe�cient m0 after SUSY breaking. Then, in supergravity, the cubic term in the potential appears with k2 =
O(m0/M) where m0 is the gravitino mass. With this the final alignment of ✓23 is driven by the term

V5 = k3✓23,i✓
i
X✓†j23✓

†j
X + k4✓23,i✓

†i
3 ✓3,i✓

†i
23, with k3 > 0 and k4 < 0 (A.5)

To summarise, the potential

V =
X

i=3,123

(V1(✓i) + V2(✓i)) + V3 + V4 + V5 (A.6)

aligns the fields in the directions
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where we have now included the relative phases explicitly. The vevs vi may also be complex. Note that further quartic
terms allowed by the symmetries may be present but they should be subdominant to preserve this alignment. It is
straightforwrd to assign a ZN charge to ✓X so that it does not contribute significantly to the fermion mass matrix.10

Finally, it is necessary to align the ✓ familon that carries lepton number -1. This is readily the case through the
potential

V✓ = V1(✓) + V2(✓) + k5✓3,i✓
†i✓i✓

†i
3 , k5 < 0 (A.8)

10 A significant contribution of ✓
X

to fermion masses can also be avoided with an R-symmetry but, as this depends on the details of the
underlying SUSY theory, we do not discuss this here. Similarly, the cubic terms in the potential may determine some of the phases in
eq(A.7) but this too depends on the details of the symmetry properties of the underlying SUSY breaking sector.

9 low energy parameters successfully describe 18 observables!
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Charged Leptons Up Quarks
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Max .00031 .061 8.91⇥ 10�6 .0027 .0012 .021 .0336

Min .00022 .048 4.2⇥ 10�6 .0021 .00035 .008 .021

L.O. .00031 .055 7.16⇥ 10�6 .0027 .00090 .020 .0213

H.O. .00026 .049 7.89⇥ 10�6 .0025 .0010 .020 .0213

TABLE IV: Results of the numerical mass fits described in the text

The PMNS matrix fits perfectly to the available NuFit data, and the CKMmatrix is also pretty good given calculations
of the GUT scale acceptances. The Cabibbo sector in the (1,2) block is essentially perfect, the other o↵-diagonal
elements are of the correct order of magnitude, and the CKM Jarlskog invariant is successfully above its minimum
value of ⇠ 9.8 ⇥ 10�6. On the other hand, the (2,3) and (3,2) elements are moderately low if rounding to the third
digit (vs. a ⇠ .021 minimum), and the (1,3) and (3,1) elements are not of the appropriate relative magnitudes to one
another, |V31| ⇡ 2|V13|, nor to the (2,3) sector after extracting the relevant Wolfenstein parameters. These issues are
naturally resolved by the higher order corrections of the theory.

1. Higher Order Corrections

The main deviations in the fit to the CKM matrix are in the smallest (3,1) and (1,3) elements. Being small they are
particularly sensitive to higher order terms in the operator expansion, so it is of interest to determine whether such
terms can give a fully consistent CKM matrix. The leading higher dimension operators were discussed in Section IIC.
Assuming universal messenger masses and thereby neglecting contributions from the operator / S2, the remaining
terms / ⌃S in eq(II.8) generate an independent entry analogous to eq(V.2) labeled d0/c ⌘ dei . We find that by
only turning on the d0 contribution to the down (and therefore also charged-lepton) mass matrices we can resolve the
issues encountered in the CKM matrix at lowest order, but with the same number of free phases (we need one fewer
phase from the lowest order parameter set). Choosing dd = .0145 and its corresponding phase  d = ⇡, we find the
following patterns of mixing and CP violation:

|VCKM |HO =

0

BB@

.974 .226 .00307

.226 .974 .0313

.00574 .0309 .9995

1

CCA , JHO
CKM = 1.665 ⇥ 10�5 (V.7)

|VPMNS |HO =

0

BB@

.830 .536 .153

.405 .534 .742

.384 .654 .652

1

CCA , JHO
PMNS = �.0311 (V.8)

The PMNS is again perfect, and the CKM matrix is now well within the GUT scale acceptances. Note also that
the relative magnitudes of all of the CKM elements are consistent with RGE e↵ects, using acceptable values of the
Wolfenstein parameterization in [23]. The a↵ect on the relevant mass ratios are seen in Table IV, where we again find
excellent agreement. We thus obtain successful predictions across the spectrum of fermionic mass and mixing data.

VI. SUMMARY AND CONCLUSION

Most attempts to determine the pattern of fermion masses and mixings have assumed that there are separate
symmetries describing the quark and the lepton sector in order to explain the disparate nature of quark and lepton
mixing angles. However we have stressed that this may not be the case if the neutrino masses are generated by the
see-saw mechanism. Exploiting this possibility we have constructed a viable model based on an egalitarian discrete
symmetry model where all fermions and additional familons are triplets under the finite group, here�(27). As a result,
the Dirac masses of both the quarks and leptons have the same form, albeit with di↵erent expansion parameters. The
model is consistent with both an underlying stage of Grand Unification and the absence of discrete family symmetry
anomalies.
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FIG. 1: Contours from our lowest order fit. TOP LEFT: Contours of the charged lepton mass fit. Black contours represent the
bounds for the ratio of m

µ

/m
⌧

whereas blue contours represent those for m
e

/m
⌧

, both taken from [23]. The plot is at a fixed
m

⌧

/m
⌧

= 1. Red dashed lines represent our solution. TOP RIGHT: The same, but for up quarks. BOTTOM LEFT: The
contours of the Jarlskog Invariant over the plane of the two free phases left in this fit. The blue plane represents the minimum
J

CKM

allowed in [23], and it is clear that portions of the parameter space (our solutions) can fit this. BOTTOM RIGHT:
Contours of acceptable values of |V

ij

|
CKM

and the CKM Jarlskog (interior of blue circle). The red line is the Cabibbo angle,
and regions exterior to the black circle reflect acceptable values for the (1,3) element. The relative magnitudes of the (1,3) and
(3,1) elements are not successfully resolved at lowest order in our fit. Higher order corrections as discussed in the text remedy
this.

In the quark and charged lepton sectors there are (2 + 2)⇥3+2 = 14 parameters. This reduces to 10 parameters if
we assume an underlying GUT relation in the Georgi-Jarlskog form relating the down quarks to the charged leptons.
Six of these are phases, not all of which are physical. In fact, only two phases are relevant at leading order [45], which
we take to be �d and �d, leaving only six free parameters (including two phases). Thus the 3 mixing angles and CP
violating phase in the CKM matrix as well as the four quark and two charged lepton mass ratios are determined by
just four real parameters and two phases.

The number of parameters needed in the neutrino sector is significantly reduced in the sequential limit where the ⌫c3
exchange contribution to the see-saw masses is negligible. There are just two parameters (including a phase) needed
in this case (cf. eq(III.4-III.6)), plus a parameter setting the scale of neutrino masses. Thus, taking into account
the contribution of the charged leptons, the leptonic mixing angles, atmospheric and solar mass di↵erences, and
CP violating phases are determined by two real parameters and a phase. In summary, we see that both the charged
fermion and neutrino sectors are over-constrained; 18 measurable quantities are determined by nine parameters, giving
nine predictions at leading order in the operator expansion.

Having parameterized the mass matrices, one must then reliably calculate the associated mixing matrices. The
procedure we follow is enumerated below:

1. Find the matrix with columns as eigenvectors of M2 ⌘ M ·M†.
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= 1. Red dashed lines represent our solution. TOP RIGHT: The same, but for up quarks. BOTTOM LEFT: The
contours of the Jarlskog Invariant over the plane of the two free phases left in this fit. The blue plane represents the minimum
J

CKM

allowed in [23], and it is clear that portions of the parameter space (our solutions) can fit this. BOTTOM RIGHT:
Contours of acceptable values of |V

ij

|
CKM

and the CKM Jarlskog (interior of blue circle). The red line is the Cabibbo angle,
and regions exterior to the black circle reflect acceptable values for the (1,3) element. The relative magnitudes of the (1,3) and
(3,1) elements are not successfully resolved at lowest order in our fit. Higher order corrections as discussed in the text remedy
this.

In the quark and charged lepton sectors there are (2 + 2)⇥3+2 = 14 parameters. This reduces to 10 parameters if
we assume an underlying GUT relation in the Georgi-Jarlskog form relating the down quarks to the charged leptons.
Six of these are phases, not all of which are physical. In fact, only two phases are relevant at leading order [45], which
we take to be �d and �d, leaving only six free parameters (including two phases). Thus the 3 mixing angles and CP
violating phase in the CKM matrix as well as the four quark and two charged lepton mass ratios are determined by
just four real parameters and two phases.

The number of parameters needed in the neutrino sector is significantly reduced in the sequential limit where the ⌫c3
exchange contribution to the see-saw masses is negligible. There are just two parameters (including a phase) needed
in this case (cf. eq(III.4-III.6)), plus a parameter setting the scale of neutrino masses. Thus, taking into account
the contribution of the charged leptons, the leptonic mixing angles, atmospheric and solar mass di↵erences, and
CP violating phases are determined by two real parameters and a phase. In summary, we see that both the charged
fermion and neutrino sectors are over-constrained; 18 measurable quantities are determined by nine parameters, giving
nine predictions at leading order in the operator expansion.

Having parameterized the mass matrices, one must then reliably calculate the associated mixing matrices. The
procedure we follow is enumerated below:

1. Find the matrix with columns as eigenvectors of M2 ⌘ M ·M†.

Data radiatively corrected to the GUT scale with an MSSM spectrum

Antusch, Kersten, Lindner, Ratz : NPB 674 (2003)
Serna, Ross : PLB 664 (2008)
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This represents excellent agreement in the UV! 
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FIG. 1: Contours from our lowest order fit. TOP LEFT: Contours of the charged lepton mass fit. Black contours represent the
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= 1. Red dashed lines represent our solution. TOP RIGHT: The same, but for up quarks. BOTTOM LEFT: The
contours of the Jarlskog Invariant over the plane of the two free phases left in this fit. The blue plane represents the minimum
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allowed in [23], and it is clear that portions of the parameter space (our solutions) can fit this. BOTTOM RIGHT:
Contours of acceptable values of |V

ij

|
CKM

and the CKM Jarlskog (interior of blue circle). The red line is the Cabibbo angle,
and regions exterior to the black circle reflect acceptable values for the (1,3) element. The relative magnitudes of the (1,3) and
(3,1) elements are not successfully resolved at lowest order in our fit. Higher order corrections as discussed in the text remedy
this.

In the quark and charged lepton sectors there are (2 + 2)⇥3+2 = 14 parameters. This reduces to 10 parameters if
we assume an underlying GUT relation in the Georgi-Jarlskog form relating the down quarks to the charged leptons.
Six of these are phases, not all of which are physical. In fact, only two phases are relevant at leading order [45], which
we take to be �d and �d, leaving only six free parameters (including two phases). Thus the 3 mixing angles and CP
violating phase in the CKM matrix as well as the four quark and two charged lepton mass ratios are determined by
just four real parameters and two phases.

The number of parameters needed in the neutrino sector is significantly reduced in the sequential limit where the ⌫c3
exchange contribution to the see-saw masses is negligible. There are just two parameters (including a phase) needed
in this case (cf. eq(III.4-III.6)), plus a parameter setting the scale of neutrino masses. Thus, taking into account
the contribution of the charged leptons, the leptonic mixing angles, atmospheric and solar mass di↵erences, and
CP violating phases are determined by two real parameters and a phase. In summary, we see that both the charged
fermion and neutrino sectors are over-constrained; 18 measurable quantities are determined by nine parameters, giving
nine predictions at leading order in the operator expansion.

Having parameterized the mass matrices, one must then reliably calculate the associated mixing matrices. The
procedure we follow is enumerated below:

1. Find the matrix with columns as eigenvectors of M2 ⌘ M ·M†.
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and regions exterior to the black circle reflect acceptable values for the (1,3) element. The relative magnitudes of the (1,3) and
(3,1) elements are not successfully resolved at lowest order in our fit. Higher order corrections as discussed in the text remedy
this.

In the quark and charged lepton sectors there are (2 + 2)⇥3+2 = 14 parameters. This reduces to 10 parameters if
we assume an underlying GUT relation in the Georgi-Jarlskog form relating the down quarks to the charged leptons.
Six of these are phases, not all of which are physical. In fact, only two phases are relevant at leading order [45], which
we take to be �d and �d, leaving only six free parameters (including two phases). Thus the 3 mixing angles and CP
violating phase in the CKM matrix as well as the four quark and two charged lepton mass ratios are determined by
just four real parameters and two phases.

The number of parameters needed in the neutrino sector is significantly reduced in the sequential limit where the ⌫c3
exchange contribution to the see-saw masses is negligible. There are just two parameters (including a phase) needed
in this case (cf. eq(III.4-III.6)), plus a parameter setting the scale of neutrino masses. Thus, taking into account
the contribution of the charged leptons, the leptonic mixing angles, atmospheric and solar mass di↵erences, and
CP violating phases are determined by two real parameters and a phase. In summary, we see that both the charged
fermion and neutrino sectors are over-constrained; 18 measurable quantities are determined by nine parameters, giving
nine predictions at leading order in the operator expansion.

Having parameterized the mass matrices, one must then reliably calculate the associated mixing matrices. The
procedure we follow is enumerated below:

1. Find the matrix with columns as eigenvectors of M2 ⌘ M ·M†.
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(1/c) ⇥ (a, b)
e

(a, b)
u

(a, b)
⌫

(x, y) d
d

L.O. (.0042, -.0545) (-.00014, .003) (4, 11.8)⇥10�5 (12.75, 4.055) ⇥10�13 N.A.

H.O. (.00416, -.0566) (-.00014, .00275) (4, 11.8)⇥10�5 (12.75, 4.055) ⇥10�13 .0145

(�, �)
e

(�, �)
u

(�, �)
⌫

(⇢,�)  
d

L.O. (.13, 1.83) (0, 0) (2⇡/5,0) (0,�2⇡/5) N.A.

H.O. (0, 2) (0,0) (2⇡/5,0) (0,�2⇡/5) ⇡

TABLE III: Free parameters used for fitting the fermionic mass and mixing spectrum. As discussed in the text, only nine
parameters are relevant to constraining the low-energy flavour phenomenology at lowest order in the operator product expansion.
The mass and phase parameters of the down quarks are implied by the corresponding values for the charged leptons. The phase
 

d

is analogous to � in eq(V.2). Note that the smallness of the Majorana neutrino parameters is compensated by a parameter
determining their overall mass scale, which is not determined in our model.

2. Diagonalize M by defining M̂ = U † · M · U?.

3. Define P = diag
⇣
e�i arg[M̂11]/2, e�i arg[M̂22]/2, e�i arg[M̂33]/2

⌘
. U can now be made generic by U ! U 0 = U ·P .

4. Diagonalize the combination M2 by calculating U 0† · M2 · U 0.

5. CKM matrices are now calculated as V †
U · VD, where V = U 0.

6. For the leptonic mixing the only thing that changes is that M ! M · MM,�1
⌫
R

· MT because of the see-saw.
Then VPMNS = V †

e · V⌫ .

We note that this procedure is consistent with unitary rotations in the Standard Model Yukawa8 sector and charged-
current terms of the form:

uI
L ! VUuL eIL ! VeeL (V.3)

dIL ! VDdL ⌫IL ! V⌫⌫L (V.4)

where {u, d, e, ⌫}L are all left-handed family triplets.

A. Results of Numerical Fit

We have performed a fit where all of the up-quark phases are turned o↵ and both �d and �d are left free. This
automatically also sets the corresponding phases for the charged leptons. The values of all of the free parameters
are given in Table III, and the corresponding predictions for the mass ratios are given in Table IV where we find
excellent agreement with data (we use [23] for our comparisons and do not assume specific values for tan�, threshold
corrections, etc.). Contours of these predictions are given in Figure 1 for the charged leptons and up quarks assuming
no higher order corrections as discussed in Section IIC. The down quark contour is implied by the charged leptons.
Figure 1 also includes contours for both the CKM Jarlskog and acceptable bands of CKM mixing. The specific mixing
and CP violation predicted by this fit are given, using only lowest order parameters, by:

|VCKM |LO =

0

BB@

.974 .226 .00420

.226 .974 .0191

.00248 .0194 .9998

1

CCA , J LO
CKM = 9.898 ⇥ 10�6 (V.5)

|VPMNS |LO =

0

BB@

.823 .547 .152

.400 .499 .769

.404 .672 .621

1

CCA , J LO
PMNS = �.0304 (V.6)

8 Our low-energy neutrino mass term is of the Majorana form LM
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Max .00031 .061 8.91⇥ 10�6 .0027 .0012 .021 .0336

Min .00022 .048 4.2⇥ 10�6 .0021 .00035 .008 .021

L.O. .00031 .055 7.16⇥ 10�6 .0027 .00090 .020 .0213

H.O. .00026 .049 7.89⇥ 10�6 .0025 .0010 .020 .0213

TABLE IV: Results of the numerical mass fits described in the text

The PMNS matrix fits perfectly to the available NuFit data, and the CKMmatrix is also pretty good given calculations
of the GUT scale acceptances. The Cabibbo sector in the (1,2) block is essentially perfect, the other o↵-diagonal
elements are of the correct order of magnitude, and the CKM Jarlskog invariant is successfully above its minimum
value of ⇠ 9.8 ⇥ 10�6. On the other hand, the (2,3) and (3,2) elements are moderately low if rounding to the third
digit (vs. a ⇠ .021 minimum), and the (1,3) and (3,1) elements are not of the appropriate relative magnitudes to one
another, |V31| ⇡ 2|V13|, nor to the (2,3) sector after extracting the relevant Wolfenstein parameters. These issues are
naturally resolved by the higher order corrections of the theory.

1. Higher Order Corrections

The main deviations in the fit to the CKM matrix are in the smallest (3,1) and (1,3) elements. Being small they are
particularly sensitive to higher order terms in the operator expansion, so it is of interest to determine whether such
terms can give a fully consistent CKM matrix. The leading higher dimension operators were discussed in Section IIC.
Assuming universal messenger masses and thereby neglecting contributions from the operator / S2, the remaining
terms / ⌃S in eq(II.8) generate an independent entry analogous to eq(V.2) labeled d0/c ⌘ dei . We find that by
only turning on the d0 contribution to the down (and therefore also charged-lepton) mass matrices we can resolve the
issues encountered in the CKM matrix at lowest order, but with the same number of free phases (we need one fewer
phase from the lowest order parameter set). Choosing dd = .0145 and its corresponding phase  d = ⇡, we find the
following patterns of mixing and CP violation:
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CCA , JHO
CKM = 1.665 ⇥ 10�5 (V.7)

|VPMNS |HO =
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BB@

.830 .536 .153

.405 .534 .742

.384 .654 .652

1

CCA , JHO
PMNS = �.0311 (V.8)

The PMNS is again perfect, and the CKM matrix is now well within the GUT scale acceptances. Note also that
the relative magnitudes of all of the CKM elements are consistent with RGE e↵ects, using acceptable values of the
Wolfenstein parameterization in [23]. The a↵ect on the relevant mass ratios are seen in Table IV, where we again find
excellent agreement. We thus obtain successful predictions across the spectrum of fermionic mass and mixing data.

VI. SUMMARY AND CONCLUSION

Most attempts to determine the pattern of fermion masses and mixings have assumed that there are separate
symmetries describing the quark and the lepton sector in order to explain the disparate nature of quark and lepton
mixing angles. However we have stressed that this may not be the case if the neutrino masses are generated by the
see-saw mechanism. Exploiting this possibility we have constructed a viable model based on an egalitarian discrete
symmetry model where all fermions and additional familons are triplets under the finite group, here�(27). As a result,
the Dirac masses of both the quarks and leptons have the same form, albeit with di↵erent expansion parameters. The
model is consistent with both an underlying stage of Grand Unification and the absence of discrete family symmetry
anomalies.

✤ Minor discrepancies in exterior off diagonal CKM elements @ LO

✤ Include two additional parameters from HO operators in OPE:

Antusch, Kersten, Lindner, Ratz : NPB 674 (2003)
Serna, Ross : PLB 664 (2008)
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[ Status of discrete flavour symmetries? ]

A UTZ successfully describes both quarks and leptons and is 
economically implemented with discrete symmetries!  

Bad
✤ Symmetry landscape underdetermined:  multiple symmetries can predict the same mixing 

mixing patterns, and the same symmetry can predict multiple patterns.

✤ Shaping symmetries still required to constrain the form of Lagrangians (Yukawa and alignment)

✤ Outside of `direct’ models, making concrete predictions from the UV is difficult without 
additional input — guideposts from RGE, SUSY, anomaly constraints, higher dimensions?

Good
✤ NADS are well-motivated by data and can be easily incorporated into UV theories.

✤ We have shown that they can economically model both quarks and leptons, no easy task.

✤ They are also naturally pumped out of stringy compactifications.
✤ They are more powerful than conventional local symmetries at aligning flavoured vacua. 

[ Thanks! ] 
✤ See Scalars 2017 for a complementary talk from I. de Medeiros Varzielas…

http://indico.fuw.edu.pl/contributionDisplay.py?sessionId=26&contribId=13&confId=52
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which couplings dominate. Given that we are assuming a supersymmetric UV completion the leading

quartic couplings come from F-terms associated with trilinear couplings to heavy mediators in the

superpotential and, due to F-term decoupling, the couplings are small and depend sensitively on the

mediator spectrum. As discussed above, we allow only triplet mediators and consider the most general

set of e↵ective coupling that can arise from the exchange of such mediators.

Consider the case that the dominant coupling for the ✓3,123 fields is the self-coupling term

V2(✓i) = h
i

(✓
i

)2
⇣
✓†i

⌘2
. (C.2)

Minimising the potential3 one sees that these terms aligns the field vev, the direction depending on

the sign of h:

h✓i =

0

BB@

0

0

1

1

CCA v
✓

, h < 0, h✓i = 1p
3

0

BB@

1

1

�1

1

CCA v
✓

, h > 0

where v2
✓

⇡ m2
✓

/2�
✓

. These are in the directions required for ✓3 and ✓123!

To complete the model it is necessary to arrange the alignment of the ✓23 field vev. A field ✓
X

can

readily be made orthogonal to ✓123 if its dominant e↵ective coupling is

V3 = k1✓
X,i

✓†i123✓123,i✓
†i
X

, k1 > 0. (C.3)

However this term of eq(4.2) does not distinguish between (0, 1,�1)/
p
2 and (2,�1,�1)/

p
6. The

only quzrtic term that does make a distinction is the term

V4 = k2✓3,i✓
†i
X

✓
X,i

✓†i3 , k2 > 0 (C.4)

and this forces the alignment along (2,�1,�1)/
p
6. However now it is straightforward to get the

desired alignment for ✓23 through the terms

V5 = k3✓23,i✓
†i
123✓123,i✓23

†i + k4✓
X,i

✓†i23✓23,i✓
†i
X

, k1,2 > 0. (C.5)

To summarise, the potential

V =
X

i=3,123

(V1(✓i) + V2(✓i)) + V3 + V4 + V5 (C.6)

aligns the fields in the direction
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(C.7)

3
For clarity we assume real vevs here. The general case is presented below.
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For clarity we assume real vevs here. The general case is presented below.
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SU(3) invariant - insufficient to align as desired Allowed by discrete symmetry!

✤ We want to achieve the 3, 123, and 23 alignments. 

Orthogonal to 123, but does not distinguish between (0,1,-1) and (2,-1,-1)

Achieves (0,1,1) alignment!
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To complete the model it is necessary to arrange the alignment of the ✓23 field vev. The field ✓X can readily be
made orthogonal to ✓123 if its dominant e↵ective coupling is

V3 = k1✓X,i✓
†i
123✓123,j✓

†j
X , k1 > 0. (A.3)

However this term does not distinguish between (0, 1,�1)/
p
2 and (2,�1,�1)/

p
6 (up to permutations of the ele-

ments). The latter vev is chosen if the dominant term sensitive to the di↵erence is

V4 = k2m0✓
1
X✓2X✓3X (A.4)

Although a cubic term in the superpotential involving the ✓X superfield is forbidden by R-symmetry, it is generated
with coe�cient m0 after SUSY breaking. Then, in supergravity, the cubic term in the potential appears with k2 =
O(m0/M) where m0 is the gravitino mass. With this the final alignment of ✓23 is driven by the term
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where we have now included the relative phases explicitly. The vevs vi may also be complex. Note that further quartic
terms allowed by the symmetries may be present but they should be subdominant to preserve this alignment. It is
straightforwrd to assign a ZN charge to ✓X so that it does not contribute significantly to the fermion mass matrix.10

Finally, it is necessary to align the ✓ familon that carries lepton number -1. This is readily the case through the
potential

V✓ = V1(✓) + V2(✓) + k5✓3,i✓
†i✓i✓

†i
3 , k5 < 0 (A.8)

10 A significant contribution of ✓
X

to fermion masses can also be avoided with an R-symmetry but, as this depends on the details of the
underlying SUSY theory, we do not discuss this here. Similarly, the cubic terms in the potential may determine some of the phases in
eq(A.7) but this too depends on the details of the symmetry properties of the underlying SUSY breaking sector.

12

A feature of the model is the appearance of a texture zero in the (1,1) position not only in the Dirac masses of
all sectors, but also in the Majorana mass matrix of the light neutrinos. Combined with a symmetric mass matrix
structure this leads to the successful Gatto-Sartori-Tonin relation for the Cabibbo angle. Assuming the Georgi-
Jarlskog GUT structure for the down-quark and charged lepton mass matrices, the texture zero gives an excellent
prediction for the electron mass. Finally in the neutrino sector the texture zero requires a departure from pure
tribimaximal mixing, leading to a non-zero value for ✓l13 consistent with the observed value.

By performing a detailed numerical analysis, we show that the present measurements of fermion masses and mixings,
up to the uncertainties in the radiative evolution of these parameters to the UV, can be realized. Overall, with just 9
free parameters, excellent agreement is found with the 18 observables in the charged fermion and neutrino sectors. As
such it provides some evidence in favour of a dynamical rather than anarchical origin for fermion masses and mixings.
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Appendix A: Vacuum alignment

In what follows we consider the minimum number of triplet familon fields that can lead to the desired vacuum
alignment. These are the four anti-triplet fields ✓3,23,123 and ✓ introduced above together with a fifth triplet field ✓X .
Assuming the underlying theory is supersymmetric we should include in the potential only those terms consistent
with (spontaneously broken) supersymmetry (SUSY). For the case the associated familon superfields are R singlets
there are no cubic terms in the superpotential involving only familon fields and hence, in the supersymmetric limit,
no quartic terms. After supersymmetry breaking the scalar components of the superfields acquire SUSY breaking
masses, giving the potential

V1(✓i) = m2
i |✓i|2 (A.1)

Radiative corrections can drive m2
i negative, triggering spontaneous breaking [45] of the family symmetry at a scale

close to the scale at which m2
i is zero, and this may happen for all the familon fields.

These are the dominant terms that set the scale for the familon vevs. However, being SU(3)f invariant, these
terms do not align the vevs in the manner required. To do that we need to consider terms allowed by the discrete
symmetry that are not SU(3)f symmetric. In studying this it is necessary to determine which couplings dominate.
In the context of a supersymmetric UV completion the leading quartic couplings come from F-terms associated
with trilinear couplings to heavy mediators in the superpotential and, due to F-term decoupling, the couplings are
small, suppressed by the square of the supersymmetry breaking scale over the mediator scale (m0/M)2, and depend
sensitively on the mediator spectrum. As discussed above, we allow only triplet mediators and consider the most
general set of e↵ective couplings that can arise from the exchange of such mediators.

Consider the case that the dominant coupling for the ✓3,123 fields is the self-coupling term

V2(✓i) = hi(✓i)
2�✓†i

�2
. (A.2)

Minimising the potential9 one sees that these terms align the field vevs, the direction depending on the sign of h:
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These are in the directions required for ✓3 and ✓123!

9 For clarity we assume real vevs here. The general case is presented below.
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To complete the model it is necessary to arrange the alignment of the ✓23 field vev. The field ✓X can readily be
made orthogonal to ✓123 if its dominant e↵ective coupling is
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123✓123,j✓

†j
X , k1 > 0. (A.3)

However this term does not distinguish between (0, 1,�1)/
p
2 and (2,�1,�1)/

p
6 (up to permutations of the ele-

ments). The latter vev is chosen if the dominant term sensitive to the di↵erence is

V4 = k2m0✓
1
X✓2X✓3X (A.4)

Although a cubic term in the superpotential involving the ✓X superfield is forbidden by R-symmetry, it is generated
with coe�cient m0 after SUSY breaking. Then, in supergravity, the cubic term in the potential appears with k2 =
O(m0/M) where m0 is the gravitino mass. With this the final alignment of ✓23 is driven by the term
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To summarise, the potential
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aligns the fields in the directions

h✓3i =

0

BB@

0

0

1

1

CCA v3, h✓123i = 1p
3

0

BB@

ei�

ei↵

�1

1

CCA v123, h✓23i = 1p
2

0

BB@

0

ei↵

1

1

CCA v23,
D
✓†X

E
=

1p
6

0

BB@

2ei�

�ei↵

1

1

CCA vX (A.7)

where we have now included the relative phases explicitly. The vevs vi may also be complex. Note that further quartic
terms allowed by the symmetries may be present but they should be subdominant to preserve this alignment. It is
straightforwrd to assign a ZN charge to ✓X so that it does not contribute significantly to the fermion mass matrix.10

Finally, it is necessary to align the ✓ familon that carries lepton number -1. This is readily the case through the
potential

V✓ = V1(✓) + V2(✓) + k5✓3,i✓
†i✓i✓

†i
3 , k5 < 0 (A.8)

10 A significant contribution of ✓
X

to fermion masses can also be avoided with an R-symmetry but, as this depends on the details of the
underlying SUSY theory, we do not discuss this here. Similarly, the cubic terms in the potential may determine some of the phases in
eq(A.7) but this too depends on the details of the symmetry properties of the underlying SUSY breaking sector.
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where we have now included the relative phases explicitly. The vevs vi may also be complex. Note that further quartic
terms allowed by the symmetries may be present but they should be subdominant to preserve this alignment. It is
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where we have now included the relative phases explicitly. The vevs vi may also be complex. Note that further quartic
terms allowed by the symmetries may be present but they should be subdominant to preserve this alignment. It is
straightforwrd to assign a ZN charge to ✓X so that it does not contribute significantly to the fermion mass matrix.10

Finally, it is necessary to align the ✓ familon that carries lepton number -1. This is readily the case through the
potential

V✓ = V1(✓) + V2(✓) + k5✓3,i✓
†i✓i✓

†i
3 , k5 < 0 (A.8)

10 A significant contribution of ✓
X

to fermion masses can also be avoided with an R-symmetry but, as this depends on the details of the
underlying SUSY theory, we do not discuss this here. Similarly, the cubic terms in the potential may determine some of the phases in
eq(A.7) but this too depends on the details of the symmetry properties of the underlying SUSY breaking sector.

✤ Alignment of LNV family discussed in paper…



[ Backup:  charged sector RGE ]

17

Serna, Ross : PLB 664 (2008)

Parameters Input SUSY Parameters
tan β 1.3 10 38 50 38 38
γb 0 0 0 0 −0.22 +0.22
γd 0 0 0 0 −0.21 +0.21
γt 0 0 0 0 0 −0.44

Parameters Corresponding GUT-Scale Parameters with Propagated Uncertainty
yt(MX) 6+1

−5 0.48(2) 0.49(2) 0.51(3) 0.51(2) 0.51(2)
yb(MX) 0.0113+0.0002

−0.01 0.051(2) 0.23(1) 0.37(2) 0.34(3) 0.34(3)
yτ (MX) 0.0114(3) 0.070(3) 0.32(2) 0.51(4) 0.34(2) 0.34(2)

(mu/mc)(MX) 0.0027(6) 0.0027(6) 0.0027(6) 0.0027(6) 0.0026(6) 0.0026(6)
(md/ms)(MX) 0.051(7) 0.051(7) 0.051(7) 0.051(7) 0.051(7) 0.051(7)
(me/mµ)(MX) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2) 0.0048(2)
(mc/mt)(MX) 0.0009+0.001

−0.00006 0.0025(2) 0.0024(2) 0.0023(2) 0.0023(2) 0.0023(2)
(ms/mb)(MX) 0.014(4) 0.019(2) 0.017(2) 0.016(2) 0.018(2) 0.010(2)
(mµ/mτ )(MX) 0.059(2) 0.059(2) 0.054(2) 0.050(2) 0.054(2) 0.054(2)

A(MX) 0.56+0.34
−0.01 0.77(2) 0.75(2) 0.72(2) 0.73(3) 0.46(3)

λ(MX) 0.227(1) 0.227(1) 0.227(1) 0.227(1) 0.227(1) 0.227(1)
ρ̄(MX) 0.22(6) 0.22(6) 0.22(6) 0.22(6) 0.22(6) 0.22(6)
η̄(MX) 0.33(4) 0.33(4) 0.33(4) 0.33(4) 0.33(4) 0.33(4)

J(MX) × 10−5 1.4+2.2
−0.2 2.6(4) 2.5(4) 2.3(4) 2.3(4) 1.0(2)

Parameters Comparison with GUT Mass Ratios
(mb/mτ )(MX) 1.00+0.04

−0.4 0.73(3) 0.73(3) 0.73(4) 1.00(4) 1.00(4)
(3ms/mµ)(MX) 0.70+0.8

−0.05 0.69(8) 0.69(8) 0.69(8) 0.9(1) 0.6(1)
(md/3 me)(MX) 0.82(7) 0.83(7) 0.83(7) 0.83(7) 1.05(8) 0.68(6)

(det Y d

det Y e )(MX) 0.57+0.08
−0.26 0.42(7) 0.42(7) 0.42(7) 0.92(14) 0.39(7)

Table 2: The mass parameters continued to the GUT-scale MX for various values of tanβ and threshold
corrections γt,b,d. These are calculated with the 2-loop gauge coupling and 2-loop Yukawa coupling RG
equations assuming an effective SUSY scale MS = 500 GeV.

not diagonalized by the same rotations as the quarks but provided the relative mixing angles are reasonably
small the corrections to flavour conserving masses, which are our primary concern here, will be second order
in these mixing angles. We will assume Γu and Γd are diagonal in what follows.

Approximations for Γu and Γd based on the mass insertion approximation are found in [18][19][20]:

γt ≈ y2
t µ At tan β

16π2
I3(m

2
t̃1

, m2
t̃2

, µ2) ∼ y2
t

tan β

32π2

µ At

m2
t̃

(7)

γu ≈ −g2
2 M2 µ

tan β

16π2
I3(m

2
χ1

, m2
χ2

, m2
ũ) ∼ 0 (8)

γb ≈
8

3
g2
3

tan β

16π2
M3 µ I3(m

2
b̃1

, m2
b̃2

, M3
2) ∼

4

3
g2
3

tan β

16π2

µ M3

m2
b̃

(9)

γd ≈
8

3
g2
3
tan β

16π2
M3 µ I3(m

2
d̃1

, m2
d̃2

, M3
2) ∼

4

3
g2
3

tan β

16π2

µ M3

m2
d̃

(10)

where I3 is given by

I3(a
2, b2, c2) =

a2b2 log a2

b2 + b2c2 log b2

c2 + c2a2 log c2

a2

(a2 − b2)(b2 − c2)(a2 − c2)
. (11)

In these expressions q̃ refers to superpartner of q. χj indicate chargino mass eigenstates. µ is the coefficient
to the Hu Hd interaction in the superpotential. M1, M2, M3 are the gaugino soft breaking terms. At refers to
the soft top-quark trilinear coupling. The mass insertion approximation breaks down if there is large mixing
between the mass eigenstates of the stop or the sbottom. The right-most expressions in eqs(7,9,10) assume
the relevant squark mass eigenstates are nearly degenerate and heavier than M3 and µ. These expressions (
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∆m2

atm

1
m3√

∆m2
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Table 2: Generic enhancement and suppression factors for the RG evolution of the mixing parameters.
A ‘1’ indicates that there is no generic enhancement or suppression. ‘n.h.’ and ‘p.d.(n.)’ denote the
hierarchical and partially degenerate mass spectrum in the case of a normal hierarchy, i.e. m2

1 ≪ ∆m2
sol

or ∆m2
sol

≪ m2
1 ! ∆m2

atm. ‘i.h.’ and ‘p.d.(i.)’ denote the analogous spectra in the inverted case, i.e.
m2

3 ≪ ∆m2
sol

or ∆m2
sol

≪ m2
3 ! ∆m2

atm. Finally, ‘d.’ means nearly degenerate masses, ∆m2
atm ≪ m2

1 ∼
m2

2 ∼ m2
3 ∼ m2.

for M1 = 1013 GeV. If we assume that the solar and atmospheric angle are large and
that the phases do not cause excessive cancellations, then multiplying the above two
contributions with the enhancement factor Γenh from Tab. 2 yields a rough estimate for
the change of the angles and phases due to the RG evolution,

∆RG ∼ 10−5
(
1 + tan2 β

)
Γenh . (22)

Of course the factor 1+tan2 β has to be omitted in the SM. It is immediately clear that
even in the MSSM with very large tanβ no significant change occurs if the enhancement
factor is 1 or less – except maybe for θ13, where even a change by 1◦ could be interesting.
However, for quasi-degenerate neutrinos large enhancement factors are possible. As an
example, let us estimate the size of the absolute neutrino mass scale (the ‘amount of
degeneracy’) needed for a sizable RG change of θ12, say 0.1 ≈ 6◦. In the SM, this requires
Γenh ∼ 104, corresponding to a neutrino mass of the order of 1 eV, which is excluded
by WMAP and double beta decay experiments. On the other hand, in the MSSM this
mass scale can easily be lowered to about 0.1 eV with tanβ as small as 8.

2.3 Discussion and Comparison with Numerical Results

We now study in detail the running of the mixing angles and masses, in particular the
influence of the phases. The RG evolution of the phases will be studied separately in
Sec. 2.4. We solve the RGEs for the neutrino mass operator and for the other parameters
numerically and compare the results with those obtained from the analytical formulae
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✤ Degenerate neutrino masses, large ratios of 
SUSY higgs VEVs, and special convolutions of  
phases can drive large neutrino mixing.

where t = ln(µ/µ0) and µ is the renormalization scale1 and where

C = 1 in the MSSM ,

C = −
3

2
in the SM . (4)

In the SM and in the MSSM, α reads

αSM = −3g2
2 + 2(y2

τ + y2
µ + y2

e) + 6
(
y2

t + y2
b + y2

c + y2
s + y2

d + y2
u

)
+ λ , (5a)

αMSSM = −
6

5
g2
1 − 6g2

2 + 6
(
y2

t + y2
c + y2

u

)
. (5b)

Here Yf (f ∈ {e, d, u}) represent the Yukawa coupling matrices of the charged leptons,
down- and up-type quarks, respectively, gi denote the gauge couplings2 and λ the Higgs
self-coupling in the SM. We work in the basis where Ye is diagonal.

The parameters of interest are the masses, which are proportional to the eigenvalues
of κ and defined to be non-negative, as well as the mixing angles and physical phases of
the MNS matrix [34]

UMNS = V (θ12, θ13, θ23, δ) diag(e−iϕ1/2, e−iϕ2/2, 1) , (6)

which diagonalizes κ in this basis. V is the leptonic analogon to the CKM matrix
in the quark sector. The parametrization we use will be explained in more detail in
App. A. Currently, we learn from experiments that there occur two oscillations with
mass squared differences ∆m2

sol and ∆m2
atm and corresponding mixing angles θ12 and

θ23, respectively. For the third mixing angle θ13 and the absolute scale of light neutrino
masses, there are only upper bounds at the moment (see Tab. 1 for the present status).

2.1 The Analytical Formulae

In this section, we present explicit RGEs for the physical parameters. They determine
the slope of the RG evolution at a given energy scale and thus yield an insight into
the RG behavior. The derivation will be discussed in App. B. Note that a naive linear
interpolation, i.e. assuming the right-hand sides of the equations to be constant, will
not always give the correct RG evolution. As we will show later, this is mainly due to
large changes of θ12 and the mass squared differences. In the following, we will neglect
ye and yµ against yτ and introduce the abbreviation

ζ :=
∆m2

sol

∆m2
atm

, (7)

1In the MSSM, the RGE is known at two-loop [33]. In this study, we will, however, focus on the
one-loop equation.

2We are using GUT charge normalization for g1.
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✤ Further, we predict a severe hierarchy, and 
therefore expect minimal running of mixing 
angles and phases…
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Table 2: Generic enhancement and suppression factors for the RG evolution of the mixing parameters.
A ‘1’ indicates that there is no generic enhancement or suppression. ‘n.h.’ and ‘p.d.(n.)’ denote the
hierarchical and partially degenerate mass spectrum in the case of a normal hierarchy, i.e. m2
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for M1 = 1013 GeV. If we assume that the solar and atmospheric angle are large and
that the phases do not cause excessive cancellations, then multiplying the above two
contributions with the enhancement factor Γenh from Tab. 2 yields a rough estimate for
the change of the angles and phases due to the RG evolution,

∆RG ∼ 10−5
(
1 + tan2 β

)
Γenh . (22)

Of course the factor 1+tan2 β has to be omitted in the SM. It is immediately clear that
even in the MSSM with very large tanβ no significant change occurs if the enhancement
factor is 1 or less – except maybe for θ13, where even a change by 1◦ could be interesting.
However, for quasi-degenerate neutrinos large enhancement factors are possible. As an
example, let us estimate the size of the absolute neutrino mass scale (the ‘amount of
degeneracy’) needed for a sizable RG change of θ12, say 0.1 ≈ 6◦. In the SM, this requires
Γenh ∼ 104, corresponding to a neutrino mass of the order of 1 eV, which is excluded
by WMAP and double beta decay experiments. On the other hand, in the MSSM this
mass scale can easily be lowered to about 0.1 eV with tanβ as small as 8.

2.3 Discussion and Comparison with Numerical Results

We now study in detail the running of the mixing angles and masses, in particular the
influence of the phases. The RG evolution of the phases will be studied separately in
Sec. 2.4. We solve the RGEs for the neutrino mass operator and for the other parameters
numerically and compare the results with those obtained from the analytical formulae
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✤ On the other hand, neutrino masses are expected to 
run.  For normal tan \beta, generations scale uniformly:

As already mentioned, substantial deviations from the common scaling arise in the
MSSM for large tanβ. There is a plethora of effects which can be understood with the
aid of (15) and (17). In order to give an interesting example, we show the evolution of
the mass eigenvalues for mmin = 0.19 eV (where mmin = min{m1, m2, m3}) in the MSSM
with tanβ = 50 in Fig. 5. A particular interesting effect is that for an inverted mass
spectrum the property |∆m2

atm| > ∆m2
sol possibly does not survive the RG evolution.

In other words, what looks like a normal mass hierarchy at high energies turns out to
become an inverted hierarchy at low energies (cf. Fig. 5(b)). From the dependence on
the y2

τ terms (cf. Eqs. (16) and (18)), we find that this effect can disappear if δ is large.
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(a) Normal mass hierarchy
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(b) Inverted mass hierarchy

Figure 5: Running of the light neutrino masses for a normal and an inverted mass hierarchy and
mmin = 0.19 eV in the MSSM with tanβ = 50 and MSUSY = 1 TeV. The mixing parameters are
chosen to be the LMA best-fit values. The phases are zero in this example. In the inverted case, ∆m2

sol

becomes greater than |∆m2
atm|.

2.3.5 RG Evolution of ∆m2

sol

The RGE for the solar mass squared difference is given in Eq. (17a). In the SM and the
MSSM with small tanβ, the running is due to the common scaling of the masses de-
scribed in the previous section and thus virtually independent of the mixing parameters.
For large tanβ and nearly degenerate masses, the influence of CP phases, in particular
the Dirac phase, is crucial. The numerical example in Fig. 6 confirms this expectation
and furthermore shows that ∆m2

sol runs dramatically. On the one hand, it can grow by
more than an order of magnitude. As we have seen in Fig. 5, ∆m2

sol can even get larger
than |∆m2

atm|. On the other hand, it can run to 0 at energy scales slightly beyond the
maximum of 1013 GeV shown in the figure. For large tan β, ∆m2

sol ≪ m2
1 and not too
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✤ For large tan \beta, splitting amongst generations expected —>

neglecting yτ and integrating Eq. (15),

mi(t) ≈ exp

[
1

16π2

∫ t

t0

dτ α(τ)

]
mi(t0) =: s(t, t0) mi(t0) . (24)

We plot s in the SM and in the MSSM for various parameter combinations in Fig. 4.
The three SM curves correspond to different Higgs masses in the current experimentally
allowed region at 95% confidence level, 114 GeV ! mH ! 200 GeV [40]. mH = 180 GeV
is the value for which the self-coupling λ stays perturbative up to 1016 GeV, i.e. λ ! 1,
and mH = 165 GeV is the minimal mass for which λ is positive up to 1016 GeV, so
that the vacuum is stable in this region (see e.g. [41, 42]).5 In the MSSM, we choose
mH = 120 GeV for the light Higgs mass, since the allowed range is further restricted
by the upper limit at about 130 GeV here, and since it influences the evolution of
the RG scaling only marginally as long as MSUSY and MZ differ only by a few orders
of magnitude. Moreover, further uncertainties due to threshold corrections and the
unknown value of the SUSY-breaking scale can be equally important as the one due to
the unknown Higgs mass. The RG enhancement of the masses is smallest if tanβ ≈ 10.
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Figure 4: Scaling of the masses under the renormalization group in the SM and MSSM. The mixing
parameters are chosen to be the LMA best-fit values (cf. Tab. 1), but they influence the running only
marginally. We further used a SUSY-breaking scale MSUSY = 1 TeV. The upper curves show the
evolution in the SM for mH = 114 GeV, mH = 165 GeV and mH = 180 GeV, the lower ones correspond
to the MSSM for tanβ = 10 and tanβ = 50 with mH = 120 GeV. These plots apply for all mass
eigenvalues, except for large tanβ in the MSSM where the scaling of m3 is shown (using zero phases).
Note also that a different SUSY-breaking scale changes the scaling factor in the MSSM.

5In some models (see, e.g. [43] for a viable model) λ can be larger, in particular if M1 ≪ 1016 GeV.
A negative value of λ at high energy implies a metastable vacuum.
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