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Discrete symmetries in particle physics

ä In SM, fermions (both leptons and quarks) come in three generations

ä There are inter-generational differences, in contrast to their
uniformity in gauge interactions

ä Two types of hierarchies in the flavor sector:

Large hierarchy within the charged fermion sector and enormous
hierarchy between charged fermion and neutrino masses
Mixing information in quark and lepton sector

ä Finite discrete symmetry groups (e.g., S4, D4, A4 etc.) provide an
effective way of explaining some of these flavor issues

ä We will consider S3 symmetry
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Basics of S3

S3 is the permutation group of three objects

The order of S3 is 3! = 6

The six elements correspond to the following transformations

e : (x1, x2, x3)→ (x1, x2, x3),

a1 : (x1, x2, x3)→ (x2, x1, x3),

a2 : (x1, x2, x3)→ (x3, x2, x1),

a3 : (x1, x2, x3)→ (x1, x3, x2),

a4 : (x1, x2, x3)→ (x3, x1, x2),

a5 : (x1, x2, x3)→ (x2, x3, x1).

S3 can also be thought of as the symmetry of an equilateral triangle
with a1 and a1a2 being the reflection and the 2π/3 rotation
respectively
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S3 has three irreducible representation 1, 1′ and 2

We pick a basis such that the generators in the 2 representation are
given by

a =

[
− 1

2

√
3
2

−
√
3
2 − 1

2

]
, b =

[
1
2

√
3
2√

3
2 − 1

2

]
.

In this basis the quark fields transform under S3 as:

2 :

[
Q1

Q2

]
,

[
u1R
u2R

]
,

[
d1R
d2R

]
,

1 : Q3, u3R , d3R ,

N Note that the square brackets denote the doublet representation of
S3, and has nothing to do with the representation of the enclosed
fields under SU(2)
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Scalar potential

The scalar sector consists of two SU(2) doublets φi (i = 1, 2), and
their transformation under the S3 symmetry is as follows:

2 :

[
φ1
φ2

]
≡ Φ

Each doublet can be represented as

φi =

(
φ+i

1√
2 (vi + hi + iζi )

)
The scalar potential:

V (Φ) = V2(Φ) + V4(Φ) ,

V2(Φ) = µ2
1(φ†1φ1) + µ2

2(φ†2φ2)−
(
µ2
12φ
†
1φ2 + h.c.

)
,

V4(Φ) = λ1(φ†1φ1 + φ†2φ2)2 + λ2(φ†1φ2 − φ
†
2φ1)2

+ λ3

{
(φ†1φ2 + φ†2φ1)2 + (φ†1φ1 − φ

†
2φ2)2

}
.
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Physical scalars

Charged scalar:(
w±

H±

)
=

(
cosβ sinβ
− sinβ cosβ

)(
φ±1
φ±2

)
, with M2

H± =
2µ2

12

sin 2β
− 2λ3v

2

where β = tan−1(v2/v1)

Pseudoscalar:(
z
A

)
=

(
cosβ sinβ
− sinβ cosβ

)(
ζ1
ζ2

)
, with M2

A =
2µ2

12

sin 2β
− 2(λ2 + λ3)v2

Other neutral scalar:(
h
H

)
=

(
cosβ sinβ
− sinβ cosβ

)(
h1
h2

)
with

m2
H =

2µ2
12

sin 2β
, m2

h = 2(λ1 + λ3)v2
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Natural emergence of alignment limit

h can be identified with the 125 GeV SM Higgs with all couplings to
be SM-like

A few comment about the quadratic part of the potential

If µ2
1 = µ2

2 and µ2
12 = 0, V2(Φ) is completely S3-symmetric ⇒ after

EWSB this results in a massless scalar (Not desirable)

If µ2
1 6= µ2

2 and µ2
12 = 0, the potential is not S3 symmetric, but still

have a massless boson (Not desirable)

If µ2
1 = µ2

2 and µ2
12 6= 0, @ massless scalar, but tanβ = 1 or v1 = v2

because ∃ symmetry φ1 ↔ φ2 (Not good [see later])

If µ2
1 6= µ2

2 and µ2
12 6= 0, @ massless scalar and also tanβ can be

arbitrary (Useful case)
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Quark Yukawas

The most general S3 symmetric Yukawa couplings for u-type quarks

L
(u)
Y =− Au

(
Q̄1φ̃1 + Q̄2φ̃2

)
u3R − Bu

{(
Q̄1φ̃2 + Q̄2φ̃1

)
u1R

+
(
Q̄1φ̃1 − Q̄2φ̃2

)
u2R
}
− CuQ̄3

(
φ̃1u1R + φ̃2u2R

)
+ h.c.

where φ̃i = iσ2φ
∗
i

• For d-type quarks replace: uAR → dAR , {A,B,C}u → {A,B,C}d , and
φ̃i → φi

Mass matrix after EWSB

Mq =
v√
2

Bq sinβ Bq cosβ Aq cosβ
Bq cosβ −Bq sinβ Aq sinβ
Cq cosβ Cq sinβ 0

 , (q = u, d)
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Diagonalizing the mass matrix

à For the up-sector one can find two unitary matrices Uu and Vu such
that UuMuV

†
u is diagonal

à The CKM matrix is then given by UuU
†
d

à The matrices Uu and Ud are the unitary matrices which diagonalize,
through similarity transformations, the hermitian matrices MuM†u
and MdM†d respectively

MqM†q =
1

2
v2

a2q cos2 β + b2q
1
2a

2
q sin 2β BqC

∗
q sin 2β

1
2a

2
q sin 2β a2q sin2 β + b2q BqC

∗
q cos 2β

B∗qCq sin 2β B∗qCq cos 2β c2q


where aq = |Aq| etc.

à the three eigenvalues of MuM†u would be the mass squared of the
three up sector quarks, namely m2

u, m2
c and m2

t etc.
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The characteristic equation has the following form:

x3 − (a2 + 2b2 + c2)x2 + (a2 + b2)(b2 + c2)x − a2b2c2 sin2 3β = 0

where x = (2m2/v2)

Observations:

If the x independent term vanish one eigenvalue will be vanishing

Then the mass eigenvalues will be
{

0, 1
2v

2(b2 + c2), 1
2v

2(a2 + b2)
}

Towards diagonalizing MM†, as a first step, diagonalize only the terms
proportional to a2q; this is done, e.g., by a matrix

U =

 0 0 1
sinβ − cosβ 0
cosβ sinβ 0


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• Applying a similarity transformation with this matrix on MM†

M2 = UMM†U† =
1

2
v2

 c2 −bc cos 3β bc sin 3β
−bc cos 3β b2 0
bc sin 3β 0 a2 + b2



• Now near-masslessness of first generation of quarks can be obtained in
two ways:

(i) some Yukawa couplings vanish [bad way!]

(ii) sin 3β = 0 [good way!]

15 / 25



Introduction
Scalar sector

Quark Yukawa sector
Constructing CKM matrix
Summary and Conclusion

Outline

1 Introduction

2 Scalar sector

3 Quark Yukawa sector

4 Constructing CKM matrix

5 Summary and Conclusion

16 / 25



Introduction
Scalar sector

Quark Yukawa sector
Constructing CKM matrix
Summary and Conclusion

Construction of the CKM matrix

• Zero eigenvalue can be ensured with,

sin 3β = 0⇒ tanβ =
√

3⇒ v2 =
√

3v1 =

√
3v

2

• This value of β also makes the matrix M2 block-diagonal,

M2 = UMM†U† =
1

2
v2

c2 bc 0
bc b2 0
0 0 a2 + b2


• Third generation has been singled out, and therefore v

√
(a2 + b2)/2

⇒ mass of the third generation quark
• Since it is heavier than the quarks in the first two generations, we need
a2 � b2, c2 in both up and down sectors
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Complete diagonalization of M2 would require a further similarity
transformation affecting the upper 2× 2 block

This will involve the values of the Yukawa couplings

Uu = OuU , Ud = OdU ,

where

Oq =

cos θq − sin θq 0
sin θq cos θq 0

0 0 1

 with tan θq =
cq
bq
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The CKM matrix can be written as

VCKM = UuU
†
d = OuO†d

=

cos(θu − θd) − sin(θu − θd) 0
sin(θu − θd) cos(θu − θd) 0

0 0 1


The difference (θu − θd) can be identified with the Cabibbo angle,
θC

Smallness of first generation quarks ⇔ block diagonal CKM
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Possible issues

As a leading order effect we connect smallness of first generation quarks
and the block diagonal nature of CKM matrix

1 Can the CKM be exactly reproduced?

2 FCNC
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Exact reproduction of CKM

Note that the VEV relation v2 =
√

3v1 i.e., sin 3β = 0 is not
protected by any symmetry, so let’s perturb it by a small amount
such that sin 3β = δ

After a little algebra and a few reasonable approximations,

m2
u ≈

1

4
m2

cδ
2 sin2 2θu

m2
d ≈

1

4
m2

s δ
2 sin2 2θd

Since (θu − θd) = θC , one can solve for δ and θu or θd

Taking all the uncertainties into account we have found δ > 0.2
which is inconsistent with our assumption of small δ

Thus this minimal framework is not sufficient to reproduce the exact

observed masses of the first generation quarks ©..(
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FCNC

It can be shown that the FCNCs are uniquely determined by θu or θd

A trivial but viable solution to the FCNC problem would be to make
all the scalars except h sufficiently heavy

The bounds from the electroweak T -parameter can also be evaded if
the non-standard scalars, H, A and H± are nearly degenerate
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Summary and Conclusion

2 We connect two apparently disjoint experimental observations
namely, the tiny masses of first generation of quarks and the near
block-diagonal structure of the CKM matrix in a simple set-up of
2HDM with an S3 symmetry

2 These two features of the quark sector can be attributed to a
particular value of tanβ

2 An added bonus of our model is the existence of a light scalar,
which can be identified with the 125 GeV Higgs observed at the
LHC, in view of a naturally emerging alignment limit

2 Admittedly, the exact CKM matrix and correct non-zero masses for
the first generation of quarks could not be reproduced in this
minimalistic scenario

2 Perhaps our set-up can be taken as a constituent towards a more
elaborate framework which can address the full quark structure . . .
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