

Quark mixing in an S_3 -symmetric 2HDM

Ujjal Kumar Dey

Centre for Theoretical Studies
IIT Kharagpur

December 14, 2017

SUSY17
TIFR Mumbai

- PRD (R) 96 031701
- Collaborators: D. Das and P. B. Pal

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Discrete symmetries in particle physics

- In SM, fermions (both leptons and quarks) come in three generations
- There are inter-generational differences, in contrast to their uniformity in gauge interactions
- Two types of hierarchies in the flavor sector:
 - Large hierarchy within the charged fermion sector and enormous hierarchy between charged fermion and neutrino masses
 - Mixing information in quark and lepton sector
- Finite discrete symmetry groups (e.g., S_4 , D_4 , A_4 etc.) provide an effective way of explaining some of these flavor issues
- We will consider S_3 symmetry

Basics of S_3

- S_3 is the permutation group of three objects
- The order of S_3 is $3! = 6$
- The six elements correspond to the following transformations

$$e : (x_1, x_2, x_3) \rightarrow (x_1, x_2, x_3),$$

$$a_1 : (x_1, x_2, x_3) \rightarrow (x_2, x_1, x_3),$$

$$a_2 : (x_1, x_2, x_3) \rightarrow (x_3, x_2, x_1),$$

$$a_3 : (x_1, x_2, x_3) \rightarrow (x_1, x_3, x_2),$$

$$a_4 : (x_1, x_2, x_3) \rightarrow (x_3, x_1, x_2),$$

$$a_5 : (x_1, x_2, x_3) \rightarrow (x_2, x_3, x_1).$$

- S_3 can also be thought of as the symmetry of an equilateral triangle with a_1 and a_1a_2 being the reflection and the $2\pi/3$ rotation respectively

contd.

- S_3 has three irreducible representation **1**, **1'** and **2**
- We pick a basis such that the generators in the **2** representation are given by

$$a = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \quad b = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}.$$

- In this basis the quark fields transform under S_3 as:

$$\begin{aligned} \mathbf{2} &: \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}, \begin{bmatrix} u_{1R} \\ u_{2R} \end{bmatrix}, \begin{bmatrix} d_{1R} \\ d_{2R} \end{bmatrix}, \\ \mathbf{1} &: Q_3, u_{3R}, d_{3R}, \end{aligned}$$

★ Note that the square brackets denote the doublet representation of S_3 , and has nothing to do with the representation of the enclosed fields under $SU(2)$

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Scalar potential

- The scalar sector consists of two $SU(2)$ doublets ϕ_i ($i = 1, 2$), and their transformation under the S_3 symmetry is as follows:

$$2 : \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \equiv \Phi$$

- Each doublet can be represented as

$$\phi_i = \begin{pmatrix} \phi_i^+ \\ \frac{1}{\sqrt{2}}(v_i + h_i + i\zeta_i) \end{pmatrix}$$

- The scalar potential:

$$V(\Phi) = V_2(\Phi) + V_4(\Phi),$$

$$V_2(\Phi) = \mu_1^2(\phi_1^\dagger \phi_1) + \mu_2^2(\phi_2^\dagger \phi_2) - \left(\mu_{12}^2 \phi_1^\dagger \phi_2 + \text{h.c.} \right),$$

$$V_4(\Phi) = \lambda_1(\phi_1^\dagger \phi_1 + \phi_2^\dagger \phi_2)^2 + \lambda_2(\phi_1^\dagger \phi_2 - \phi_2^\dagger \phi_1)^2 + \lambda_3 \left\{ (\phi_1^\dagger \phi_2 + \phi_2^\dagger \phi_1)^2 + (\phi_1^\dagger \phi_1 - \phi_2^\dagger \phi_2)^2 \right\}.$$

Physical scalars

- Charged scalar:

$$\begin{pmatrix} w^\pm \\ H^\pm \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^\pm \\ \phi_2^\pm \end{pmatrix}, \quad \text{with} \quad M_{H^\pm}^2 = \frac{2\mu_{12}^2}{\sin 2\beta} - 2\lambda_3 v^2$$

where $\beta = \tan^{-1}(v_2/v_1)$

- Pseudoscalar:

$$\begin{pmatrix} z \\ A \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \zeta_1 \\ \zeta_2 \end{pmatrix}, \quad \text{with} \quad M_A^2 = \frac{2\mu_{12}^2}{\sin 2\beta} - 2(\lambda_2 + \lambda_3)v^2$$

- Other neutral scalar:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \quad \text{with}$$

$$m_H^2 = \frac{2\mu_{12}^2}{\sin 2\beta}, \quad m_h^2 = 2(\lambda_1 + \lambda_3)v^2$$

contd.

- Natural emergence of *alignment limit*
- h can be identified with the 125 GeV SM Higgs with all couplings to be SM-like
- A few comment about the quadratic part of the potential
 - If $\mu_1^2 = \mu_2^2$ and $\mu_{12}^2 = 0$, $V_2(\Phi)$ is completely S_3 -symmetric \Rightarrow after EWSB this results in a massless scalar (*Not desirable*)
 - If $\mu_1^2 \neq \mu_2^2$ and $\mu_{12}^2 = 0$, the potential is not S_3 symmetric, but still have a massless boson (*Not desirable*)
 - If $\mu_1^2 = \mu_2^2$ and $\mu_{12}^2 \neq 0$, \nexists massless scalar, but $\tan \beta = 1$ or $v_1 = v_2$ because \exists symmetry $\phi_1 \leftrightarrow \phi_2$ (*Not good [see later]*)
 - If $\mu_1^2 \neq \mu_2^2$ and $\mu_{12}^2 \neq 0$, \nexists massless scalar and also $\tan \beta$ can be arbitrary (*Useful case*)

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Quark Yukawas

The most general S_3 symmetric Yukawa couplings for u -type quarks

$$\mathcal{L}_Y^{(u)} = -A_u \left(\bar{Q}_1 \tilde{\phi}_1 + \bar{Q}_2 \tilde{\phi}_2 \right) u_{3R} - B_u \left\{ \left(\bar{Q}_1 \tilde{\phi}_2 + \bar{Q}_2 \tilde{\phi}_1 \right) u_{1R} \right. \\ \left. + \left(\bar{Q}_1 \tilde{\phi}_1 - \bar{Q}_2 \tilde{\phi}_2 \right) u_{2R} \right\} - C_u \bar{Q}_3 \left(\tilde{\phi}_1 u_{1R} + \tilde{\phi}_2 u_{2R} \right) + \text{h.c.}$$

where $\tilde{\phi}_i = i\sigma_2 \phi_i^*$

- For d -type quarks replace: $u_{AR} \rightarrow d_{AR}$, $\{A, B, C\}_u \rightarrow \{A, B, C\}_d$, and $\tilde{\phi}_i \rightarrow \phi_i$

Mass matrix after EWSB

$$\mathcal{M}_q = \frac{v}{\sqrt{2}} \begin{pmatrix} B_q \sin \beta & B_q \cos \beta & A_q \cos \beta \\ B_q \cos \beta & -B_q \sin \beta & A_q \sin \beta \\ C_q \cos \beta & C_q \sin \beta & 0 \end{pmatrix}, \quad (q = u, d)$$

Diagonalizing the mass matrix

- For the up-sector one can find two unitary matrices U_u and V_u such that $U_u M_u V_u^\dagger$ is diagonal
- The CKM matrix is then given by $U_u U_d^\dagger$
- The matrices U_u and U_d are the unitary matrices which diagonalize, through similarity transformations, the hermitian matrices $M_u M_u^\dagger$ and $M_d M_d^\dagger$ respectively

$$M_q M_q^\dagger = \frac{1}{2} v^2 \begin{pmatrix} a_q^2 \cos^2 \beta + b_q^2 & \frac{1}{2} a_q^2 \sin 2\beta & B_q C_q^* \sin 2\beta \\ \frac{1}{2} a_q^2 \sin 2\beta & a_q^2 \sin^2 \beta + b_q^2 & B_q C_q^* \cos 2\beta \\ B_q^* C_q \sin 2\beta & B_q^* C_q \cos 2\beta & c_q^2 \end{pmatrix}$$

where $a_q = |A_q|$ etc.

- the three eigenvalues of $M_u M_u^\dagger$ would be the mass squared of the three up sector quarks, namely m_u^2 , m_c^2 and m_t^2 etc.

contd.

The characteristic equation has the following form:

$$x^3 - (a^2 + 2b^2 + c^2)x^2 + (a^2 + b^2)(b^2 + c^2)x - a^2 b^2 c^2 \sin^2 3\beta = 0$$

where $x = (2m^2/v^2)$

Observations:

- If the x independent term vanish one eigenvalue will be vanishing
- Then the mass eigenvalues will be $\{0, \frac{1}{2}v^2(b^2 + c^2), \frac{1}{2}v^2(a^2 + b^2)\}$

Towards diagonalizing MM^\dagger , as a first step, diagonalize only the terms proportional to a_q^2 ; this is done, e.g., by a matrix

$$\mathcal{U} = \begin{pmatrix} 0 & 0 & 1 \\ \sin \beta & -\cos \beta & 0 \\ \cos \beta & \sin \beta & 0 \end{pmatrix}$$

contd.

- Applying a similarity transformation with this matrix on $\mathcal{M} \mathcal{M}^\dagger$

$$M^2 = \mathcal{U} \mathcal{M} \mathcal{M}^\dagger \mathcal{U}^\dagger = \frac{1}{2} v^2 \begin{pmatrix} c^2 & -bc \cos 3\beta & bc \sin 3\beta \\ -bc \cos 3\beta & b^2 & 0 \\ bc \sin 3\beta & 0 & a^2 + b^2 \end{pmatrix}$$

- Now near-masslessness of first generation of quarks can be obtained in two ways:
 - (i) some Yukawa couplings vanish [*bad way!*]
 - (ii) $\sin 3\beta = 0$ [*good way!*]

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Construction of the CKM matrix

- Zero eigenvalue can be ensured with,

$$\sin 3\beta = 0 \Rightarrow \tan \beta = \sqrt{3} \Rightarrow v_2 = \sqrt{3}v_1 = \frac{\sqrt{3}v}{2}$$

- This value of β also makes the matrix M^2 block-diagonal,

$$M^2 = \mathcal{U}MM^\dagger\mathcal{U}^\dagger = \frac{1}{2}v^2 \begin{pmatrix} c^2 & bc & 0 \\ bc & b^2 & 0 \\ 0 & 0 & a^2 + b^2 \end{pmatrix}$$

- Third generation has been singled out, and therefore $v\sqrt{(a^2 + b^2)/2}$
 \Rightarrow mass of the third generation quark
- Since it is heavier than the quarks in the first two generations, we need $a^2 \gg b^2, c^2$ in both up and down sectors

contd.

- Complete diagonalization of M^2 would require a further similarity transformation affecting the upper 2×2 block
- This will involve the values of the Yukawa couplings

$$U_u = \mathcal{O}_u \mathcal{U}, \quad U_d = \mathcal{O}_d \mathcal{U},$$

where

$$\mathcal{O}_q = \begin{pmatrix} \cos \theta_q & -\sin \theta_q & 0 \\ \sin \theta_q & \cos \theta_q & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ with } \tan \theta_q = \frac{c_q}{b_q}$$

contd.

The CKM matrix can be written as

$$\begin{aligned} V_{\text{CKM}} &= U_u U_d^\dagger = \mathcal{O}_u \mathcal{O}_d^\dagger \\ &= \begin{pmatrix} \cos(\theta_u - \theta_d) & -\sin(\theta_u - \theta_d) & 0 \\ \sin(\theta_u - \theta_d) & \cos(\theta_u - \theta_d) & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

- The difference $(\theta_u - \theta_d)$ can be identified with the Cabibbo angle, θ_C
- Smallness of first generation quarks \Leftrightarrow block diagonal CKM

Possible issues

As a leading order effect we connect smallness of first generation quarks and the block diagonal nature of CKM matrix

- ➊ Can the CKM be *exactly* reproduced?
- ➋ FCNC

Exact reproduction of CKM

- Note that the VEV relation $v_2 = \sqrt{3}v_1$ i.e., $\sin 3\beta = 0$ is not protected by any symmetry, so let's perturb it by a small amount such that $\sin 3\beta = \delta$
- After a little algebra and a few reasonable approximations,

$$m_u^2 \approx \frac{1}{4} m_c^2 \delta^2 \sin^2 2\theta_u$$

$$m_d^2 \approx \frac{1}{4} m_s^2 \delta^2 \sin^2 2\theta_d$$

- Since $(\theta_u - \theta_d) = \theta_C$, one can solve for δ and θ_u or θ_d
- Taking all the uncertainties into account we have found $\delta > 0.2$ which is inconsistent with our assumption of small δ
- Thus this minimal framework is not sufficient to reproduce the exact observed masses of the first generation quarks

FCNC

- It can be shown that the FCNCs are uniquely determined by θ_u or θ_d
- A trivial but viable solution to the FCNC problem would be to make all the scalars except h sufficiently heavy
- The bounds from the electroweak T -parameter can also be evaded if the non-standard scalars, H , A and H^\pm are nearly degenerate

Outline

- 1 Introduction
- 2 Scalar sector
- 3 Quark Yukawa sector
- 4 Constructing CKM matrix
- 5 Summary and Conclusion

Summary and Conclusion

- We connect two apparently disjoint experimental observations namely, the tiny masses of first generation of quarks and the near block-diagonal structure of the CKM matrix in a simple set-up of 2HDM with an S_3 symmetry
- These two features of the quark sector can be attributed to a particular value of $\tan \beta$
- An added bonus of our model is the existence of a light scalar, which can be identified with the 125 GeV Higgs observed at the LHC, in view of a naturally emerging alignment limit
- Admittedly, the exact CKM matrix and correct non-zero masses for the first generation of quarks could not be reproduced in this minimalistic scenario
- Perhaps our set-up can be taken as a constituent towards a more elaborate framework which can address the full quark structure ...

Thank You