

KK Higgs produced in association with a top quark pair in the bulk RS Model

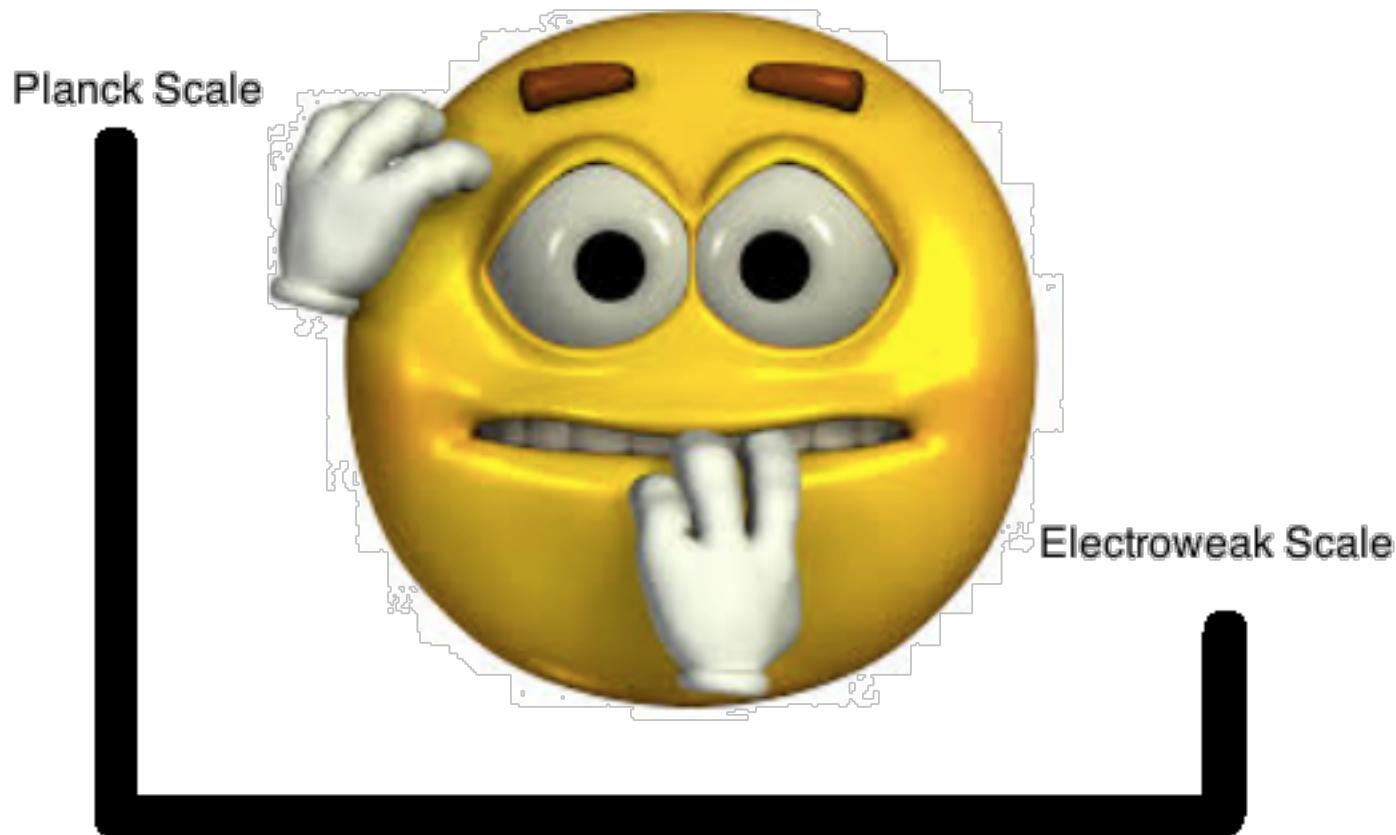
Namrata Manglani

In Collaboration with :
Anuradha Misra and K. Sridhar,

Outline

- ◆ Hierarchy problem
- ◆ Solution in WED (Warped Extra Dimensions)
- ◆ Randall-Sundrum Model
- ◆ Bulk Higgs (H_1)
- ◆ Search for $[H_1 t \bar{t}]$ channel
- ◆ Strategy for detection at the LHC
- ◆ Summary

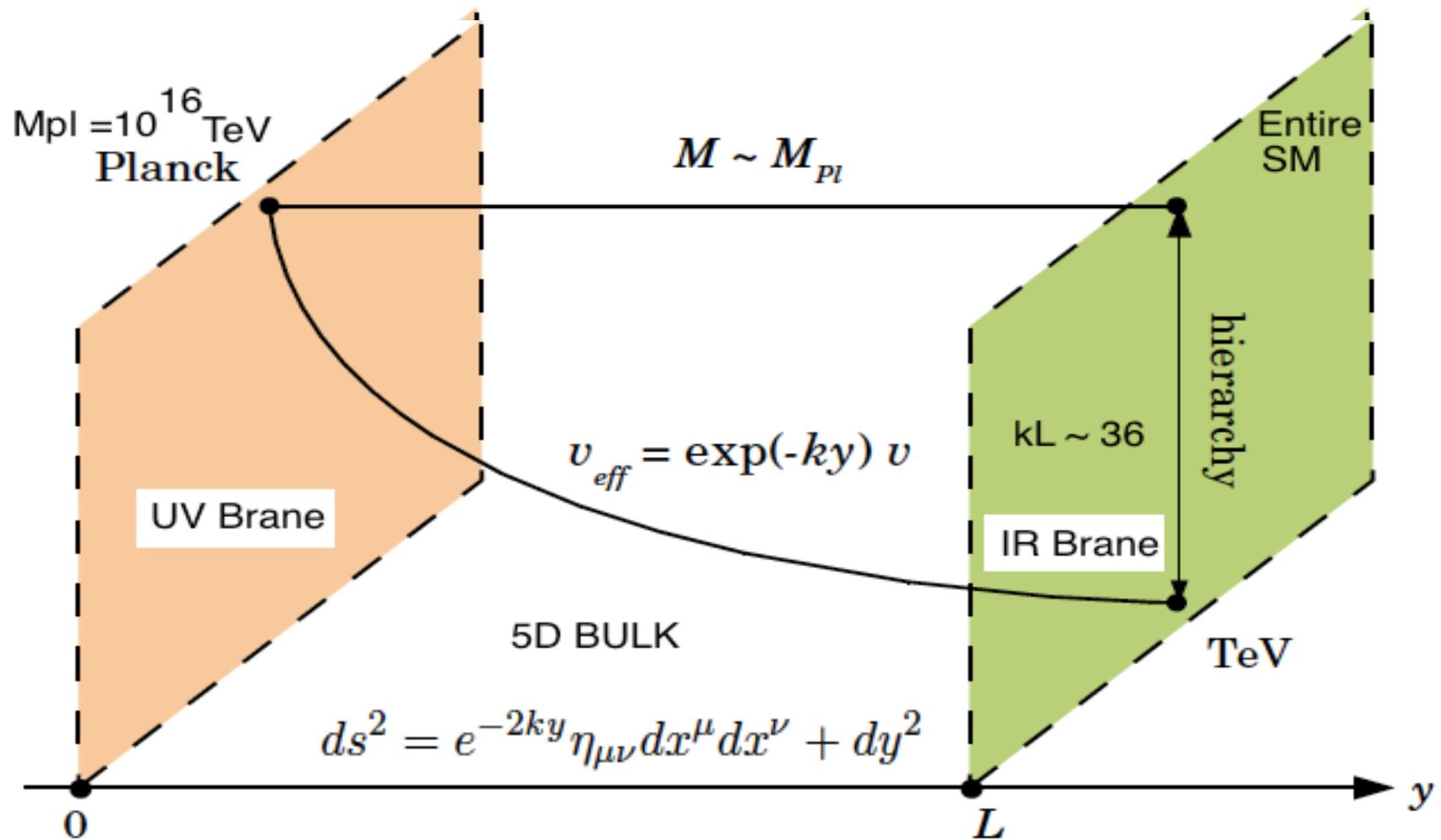
Hierarchy Problem



The huge difference between the Planck Scale ($\sim 10^{16}$ TeV) and the Weak Scale (~ 1 TeV) is one of the ways to express the Hierarchy Problem of the Standard Model.

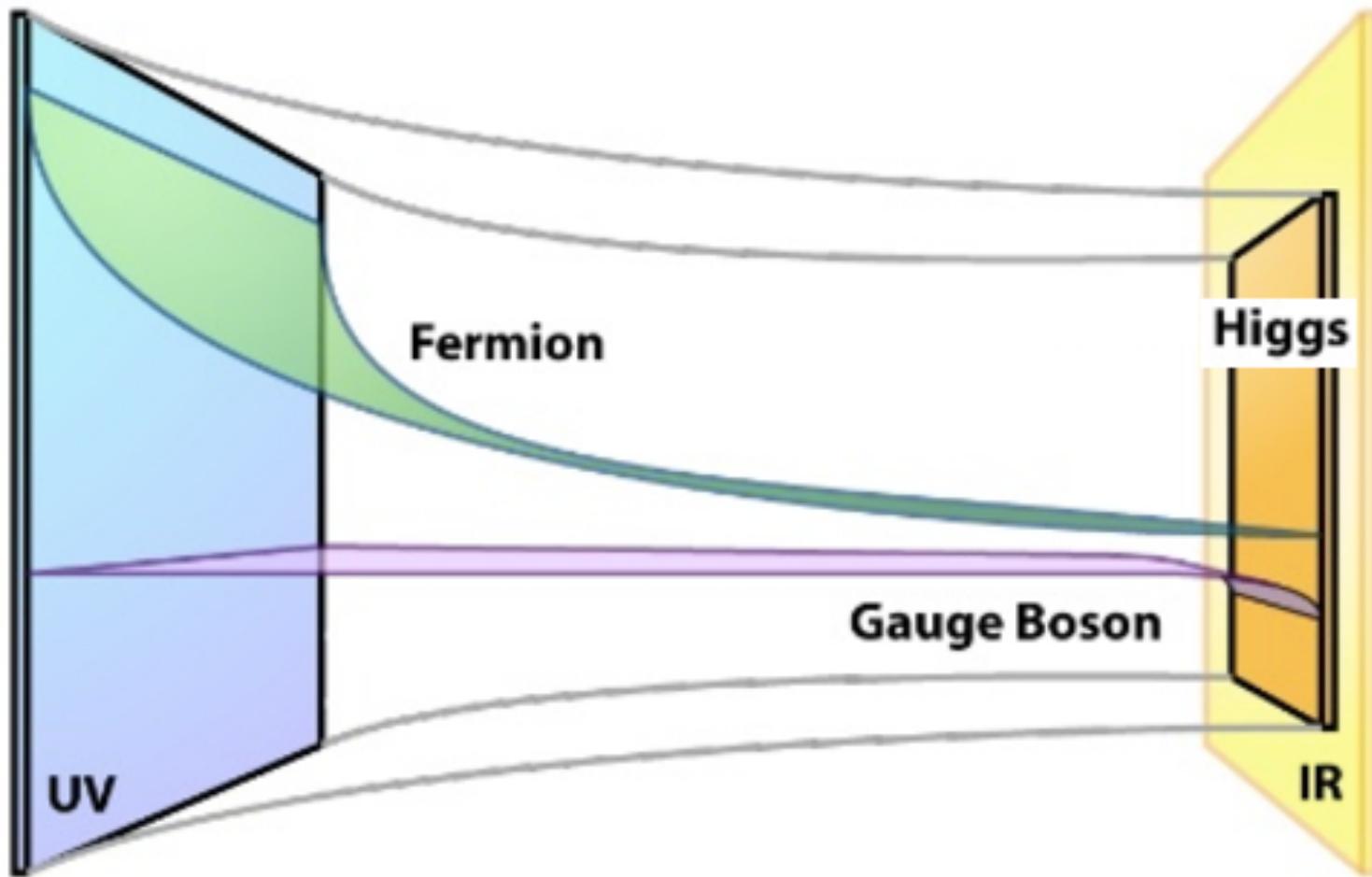
Randall Sundrum Model

Randall, Sundrum'99



Bulk RS Model

Gherghetta'10



Bulk RS Models

- **With a custodial symmetry**

A custodial symmetry ($SU(3) \times SU(2)L \times SU(2)R \times U(1)y$) in the bulk takes care of the T parameter. EW precision constrains yield bounds on lowest KK mass $\sim 3\text{TeV}$

(Agashe, Delgado, May, Sundrum'03)

- **With a deformed metric**

Introduce an additional scalar field generating a singularity. Due to this warping of the fifth dimension is strongly modified near the IR brane. EW precision constrains yield bounds on lowest KK mass $\sim 1\text{TeV}$

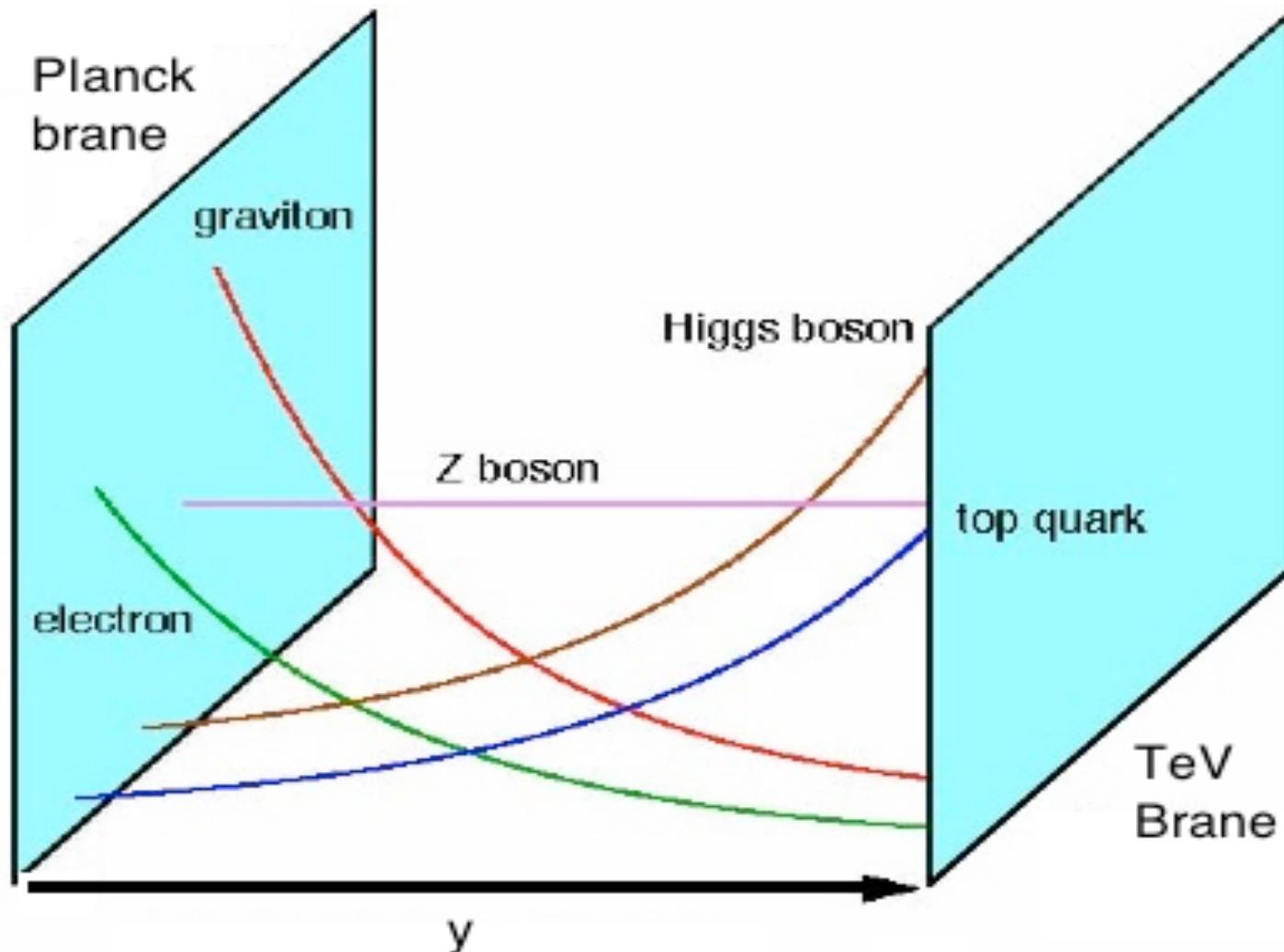
(Cabrera, Gersdorff, Quiros'11)

Why Bulk Higgs ?

Quiros'11;Archer,Carena,Carmona,Neubert'15

- ◆ All SM Particles other than Higgs in the Bulk then why not Higgs ?
- ◆ Hierarchy problem solution demands $b >= 2$
- ◆ Higgs can be inside the bulk very close to IR brane
- ◆ Reduces the overlap of KK gauge bosons -> lower Mass scale !
- ◆ Relaxes Electroweak Precision constrains
- ◆ Offers some explanation to small scale neutrino masses
- ◆ Consistent with extensions that include Dark Matter candidate

Bulk RS Model with a Bulk Higgs



Bulk Higgs

Mahmoudi, Maitra, Mangani, Sridhar'16

$$S = \int d^4x dy \sqrt{-g} (D_M \Phi D^M \Phi - m^2 \Phi^\dagger \Phi + 2 \sum_{j=0,1} (-1)^j \lambda^j(\Phi) \delta(y - y_j) + L_{yuk}) ,$$

where $y_0 = 0$, $y_1 = \pi R$,

$$-\lambda^1(\Phi) = -\frac{M_1}{k} |\Phi^\dagger \Phi| + 2 \frac{\gamma}{k^2} |\Phi^\dagger \Phi|^2, \quad \lambda^0 = \frac{M_0}{k} \Phi^\dagger \Phi \text{ and } m^2 = ak^2.$$

$$\Phi(x, y) = \frac{1}{\sqrt{2\pi R}} \begin{bmatrix} 0 \\ (v_{\text{SM}} + h_0(x)) f_0^h(y) + h_n(x) f_n^h(y) \end{bmatrix} ,$$

where

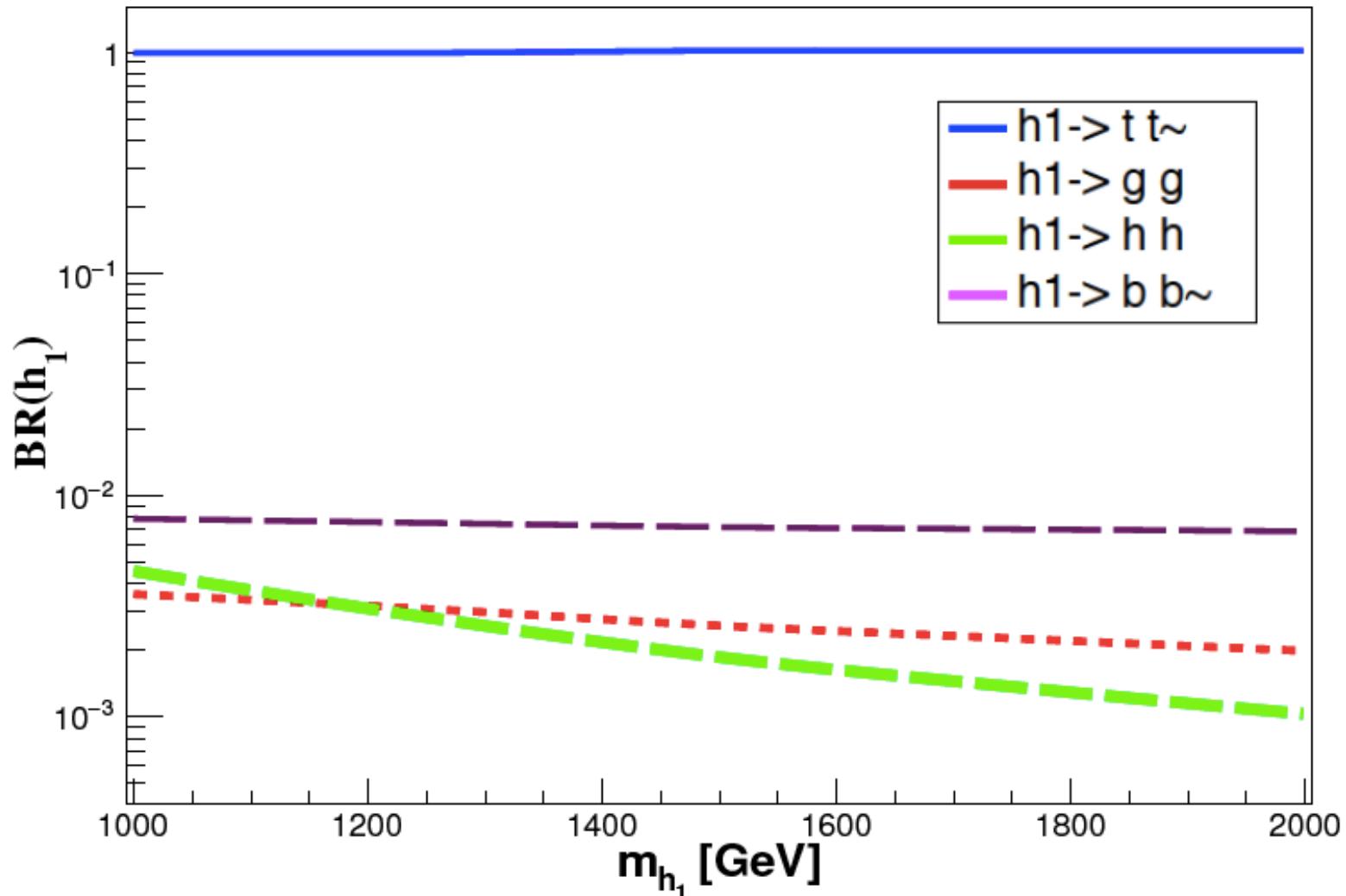
$$f_0^h = \sqrt{\frac{(2(b-1)k\pi R)}{(e^{2(b-1)kR\pi} - 1)}} e^{(b-1)ky} \text{ and } b = 2 + \sqrt{4 + a}.$$

Similarly, the bulk equation of motion of h_1 gives us the profile

$$f_1^h = 1.85 \sqrt{kR\pi} e^{-k(R\pi - y)} \left(J_{b-2} \left(\frac{m_1 e^{ky}}{k} \right) + 0.36 Y_{b-2} \left(\frac{m_1 e^{ky}}{k} \right) \right) ,$$

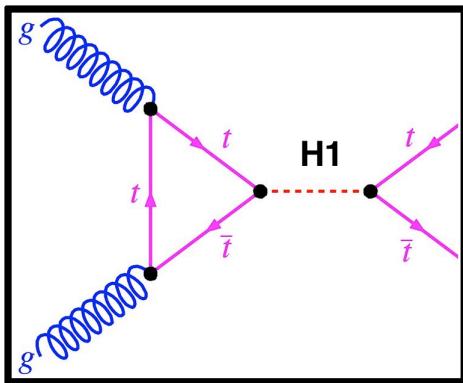
having mass given by $m_1 = (1 + 2(b-2)) \frac{\pi}{4} k e^{-kR\pi}$.

Branching Ratios of h_1



Prominent search channels for H1

$M_{H1} = 1 \text{ TeV} (@13 \text{ TeV})$

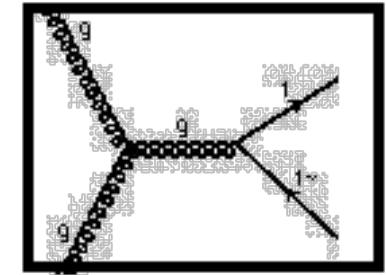
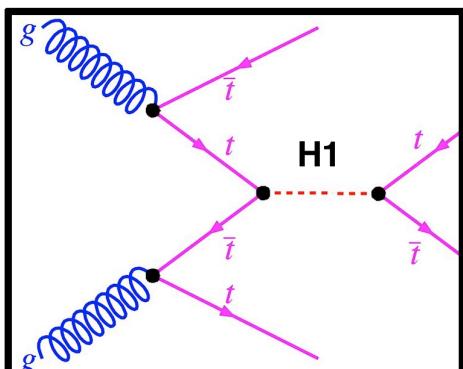


1. Signal

$gg \rightarrow H1 \sim 0.185 \text{ pb}$

Background

SM $t\bar{t}$ $\sim 800 \text{ pb}$

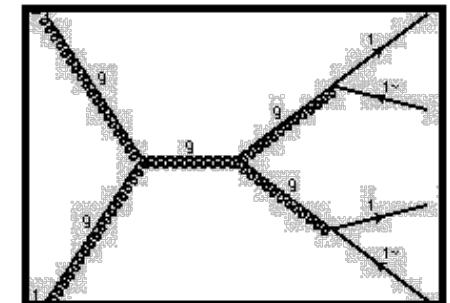


2. Signal

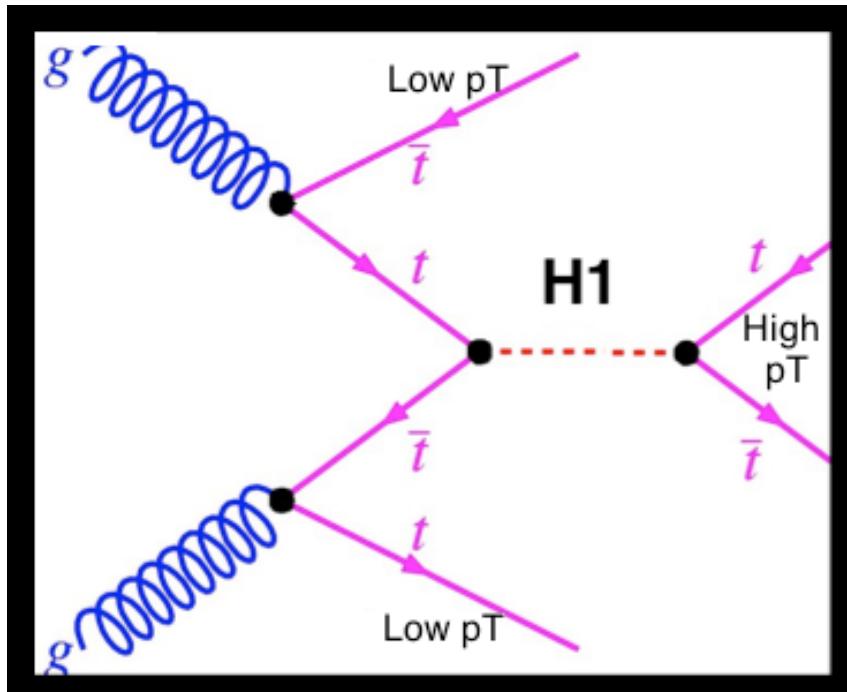
$gg \rightarrow H1tt \sim 1.26 \text{ fb}$

Background

SM four top $\sim 10 \text{ fb}$



Strategy for [$H_1 t \bar{t}$] channel



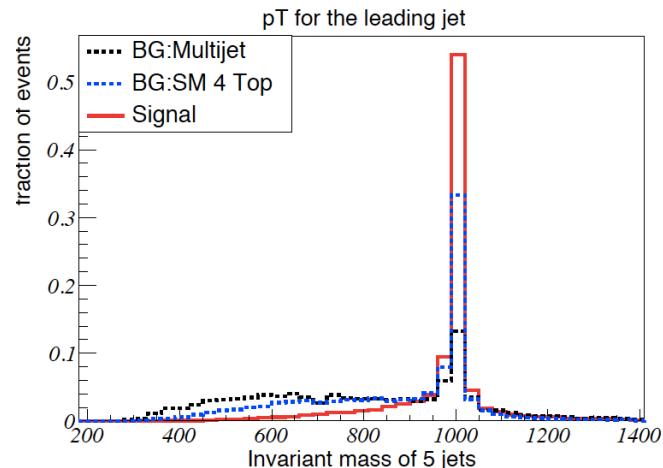
- Hadronic decay of all top quarks (4b + 8n)
 - Our case : Boosted (2b+4n) /(4b+8n)
- One Semileptonic decay (4b+1L+6n+MET)
- Two Semileptonic decay (4b+2L+6n+MET)

Analysis for $[H_1 t \bar{t}]$ channel

Preliminary analysis done for a 1TeV KK Higgs

- We choose 5/6 boosted jets that reconstruct H_1 mass.
- Followed by cut on mass window
- Search for isolated leptons(L).
- Cluster remaining particles into jets with lower transverse momentum.

Choice of decay	L / fb 5 sigma	L / fb 3 sigma
$L0+2b+4n$	2832	1019
$L1+2b+2n$	1375	495
$L2+2b+0n$	797	286



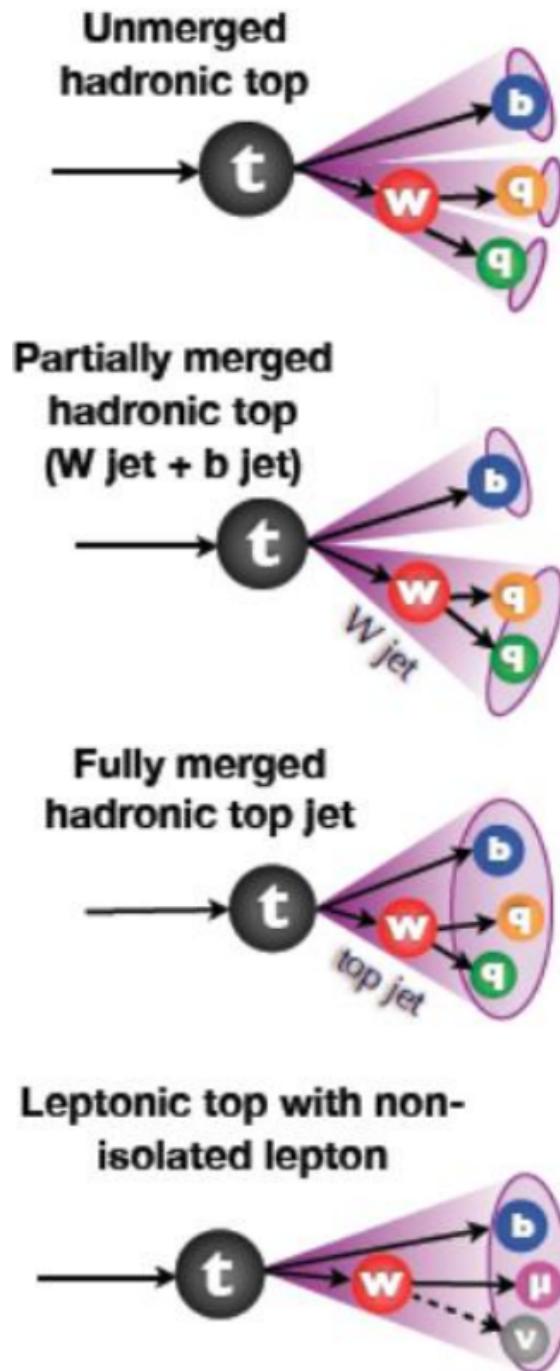
Summary

- ◆ Bulk RS model with deformed metric predicts bulk Higgs mass as low as 800 GeV-1.3 TeV.
- ◆ Bulk Higgs has very interesting phenomenology.
- ◆ $H_1\bar{t}t$ has lowest background, interesting to find !
- ◆ H_1 can be probed at HL-LHC !

Questions ?

Thank You !

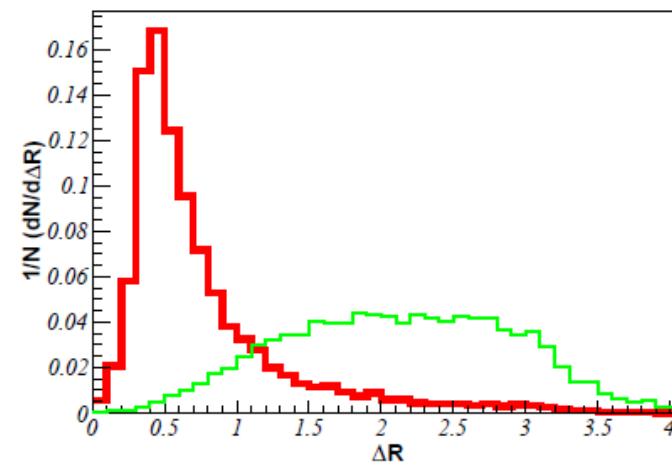
BACK UP SLIDES



Boosted Tops

$$\Delta R = \frac{2m}{p_t}$$

- ◆ m = mass of decaying particle
- ◆ p_t = its transverse momentum
- ◆ ΔR = separation of its daughters

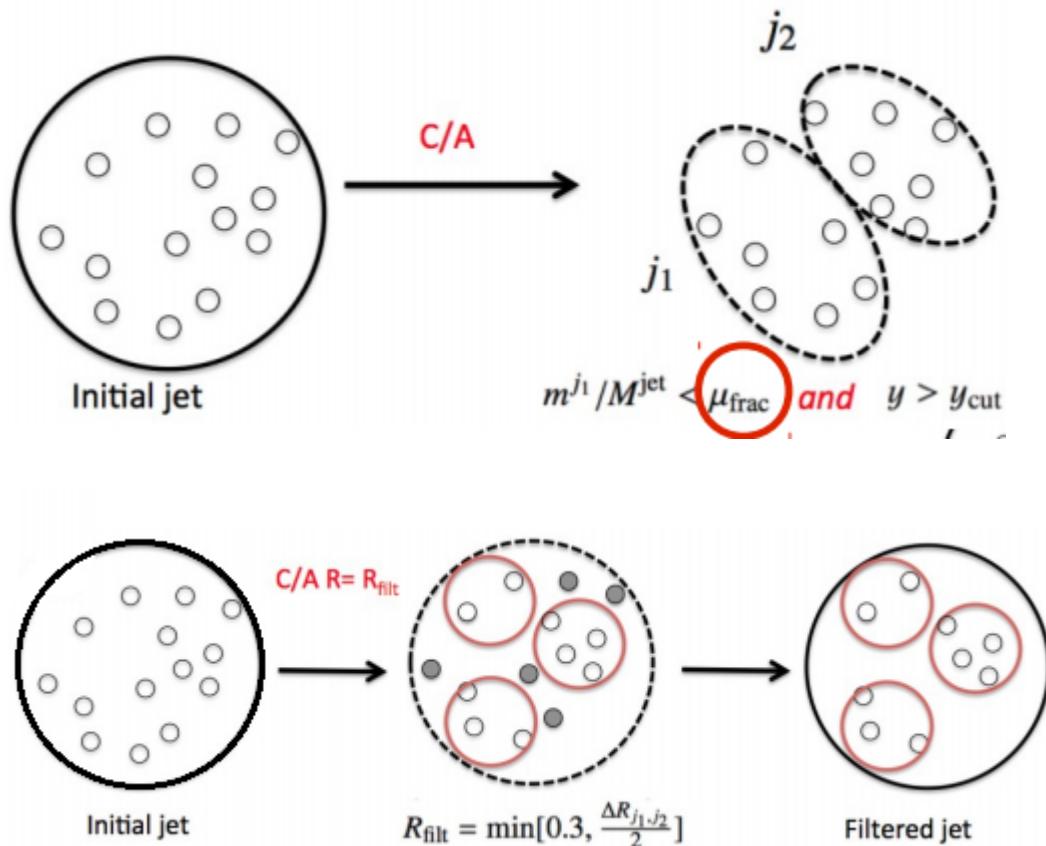


Analysis for $[t\ t\bar{t}]$ channel

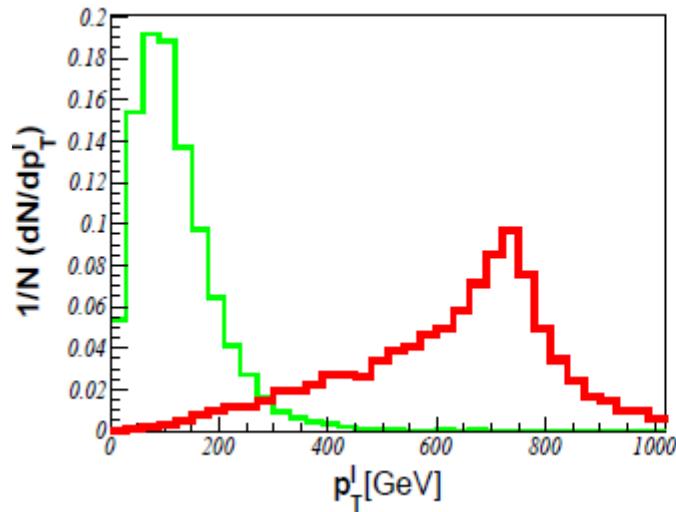
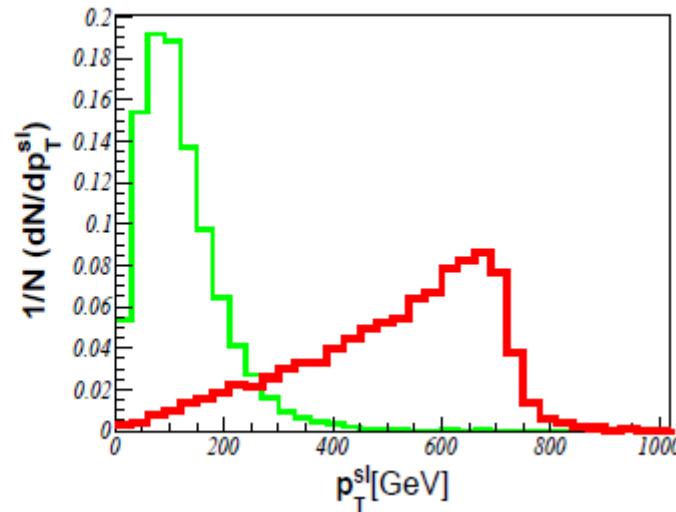
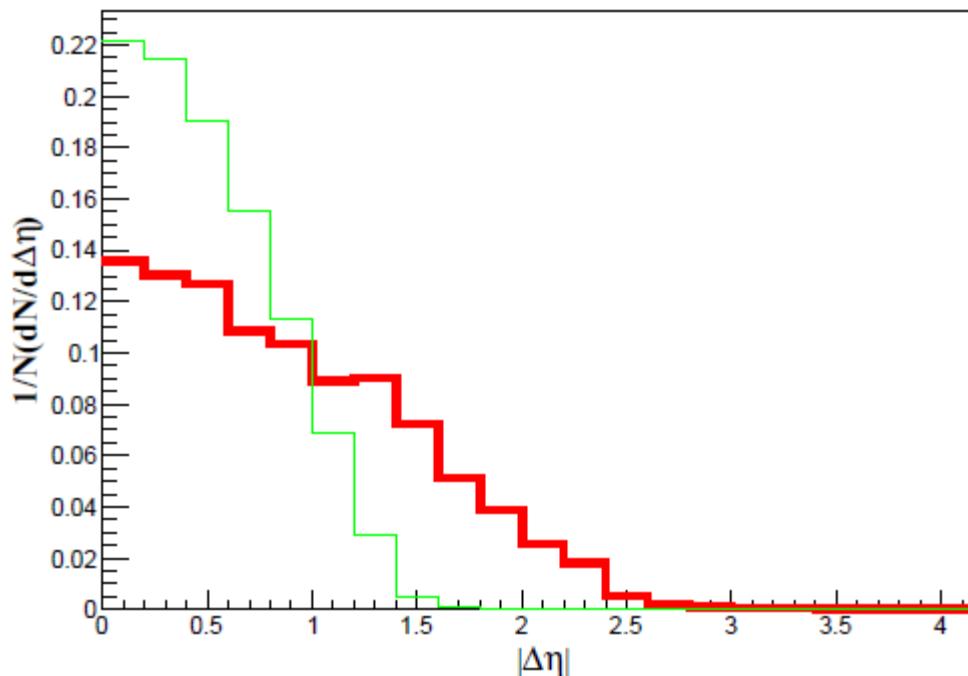
- ◆ Model Files are generated using FeynRules2
- ◆ Parton level amplitude using Madgraph5
- ◆ Showering is done in Pythia8
- ◆ Clustering using CA in Fastjet3
- ◆ Signal is enhanced using
 - ◆ Using HEPTOPTAGGER
 - ◆ cuts on pT of jets
 - ◆ Pseudorapidity.

HEPTOPTAGGER

- ◆ CA fat jet with $R=1.5$
- ◆ Mass Drop Criterion
 $\text{Min } m_{j1} < 0.8 \text{ MJ}$
 Do this till $m_{ji} < 30 \text{ GeV}$
- ◆ Filtering
 Three subjets with
 $M_j = m_t \pm 25$
- ◆ Top decay kinematics
 Pair wise invariant mass
 Gives W for one pair.



Plots for pT and

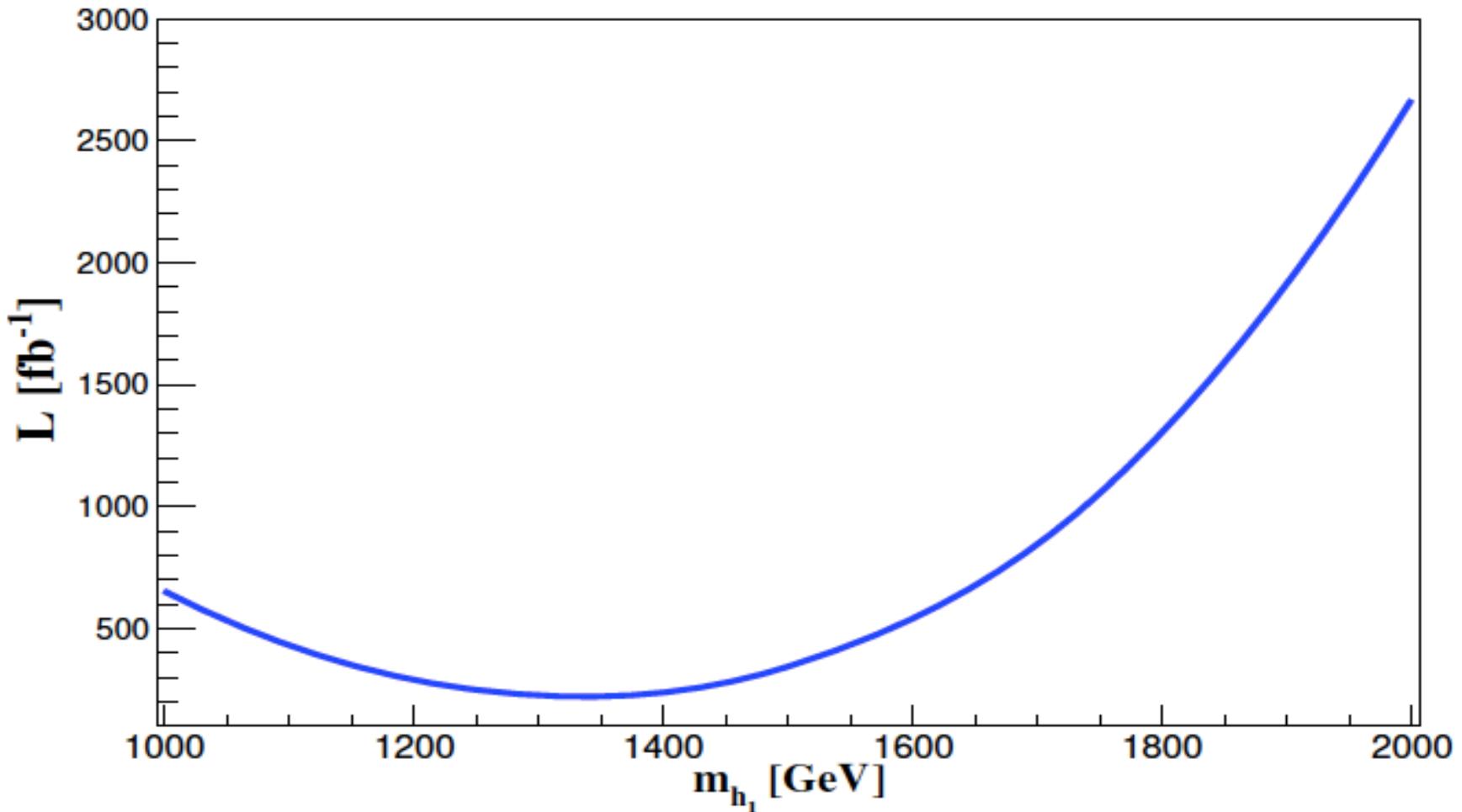


Flow of cuts

Mass (GeV)	Cuts	Signal (fb)	QCD (fb)	$t\bar{t}$ (fb)
1000	2 fat jets ($p_T > 250$ GeV, $R < 1.5$) 2 top-tagged jets $p_T^l > 400$ GeV and $p_T^{sl} > 350$ GeV $ \Delta\eta > 1.15$ 900 GeV $< m_{tt} < 1100$ GeV	52.36 2.64 1.43 0.063 0.020	395183.24 65.11 58.33 10.39 —	404.80 27.04 26.66 1.24 0.005
1500	2 fat jets ($p_T > 350$ GeV, $R < 1.5$) 2 top-tagged jets $ \Delta\eta > 1.3$ 1350 GeV $< m_{tt} < 1550$ GeV	4.05 0.24 0.06 0.04	46390.00 9.24 0.41 —	91.50 5.98 0.094 0.009

Table 1. Cut flow table for two values of KK Higgs mass.

Results for ttbar channel



Couplings α profile overlaps

5D Field \rightarrow Kaluza-Klein tower of 4D fields

$$\Phi(x^\mu, y) = \sum_{n=0}^{\infty} \Phi^{(n)}(x^\mu) f_\Phi^{(n)}(y)$$

Couplings in SM are fit..... $g_4 = g_5 \int_0^L dy f_A^{(0)} f_R^{(0)} f_R^{(0)}$

Couplings α Profile overlap $g_{(1)} = g_5 \int_0^L dy f_A^{(1)} f_R^{(0)} f_R^{(0)}$

Hierarchy Problem & Extra dimensions

Hierarchy problem of SM

- $M_{Pl}/M_{EWSB} \sim 10^{16}$
- Large difference in scale \rightarrow high degree of fine-tuning in fermion masses radiative correction ($\sim 10^{-34}$) to Higgs mass

Large Extra Dimensions, ADD (Arkani-Hamed, Dimopoulos, Dvali)

model [*Phys. Lett. B 429 (1998) 263*].

- SM is constrained in 3+1 dimensions
- Gravity propagates through entire multidimensional space and its strength is diluted \rightarrow effective Planck scale is observed

$$M_D^{(n_{ED}+2)} \sim \frac{M_{Pl}^2}{R^{n_{ED}}}, \quad R \text{ and } n_{ED} \text{ is the size and number of ED, respectively}$$

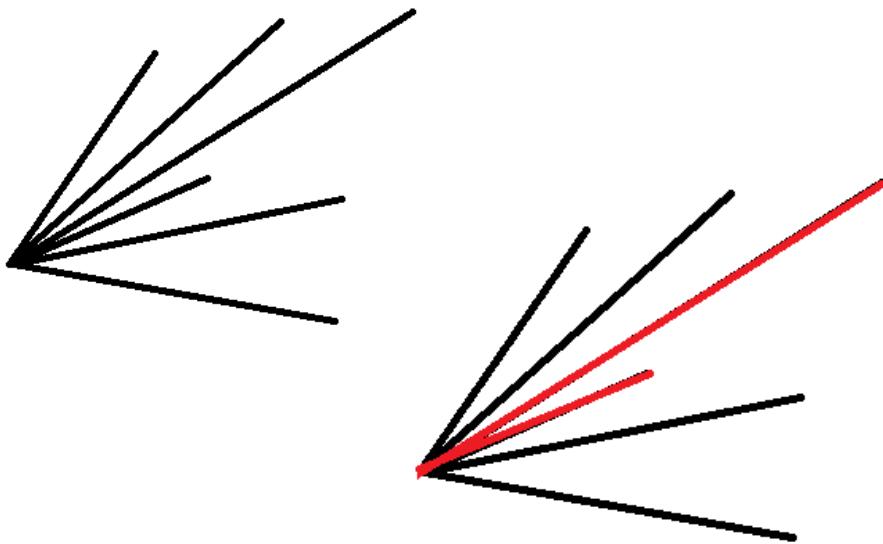
Warped Extra Dimensions, RS (Randall-Sundrum) model [*Phys. Lett. 83 (1999) 3370 and ibid (1999) 4690*].

- Extra dimension has finite size with Planck and SM branes at each end
- Gravity is strong at Planck brane but graviton wave function is exponential suppressed when away from Planck brane.
- Effective Planck scale at TeV brane: k : warp factor

$$\Lambda_\pi = \bar{M}_{Pl} e^{-kr\pi} \quad kr \sim 10 \rightarrow \Lambda_\pi \sim 1 \text{ TeV}$$

r : compactification radius

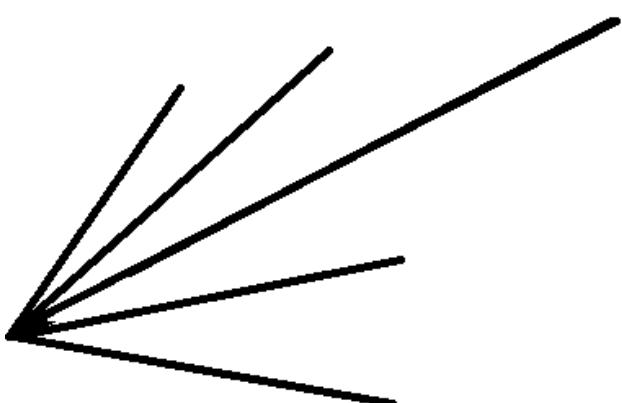
Sequential Recombination Algorithms



- ◆ Find smallest of all d_{ij}

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$$

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$



- ◆ Recombine and Repeat
- ◆ $p=1$ KT Algorithm
- ◆ $p=0$ Cambridge Aachen
- ◆ $p=-1$ Anti KT Algorithm

Generation of KK modes

scalar field Φ in 5D is

$$S = \int d^5x \frac{1}{2} \partial_M \Phi(x^\mu, y) \partial^M \Phi(x^\mu, y).$$

field value is periodic in y coordinates, $\Phi(x^\mu, y + 2\pi R) = \Phi(x^\mu, y)$
 Fourier decomposition of Φ along the y direction:

$$\Phi(x^\mu, y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=-\infty}^{\infty} \phi^{(n)}(x^\mu) e^{i\frac{n}{R}y}.$$

Reality of Φ implies $\phi^{(-n)} = \phi^{(n)\dagger}$. Plugging the Fourier series expansion into the action,

$$\begin{aligned} S &= \int d^4x dy \frac{1}{2\pi R} \sum_{m,n} \left[\frac{1}{2} \partial_\mu \phi^{(m)}(x) e^{i\frac{m}{R}y} \partial^\mu \phi^{(n)}(x) e^{i\frac{n}{R}y} \right. \\ &\quad \left. - \frac{1}{2} \left(i \frac{m}{R} \right) \phi^{(m)}(x) e^{i\frac{m}{R}y} \left(i \frac{n}{R} \right) \phi^{(n)}(x) e^{i\frac{n}{R}y} \right] \\ &= \int d^4x \sum_{m,n} \left(\int dy \frac{1}{2\pi R} e^{i\frac{m+n}{R}y} \right) \frac{1}{2} \left[\partial_\mu \phi^{(m)}(x) \partial^\mu \phi^{(n)}(x) + \frac{mn}{R^2} \phi^{(m)}(x) \phi^{(n)}(x) \right] \\ &= \int d^4x \frac{1}{2} \left[\sum_n \partial_\mu \phi^{(-n)} \partial^\mu \phi^{(n)} - \frac{n^2}{R^2} \phi^{(-n)} \phi^{(n)} \right] \\ &= \int d^4x \left\{ \frac{1}{2} \partial_\mu \phi^{(0)} \partial^\mu \phi^{(0)} + \sum_{n=1}^{\infty} \left[\partial_\mu \phi^{(n)\dagger} \partial^\mu \phi^{(n)} - \frac{n^2}{R^2} \phi^{(n)\dagger} \phi^{(n)} \right] \right\}. \end{aligned}$$

Peskin-Takeuchi parameters S ,T&U.

- vacuum polarization tensors---->

$$\Pi_{\mu\nu}^{\gamma\gamma}(q^2) = -ig_{\mu\nu}q^2 D_{\gamma\gamma}$$

$$\Pi_{\mu\nu}^{\gamma Z}(q^2) = -ig_{\mu\nu}q^2 D_{\gamma Z}$$

$$\Pi_{\mu\nu}^{ZZ}(q^2) = -ig_{\mu\nu}[C_{ZZ} + q^2 D_{ZZ}]$$

$$\Pi_{\mu\nu}^{WW}(q^2) = -ig_{\mu\nu}[C_{WW} + q^2 D_{WW}]$$

- S, T & U in terms of scalars

(vacuum polarization functions: the self-energies).

$$S \equiv \frac{4s_W^2 c_W^2}{\alpha} \left(\frac{\Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0)}{M_Z^2} \right) = \frac{4s_W^2 c_W^2}{\alpha} D_{ZZ}$$

$$T \equiv \frac{1}{\alpha} \left(\frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} \right) = \frac{1}{\alpha} \left(\frac{C_{WW}}{M_W^2} - \frac{C_{ZZ}}{M_Z^2} \right)$$

$$S + U \equiv \frac{4s_W^2}{\alpha} \left(\frac{\Pi_{WW}(M_W^2) - \Pi_{WW}(0)}{M_W^2} \right) = \frac{4s_W^2}{\alpha} D_{WW}$$