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Exotica searches at the LHC
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In such a scenario the Higgs boson has assumed the 
role of a portal to study the possibilities of new 
physics.
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New Physics in dijet resonance searches

4

Benchmark models for dijet resonances

● Flavor universal coloron (quark-antiquark) 

● Excited quark (quark-gluon)

● Color-octet scalar (gluon-gluon)

We will analyze the possibility to distinguish these three types of 
resonances in the mass-coupling parameter space, not excluded 
by LHC-8, and where a 5 sigma discovery can be reached at the 
14 TeV LHC 
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by LHC-8, and where a 5 sigma discovery can be reached at the 
14 TeV LHC 

▪ Dijet resonances: simple and powerful 
probe of many different scenarios of new 
physics at the LHC.

New State Decaying to Dijets:

How can we quickly tell different dijet resonances apart 
using straightforward measurements of the dijet state?
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Figure 3: Sketch of how the number of signal (blue), background (red) and
total observed events (black) could depend on dijet invariant mass (Mjj) if a dijet
resonance is discovered at the LHC. This figure illustrates issues raised in the
discussion of JEP measurements and uncertainties in Section 5.2.

pQCD are shown as the central values of the curves in Fig. 4 – note the
di↵erence between the JEPs arising from q̄q, qg, and gg dijet events.

We estimate the statistical uncertainty on the mean values of the JEPs
for a sample of pure signal events by running pseudo-experiments through
MC simulations. We evaluate the statistical errors in the JEPs at �r = 0.1
steps. Signal sample events are generated with MADGRAPH v.5 [39] and
interfaced with PYTHIA v.6 for shower and hadronization. The jets are
clustered through FASTJET [47] by an anti-kT algorithm with cone size
R = 0.5. JEPs are then obtained by analyzing the jet substructure, according
to the formula in (14). We find, as expected, that the statistical fluctuations
in  , and hence f , follow Gaussian distributions and that the errors scale
as the square root of the number of events. In particular, we find that the
uncertainty in the value of  (r) at r = 0.1 (which yields the largest error)
scales as

(� S(0.1))
2 ⇡ �2(0.1)

S
, (17)

where �(0.1) ⇡ 0.4 and S is the total number of signal events.
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New Physics in dijet resonance searches

Outline

▪ Q. How to Characterize dijet resonances? 
▪ Introduce benchmark models 
▪ Color discriminant variable (Broader resonances) 
▪ Jet Energy Profiles  
▪ Jet Energy Correlators
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New Physics in dijet resonance searches

Constraints from LHC



New Physics in dijet resonance searches

Color Discriminant Variable
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Identifying Dijet Resonances

Suppose a new dijet resonance of mass M and cross-
section         is found. Is it a coloron or a leptophobic Z’?  
Assume its quark couplings are flavor universal to start.

�jj

A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as

�

V
jj ⌘ �(pp

V�! jj) ' �(pp ! V )Br(V ! jj), (10)

where �(pp ! V ) is the cross section for producing the resonance and Br(V ! jj) is its
dijet branching fraction. Note that jet consists of quarks from the first two families.
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where Wq, the parton luminosity for the production of the resonance having mass M from
the qq̄ annihilation at the center-of-mass energy squared s, is defined by
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where fq (x,Q2) is the parton distribution function at the factorization scale Q2. Throughout
this article, we set Q

2 = M

2. The color discriminant variables for the two particles are
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A. Review of the flavor universal scenario

We briefly review how the color discriminant variable helps distinguish between the two
types of resonances in the scenario that we either have clues from experiments or assume
that the resonance have flavor universal couplings.

The color discriminant variable defined in (??) is independent of the overall strength of
couplings and can emphasize the di↵erence in color structures between a coloron and a Z

0.
To illustrate how it works first recall that in a narrow-width approximation the dijet cross
section for a process involving a vector resonance V can be written as
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4

Define a color discriminant variable:

• based on standard observables

• useful whenever width is measurable

• distinguishes color structure of resonance

D
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⌘ M3

�
�jj



log(Dcol) Separates Coloron from Z’

log(Dcol)

M (TeV)FIG. 2: (a) Top left: Sensitivity at the LHC with
p

s = 14 TeV and integrated luminosity of
30 fb�1 for distinguishing a coloron from a leptophobic Z 0 in the plane of the log of the color
discriminant variable

⇣
D

col

= M3

�

�jj

⌘
and mass (in TeV) for the flavor universal scneario. The

central value of D
col

for each particle is shown as a black dashed line. The uncertainty in the
measurement of D

col

due to the uncertainties in the measurement of the cross section, mass and
width of the resonance is indicated by gray bands. The outer (darker gray) band corresponds to
the uncertainty in D

col

when the width is equal to the experimental mass resolution i.e. � = M
res

.
The inner (lighter gray) band corresponds to the case where the width � = 0.15M . Resonances
with width M

res

 �  0.15M will have bands that extend between the outer and inner gray bands.
The blue (green) colored region indicates the region in parameter space of the coloron (leptophobic
Z 0) that has not been excluded by current searches [47] and has the potential to be discovered at a
5� level at the LHC with

p
s = 14 TeV after statistical and systematic uncertainties are taken in

to account. (b) Top right: Same as (a) but for an integrated luminosity of 100 fb�1. (c) Bottom
left: Same as (a) but for an integrated luminosity of 300 fb�1 (d) Bottom right: Same as (a) but
for an integrated luminosity of 1000 fb�1. Note that the colored regions in all panels correspond to
the same colored regions in the mass and coupling plane used in Fig. 1 for di↵erent luminosities.
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New Physics in dijet resonance searches

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both

Jet Substructure
Substructures help background reduction + classification of jets  

Find local subclusters of energy within a jet 

Coming back to the Higgs, consider now a splitting P ! ij. We have m2 ⇡
2pi · pj ⇠ pT,ipT,j�R2

ij = z(1� z)p2T,P�R2
ij. In other words, just from kinematics we can

express the opening angle in terms of the parent mass and pT :

�Rij ⇠ m

pT

1p
z(1� z)

⇠ 2m

pT
. (2.16)

Now consider the kT metric evaluated on this splitting P ! ij:

yij = min(E2
T,i, E

2
T,j)�R2

ij = p2T z
2�R2

ij ⇡
z

1� z
m2. (2.17)

For jets with a fixed mass m, cutting on the splitting scale yij then can separate QCD

jets, which have a soft singularity / 1/z, from boosted Higgses, which have a flat

distribution in z. 1

Moreover, a boosted Higgs will go from a mass mH to massless daughters in one step,

while QCD splittings prefer to shed virtuality gradually. To see this, consider the Su-

dakov form factor, which exponentiates the splitting functions to obtain the probability

of evolving from an initial virtuality t0 to a final virtuality t without branching:

�(t) = exp


�
Z t

t0

dt0

t0
dz

↵s

2⇡
P(z)

�
. (2.18)

Evaluating ↵s = ↵s(t0) and using an IR cut-o↵ to regulate the splitting functions, at

large t, one can work out that [11]

�(t) /
✓
t0
t

◆p

(2.19)

for an exponent p > 0, in other words, �(t) ! 0 for large t. In other words, the

probability of a QCD jet making a large jump in mass at a branching falls o↵ as m�2p.2

We have now identified two ways in which a Higgs boson H decaying perturbatively

to bb̄ will behave very di↵erently from a QCD parton branching: the splitting will be

symmetric, and show a sudden drop in parton mass. The search algorithm for finding a

boosted Higgs looks for a splitting inside the Higgs jet that behaves like a perturbative

decay, and works as follows:

1This is a little quick: not all QCD splitting functions have a soft singularity, and in particular

g ! qq̄ does not. However, Pg!qq̄(z) is not flat in z, and in particular is minimized at the symmetric

value z = 1/2, so cutting on yij can still help suppress this background.
2In fact, taking higher order corrections into account, one finds that the Sudakov form factor goes

to zero even faster than polynomially for large t.
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Step through clustering history to identify a hard splitting 

emitting a gluon, and work in the collinear regime (small R). In this approximation,

we can consider the jet in isolation from the rest of the event, neglecting interference

and splash-in, and we can approximate the QCD splitting functions with the singular

portions. Doing so, the amplitude to radiate an extra parton can be written as

d�n+1 ⇡ d�n dz
dt

t

↵s

2⇡
P(z), (2.9)

where t is the virtuality of the parent P , z = Eq/EP is the fraction of the parent energy

retained by the daughter quark, and the splitting function P(z) for q ! qg is given by

P(z) = CF
1 + z2

1� z
. (2.10)

The parent virtuality t is of course the jet mass-squared. In the collinear limit,

t = E2
P z(1� z)✓2 = (pT,P cosh ⌘)2z(1� z)✓2. (2.11)

Integrating over rapidity, we can approximate the average jet mass-squared as:

hm2i ⇡ p2T,P

Z R2

0

d✓2

✓2

Z
dz z(1� z)✓2

↵s

2⇡
P(z). (2.12)

Note the limits on the ✓ integral: this is where the choice of jet algorithm enters. As

established above, for all sequential jet algorithms, only radiation at angles smaller than

R will be clustered into the jet. Strictly, we should use a running ↵s evaluated at a scale

set by the relative transverse momentum of the splitting, but to get a quick estimate,

let’s perform the integral in the approximation that ↵s is constant. We then obtain

hm2i ⇡ ↵s

⇡

3

8
CF p2TR

2. (2.13)

The jet mass scales like pT , as it had to, and is suppressed by (↵s/⇡)1/2. To this order

the mass increases linearly with R. The exact value of the numerical coe�cient will in

general depend on the quark versus gluon content of the jet sample. For instance, the

major QCD background for a doubly b-tagged boosted Higgs comes from the splittings

g ! bb̄, where the splitting function is

P(z) = CA(z
2 + (1� z)2), (2.14)

giving, in the constant-↵s approximation,

hm2i ⇡ ↵s

⇡

1

20
CA p2TR

2. (2.15)
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New Physics in dijet resonance searches

▪Jets: Highly collimated objects that contain most of 
the energy of the hard process. 
▪Have measurable macroscopic properties (jet 

shapes): Mass, Transverse momentum, R, rapidity … 
▪These provide information about the nature of the 

hard process 
▪Jet substructure: infrared safe jet observables that 

can tell us more about the hard parton

Jet substructure to probe resonance properties
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dσ( → Y + + X) = dσ( → Y + X)

∫
dp2⊥
p2⊥

dz
z

αs

2π

f( xa
z , t)

fa(xa, t)
P(z)

P(z)

Pqq = CF
1+z2

1−z
Pgg = CA

(1−z(1−z))2

z(1−z)
Pqg = TR

[

z2 + (1− z)2
]

→ Y + X

Radiation cascade
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hm2i ⇡ p2T,P

Z R2

0

d✓2

✓2

Z
dz z(1� z)✓2

↵s

2⇡
P(z). (2.12)

Note the limits on the ✓ integral: this is where the choice of jet algorithm enters. As

established above, for all sequential jet algorithms, only radiation at angles smaller than

R will be clustered into the jet. Strictly, we should use a running ↵s evaluated at a scale

set by the relative transverse momentum of the splitting, but to get a quick estimate,

let’s perform the integral in the approximation that ↵s is constant. We then obtain

hm2i ⇡ ↵s

⇡

3

8
CF p2TR

2. (2.13)

The jet mass scales like pT , as it had to, and is suppressed by (↵s/⇡)1/2. To this order

the mass increases linearly with R. The exact value of the numerical coe�cient will in

general depend on the quark versus gluon content of the jet sample. For instance, the

major QCD background for a doubly b-tagged boosted Higgs comes from the splittings

g ! bb̄, where the splitting function is

P(z) = CA(z
2 + (1� z)2), (2.14)

giving, in the constant-↵s approximation,

hm2i ⇡ ↵s

⇡

1

20
CA p2TR

2. (2.15)
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Coming back to the Higgs, consider now a splitting P ! ij. We have m2 ⇡
2pi · pj ⇠ pT,ipT,j�R2

ij = z(1� z)p2T,P�R2
ij. In other words, just from kinematics we can

express the opening angle in terms of the parent mass and pT :

�Rij ⇠ m

pT

1p
z(1� z)

⇠ 2m

pT
. (2.16)

Now consider the kT metric evaluated on this splitting P ! ij:

yij = min(E2
T,i, E

2
T,j)�R2

ij = p2T z
2�R2

ij ⇡
z

1� z
m2. (2.17)

For jets with a fixed mass m, cutting on the splitting scale yij then can separate QCD

jets, which have a soft singularity / 1/z, from boosted Higgses, which have a flat

distribution in z. 1

Moreover, a boosted Higgs will go from a mass mH to massless daughters in one step,

while QCD splittings prefer to shed virtuality gradually. To see this, consider the Su-

dakov form factor, which exponentiates the splitting functions to obtain the probability

of evolving from an initial virtuality t0 to a final virtuality t without branching:

�(t) = exp


�
Z t

t0

dt0

t0
dz

↵s

2⇡
P(z)

�
. (2.18)

Evaluating ↵s = ↵s(t0) and using an IR cut-o↵ to regulate the splitting functions, at

large t, one can work out that [11]

�(t) /
✓
t0
t

◆p

(2.19)

for an exponent p > 0, in other words, �(t) ! 0 for large t. In other words, the

probability of a QCD jet making a large jump in mass at a branching falls o↵ as m�2p.2

We have now identified two ways in which a Higgs boson H decaying perturbatively

to bb̄ will behave very di↵erently from a QCD parton branching: the splitting will be

symmetric, and show a sudden drop in parton mass. The search algorithm for finding a

boosted Higgs looks for a splitting inside the Higgs jet that behaves like a perturbative

decay, and works as follows:

1This is a little quick: not all QCD splitting functions have a soft singularity, and in particular

g ! qq̄ does not. However, Pg!qq̄(z) is not flat in z, and in particular is minimized at the symmetric

value z = 1/2, so cutting on yij can still help suppress this background.
2In fact, taking higher order corrections into account, one finds that the Sudakov form factor goes

to zero even faster than polynomially for large t.

11

Emission probability  
from the Sudakov factor.

Since CF(=4/3) < CA(=3),  
gluon jets radiate more  
and at wider angles.
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 Jet Energy Profile

Gluon-jets irradiate more, slowly rising JEP
Quark-jets irradiate less, fast rising JEP
 

H. Li, Z. Li, C.-P. Yuan 
PRD 87 (2013) 074025

Average fraction of jet pT lying within a
sub-cone of radius r

Quarks C
F
=4/3     Gluons: C

A
=3



19

Dijet energy profile 

Similar technique recently applied to distinguish Higgs production mechanisms 
[Rentala et al. PRD88 (2013) 7, 073007] and Dark matter interactions [Agrawal, 
Rentala, JHEP 1405 (2014) 098]

We will use the difference in the 
quark/gluon JEP
to distinguish the partonic 
composition of a dijet resonance
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Figure 4: Di-jet energy profiles for q̄q (coloron), qg (excited quark) and gg (scalar
octet) 4 TeV di-jet resonances (the respective resonance couplings are fixed to
tan ✓ = 0.6, fS = 0.4, and kS = 0.65). Each band shows a ±1� statistical variation
from the mean curve. The e↵ect of background subtraction, eq. (21), is included.

where we have neglected terms suppressed by S/B. The first term in eq. (21)
represents the “dilution” in the measurement of  S due to QCD background,
relative to the sample-only error of eq. (17), and the second term is due to
the uncertainty in the number of signal events. From Fig. 4, we see that the
di↵erence in JEPs (which is maximal for the di↵erence between pure qq and
gg states at r = 0.1) is bounded from above by about 0.5; in the regions in
which the di-jet resonance can be observed, the second term in eq. (21) is
negligible. Fig. 4 shows the resulting di-jet energy profiles, with uncertainty
bands including the e↵ect of the background subtraction, for the q̄q (coloron),
qg (excited quark) and gg (scalar octet) 4 TeV di-jet resonance.

We can translate the statistical error on  (r)S into a statistical uncer-
tainty on the f parameter 8. Results predicted for the 14 TeV LHC with 100
fb�1 of data are shown in Table 1 for 4 TeV di-jet resonances.

8This is obtained via the following procedure. Using a step size �r = 0.1, we gener-
ate a large number of  (r) values according to the Gaussian fluctuations which we have
calculated by running pseudo-experiments. The generated  (r) points are fitted by the
function (1 � be�ar)/(1 � be�aR) and the resulting profiles are translated into f values
according to eq. (16). We thus obtain the statistical fluctuation on f and we are able to
calculate the corresponding standard deviation.
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Light Dijet resonances

Resonance Interaction J SU(3)C |Qe| Dominant decay

Leptophobic Z’ gB
6 q̄�µqZ 0

µ 1 0 0 q̄q
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Q. Can we use color, transverse momentum and production/decay mechanism to 
distinguish resonances ?
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Experimental constraints in the Mass-coupling plane

New Physics in dijet resonance searches

Increasing collider energy reduces 
sensitivity to low mass because 
backgrounds are large. 

What new strategies can be used to 
probe this region at LHC?

12

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

MZ'B
(GeV)

g
B

UA2

CDF Run I

CDF 1.1 fb!1

CMS
0.13 fb!1

ATLAS 1 fb!1

CMS
4 fb!1

CMS 5 fb!1

CMS 20 fb!1

ATLAS
13 fb!1

FIG. 1. Leading experimental limits in the coupling gB versus mass MZ′

B
plane for Z ′

B resonances. Values of gB

above each line are excluded at the 95% C.L.

note that an update of the “scouted data” anal-

ysis [23] with more luminosity by CMS (and AT-

LAS) would also push sensitivity to lower cou-

plings in the several hundred GeV mass range.

The plot is not extended above gB = 2.5,

because the U(1)B coupling constant is already

large, αB = g2B/(4π) ≈ 0.5, so that it is diffi-

cult to avoid a Landau pole. For that large cou-

pling, the current mass reach is around 2.8 TeV.

The 14 TeV LHC will extend significantly the

mass reach, and can probe smaller couplings once

enough data is analyzed. Note that couplings of

gB ≈ 0.1 can be viewed as typical (the analogous

coupling of the photon is approximately 0.3), and

even gB as small as 0.01 would not be very sur-

prising.

We also present the coupling–mass mapping

for colorons in Figure 2. For clarity, we only

show the envelope of the strongest tan θ upper

limits from all available analyses at each coloron

mass. This mapping is performed again using

leading order production. The NLO corrections

to coloron production have been computed re-

cently [48], and can vary between roughly −30%

and +20%. We do not take the NLO corrections

into account as we do not have an event gen-

erator that includes them; furthermore, there is

some model dependence in the NLO corrections
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• Limits were placed on the coupling of a hypothetical leptophobic 
resonance decaying to quarks 

• Provides the most stringent limits to date between 500 and 800 GeV

299 coupling gB of a hypothetical leptophobic resonance Z0
B →

300 qq̄ as a function of its mass. The Z0
B production cross

301 section scales with the square of the coupling gB. Figure 4
302 shows the upper limits obtained with the data scouting
303 technique in the mass region from 500 to 1200 GeV,
304 extending the coverage of previous CMS searches to below
305 1200 GeV. Previous exclusions obtained with similar
306 searches at various collider energies are also shown. As
307 a result of the large data set collected by the data scouting
308 stream, the bound on gB is improved by up to a factor of 3
309 for resonance masses between 500 and 800 GeV, compared
310 to previous searches. This corresponds to an order-of-
311 magnitude improvement in the cross section limit.
312 In summary, a search for narrow resonances decaying
313 into two jets was performed using data from proton-proton
314 collisions recorded by the CMS experiment at
315

ffiffiffi
s

p
¼ 8 TeV, corresponding to an integrated luminosity

316 of 18.8 fb−1. The novel technique of data scouting was
317 used; by reducing the information stored per event, multijet
318 events could be collected in sufficiently large samples that a
319 sensitive search for dijet resonances down to masses as low
320 as 500 GeV was possible. No evidence for a narrow
321 resonance is found. Model-independent upper limits on
322 production cross sections are derived for quark-quark,
323 quark-gluon, and gluon-gluon resonances. Based on these
324 results, new limits are set on an extensive selection of
325 narrow s-channel resonances over mass ranges not
326 excluded by previous searches at hadron colliders.
327 Bounds on the coupling of a hypothetical leptophobic
328 resonance decaying to quark-antiquark are also provided,
329 as a function of the resonance mass. The limits obtained
330 are the most stringent to date in the dijet final state for
331 narrow resonance masses between about 500 and 800 GeV.
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Strategy 2: Check for production of resonance in 
association with another SM particle

2 3 Event reconstruction, simulation and selection

QCD scaling sideband method where the events failing the mass and substructure require-
ments are used to predict the jet mass distribution from QCD in the signal region. Standard
model (SM) candles from the W and Z inclusive processes, also produced in association with
a high transverse momentum ISR jet, have a very similar topology to the Z’ signal. They are
used to validate the analysis method as a signal proxy and further constrain systematic effects
related to a potential signal. Section 5 describes the systematic uncertainties for the background
and signal contributions. This includes a validation of the Z’ tagging techniques using merged
jets from W bosons in tt̄ events. Finally, in Section 6, limits are set in the gB coupling-mass
plane in the 100-300 GeV mass range.

Z �

q

q̄

g

q̄

q

1

Figure 1: An example Feynman diagram of a Z0 ! qq̄ resonance production with an initial-
state radiation gluon.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity [38] coverage provided by the
barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and the relevant kinematic variables,
can be found in Ref. [38].

3 Event reconstruction, simulation and selection

This study uses proton-proton collision events from the 2015 Run 2 dataset corresponding to
2.7 fb�1 at

p
s = 13 TeV. Events are selected using a two-tier trigger system. Events satisfying

loose jet requirements at the first level (L1) are examined by the high-level trigger (HLT). We use
a logical ”OR” of the following HLT trigger requirements which make a selection on the total
hadronic transverse energy in the event (HT) and, in some cases, in conjunction with a selection
on the mass of the jet after cleaning it of soft radiation with the jet trimming technique [39]
(mtrimmed):

1.
P

HT > 900 GeV

2. Rfat-jet
anti-kt = 0.8

3. pfat-jetT > 500 GeV



▪ Given a signal we would like to classify the resonance
▪ Apart from direct spin measurements, radiation patterns provide a valuable clue
▪ Color octets, sextets, singlets can be identified by how they radiate as well as how 

their decay products radiate (quark vs gluon).
▪ Jet Energy Correlators (JEC) can provide an efficient handle.

New Physics in dijet resonance searches

Identifying light dĳet resonances
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Jet Energy Correlators: Part-I

only gives sensible values for systems that have zero total momentum and for events that are

nearly dijet-like. In contrast, our generalized energy correlation functions give sensible results

in any Lorentz frame and can be used to identify any number of jets in an event (or subjets

within a jet). In addition, they can be defined in any number of spacetime dimensions.

The remainder of the paper is organized as follows. In Sec. 2, we introduce arbitrary-

point energy correlation functions and define appropriate energy correlation double ratios

C
(�)

N

(built from the (N + 1)-point correlator), which can be used to identify a system with

N (sub)jets. We also contrast the behavior of C
(�)

N

with N -subjettiness ratios. We then

present three case studies to show how these generalized energy correlation functions work

for di↵erent types of jet discrimination.

• Quark/gluon discrimination. Using C
(�)

1

(built from the 2-point correlator) in Sec. 3,

we perform both an analytic study and a Monte Carlo study of quark/gluon separation.

Through a next-to-leading logarithmic study, we explain why quark/gluon discrimi-

nation greatly improves as the angular exponent approaches zero (at least down to

� ' 0.2), highlighting the importance of working with recoil-free observables.

• Boosted W/Z/Higgs identification. Using C
(�)

2

(built from the 3-point correlator) in

Sec. 4, we will see that the discrimination power between QCD jets and jets with

two intrinsic subjets from a colour-singlet decay depends strongly on the ratio of the

jet mass to its transverse momentum. This occurs because a QCD jet obtains mass

in di↵erent ways depending on this ratio. In particular, we will see that the energy

correlation function performs better than N -subjettiness in situations where the jet

mass is dominated by soft wide-angle emissions.

• Boosted top quark identification. Using C
(�)

3

(built from the 4-point correlator) in Sec. 5,

we find comparable discrimination power to other top-tagging methods. While one

might worry that the 4-point correlators would face a high computational cost, we find

that a boosted top event can be analyzed for a single value of � in a few milliseconds.

We conclude in Sec. 6 with an experimental and theoretical outlook. The energy correlation

functions are available as an add-on to FastJet 3 [63] as part of the FastJet contrib project

(http://fastjet.hepforge.org/contrib/).

2 Generalized Energy Correlation Functions

The basis for our analysis is the N -point energy correlation function (ECF)

ECF(N,�) =
X

i1<i2<...<iN2J

 

N

Y

a=1

E
ia

! 

N�1

Y

b=1
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Y

c=b+1

✓
ibic

!

�

. (2.1)

Here, the sum runs over all particles within the system J (either a jet or the whole event).

Each term consists of N energies multiplied together with
�

N

2

�

pairwise angles raised to the

– 3 –

angular exponent �. This function is well-defined in any number of space-time dimensions

as well as for systems that do not have zero total momentum. Note that it is infrared and

collinear (IRC) safe for all � > 0. Moreover, ECF(N,�) goes to zero in all possible soft and

collinear limits of N partons.

As written, Eq. (2.1) is most appropriate for e+e� colliders where energies and angles

are the usual experimental observables. For hadron colliders, it is more natural to define

ECF(N,�) as a transverse momentum correlation function:3
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If a jet has fewer than N constituents then ECF(N,�) = 0. Note that the computational

cost for ECF(N,�) with k particles scales like kN/N !.

From the ECF(N,�), we would like to define a dimensionless observable that can be

used to determine if a system has N subjets. The key observation is that the (N + 1)-

point correlators go to zero if there are only N particles. More generally, if a system has N

subjets, then ECF(N + 1,�) should be significantly smaller than ECF(N,�). One potentially

interesting ratio is

r
(�)

N

⌘ ECF(N + 1,�)

ECF(N,�)
, (2.8)

which behaves much like N -subjettiness ⌧
N

in that for a system of N partons plus soft

radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is but

one choice for an interesting combination of the energy correlation functions, and one can

imagine using the whole set of energy correlation functions in a multivariate analysis.

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
4Unlike N -subjettiness, this ratio scales like �1�N� under transverse Lorentz boosts �, which is somewhat

undesirable when considering systems with several subjets.
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Jet Energy Correlators: Part-II

First, define the ratio
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radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is but

one choice for an interesting combination of the energy correlation functions, and one can

imagine using the whole set of energy correlation functions in a multivariate analysis.

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
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Finally, define the dimensionless double ratio : 
In this paper, we will work exclusively with the energy correlation double ratio

C
(�)

N

⌘ r
(�)

N

r
(�)

N�1

=
ECF(N + 1,�) ECF(N � 1,�)

ECF(N,�)2
, (2.9)

which is dimensionless.5 One way to motivate this observable is that we already know that

N -subjettiness ratios ⌧
N

/⌧
N�1

are good probes of N -prong substructure [49, 50]. As we will

see, the notation “C” is motivated by the fact that this variable generalizes the C-parameter

[61, 62]. One should keep in mind that C
(�)

N

involves (N + 1)-point correlators, and when

clear from context, we will drop the (�) superscript.

The energy correlation double ratio C
N

e↵ectively measures higher-order radiation from

leading order (LO) substructure. For a system with N subjets, the LO substructure consists

of N hard prongs, so if C
N

is small, then the higher-order radiation must be soft or collinear

with respect to the LO structure. If C
N

is large, then the higher-order radiation is not

strongly-ordered with respect to the LO structure, so the system has more than N subjets.

Thus, if C
N

is small and C
N�1

is large, then we can say that a system has N subjets. In

this way, the energy correlation double ratio C
N

behaves like N -subjettiness ratios ⌧
N

/⌧
N�1

,

with key advantages to be discussed in Sec. 2.2.

2.1 Relationship to Previous Observables

While the definition of the energy correlation double ratio C
N

is new, it is related to previous

observables for e+e� and hadron colliders that have been studied in great detail.

An energy-energy correlation (EEC) function for e+e� events was introduced in Ref. [54]

for its particularly nice factorization and resummation properties. It is defined as

EEC
a

=
1

E2

tot

X

i 6=j

E
i

E
j

| sin ✓
ij

|a(1� | cos ✓
ij

|)1�a ⇥[(~q
i

· ~n
T

)(~q
j

· ~n
T

)] , (2.10)

where the sum runs over all particles in the event and ~n
T

is the direction of the thrust

axis. This variable is IRC safe for all a < 2. The ⇥-function is only non-zero if the pair

of particles is in the same hemisphere. This removes the large correlation of the two initial

hard partons which would otherwise dominate the sum, and means that EEC
a

behaves much

like the jet angularities [9, 51] with the same angular exponent a. The EEC was introduced

because it is insensitive to recoil e↵ects and has smooth behavior for all allowed values of

a. In particular, EEC
a

has a smooth transition through a = 1, whereas angularities exhibit

non-smooth behavior and also are increasingly sensitive to recoil e↵ects as the angular power

a increases. If one considers only one hemisphere of a dijet event, then EEC
a

is approximately

the same as C
(�)

1

in our notation with � = 2 � a. Both observables are sensitive to 1-prong

(sub)structure, and we will discuss the issue of recoil further in Sec. 2.2.

A related two-particle angular correlation function was introduced in Refs. [21, 55, 64]

for discrimination of jets initiated by QCD from jets from boosted heavy particle decays. The

5This double ratio scales as ��� under transverse Lorentz boosts.
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Jet Energy Correlators : LL Quark Gluon Discrimination

In any discussion of quark–gluon discrimination, one should start with a reminder that

defining what is meant by a quark or a gluon jet is a subtle task, since the one existing

infrared-safe way of defining quark and gluon jets [76] works only at parton level. Existing

work on practical aspects of quark–gluon discrimination in Refs. [39, 73, 75, 77, 78] has

not entered into these issues. Instead the discussion has relied on Monte Carlo simulations,

defining a quark (gluon) jet to be whatever results from the showering of a quark (gluon)

parton. We will adopt a variant of this methodology in our Monte Carlo studies. Our analytic

approach will instead define a quark or gluon jet in terms of the sum of the flavors of the

partons contained inside it. It is based on resummation and therefore contains similar physics

to the Monte Carlo parton shower.

3.1 Leading Logarithmic Analysis

We begin our analysis by considering the leading logarithmic (LL) structure of the cross

section for the observable C
1

. With L equal to the logarithm of C
1

, we define LL order as

including all terms in the cross section that scale like ↵n

s

L2n, for n � 1. At LL order, quark

versus gluon jet discrimination can be understood as a consequence of quarks and gluons

having di↵erent color charges. To LL order, the strong coupling constant ↵
s

can be taken

fixed and only the most singular term in the splitting function need be retained. With only

one soft-collinear gluon emission, the normalized di↵erential cross section for any infrared and

collinear safe observable e has the same form for both quark and gluon jets:

1

�

d�

de
= 2

↵
s

⇡
C

Z

R0

0

d✓

✓

Z

1

0

dz

z
�(e� ê) , (3.1)

where C is the color factor, R
0

is the jet radius,13 z is the energy fraction of the emitted

gluon, ✓ is its splitting angle, and ê is a function of z and ✓. Recall that C
F

= 4/3 for quarks

and C
A

= 3 for gluons.

At this order, the observable C
(�)

1

is

Ĉ
(�)

1

= z(1� z)✓� , (3.2)

which takes a maximum value of 1

4

R�

0

. So integrating Eq. (3.1) yields, for small C(�)

1

, the

cross section
1

�

d�

dC
(�)

1

=
2↵

s

⇡

C

�

1

C
(�)

1

ln
R�

0

C
(�)

1

. (3.3)

We identify the logarithm L as

L ⌘ ln
R�

0

C
(�)

1

, (3.4)

which we use in the following expressions for compactness. This distribution can be resummed

to LL order by exponentiating the cumulative C
(�)

1

distribution. The resummed distribution

13We use this somewhat non-standard notation because R will later be used with a di↵erent meaning.
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Dominated by the splitting angle and energy of the softer particle  

Resummed distribution

that follows is then
1

�

d�LL

dC
(�)

1

=
2↵

s

⇡

C

�

L

C
(�)

1

e
�↵s

⇡
C
� L

2

. (3.5)

Because the quark color factor is smaller than the gluon color factor, the Sudakov suppression

is less for quarks. Thus, the C
(�)

1

distribution for quark jets is peaked at smaller values than

for gluon jets.

To figure out the quark/gluon discrimination power from this C(�)

1

resummed distribution,

we will make a sliding cut on C
(�)

1

and count the number of events that lie to the left of the cut.

Adjusting this cut then defines a ROC curve relating the signal (quark) jet e�ciency to the

background (gluon) jet rejection. To LL accuracy, the (normalized) cumulative distributions

for quarks and gluons are:

⌃
q

(C(�)

1

) = e
�↵s

⇡
CF
� L

2

, ⌃
g

(C(�)

1

) = e
�↵s

⇡
CA
� L

2

. (3.6)

Note that at LL order, there is a simple relationship between these cumulative distributions:

⌃
g

(C(�)

1

) =
⇣

⌃
q

(C(�)

1

)
⌘

CA/CF

. (3.7)

Thus, if a sliding cut on C
(�)

1

retains a fraction x of the quarks, it will retain a fraction xCA/CF

of the gluons. The quark/gluon discrimination curve is then

disc(x) = xCA/CF = x9/4, (3.8)

which (perhaps surprisingly) is independent of �. This LL discrimination result holds for a

wide class of IRC safe observables sensitive to the overall jet color factor, including the jet

mass. Only beyond LL order does the discrimination curve depend on �.

3.2 Next-to-Leading Logarithmic Analysis

We continue our analysis to next-to-leading logarithmic (NLL) order, which we define as in-

cluding all terms that scale as ↵n

s

Ln+1 and ↵n

s

Ln in ln⌃. In addition, we will also include the

non-logarithmically enhanced term arising at O(↵
s

). At NLL order, there are several new

e↵ects that must be included, which together turn out to improve the quark/gluon discrim-

ination power of C(�)

1

compared to the LL estimate. The dominant e↵ects are subleading

terms in the splitting functions and phase space restrictions due to multiple emissions. In

addition, one must account for the running of ↵
s

, fixed-order corrections, and non-global log-

arithms [79] arising from the phase space cut of the jet algorithm. We will consider how these

a↵ect the discrimination power of C(�)

1

, ultimately showing that small values of � improve

quark/gluon discrimination. We will work in an approximation of small jet radius, R
0

⌧ 1,

which will allow us to consider only the e↵ects of radiation from the jet, while neglecting

modifications associated with the full antenna structure of initial and final-state partons.

The resummation to NLL for generic (global) observables was carried out in Ref. [54].

The central result of that analysis was an expression for the NLL cumulative distribution
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background (gluon) jet rejection. To LL accuracy, the (normalized) cumulative distributions

for quarks and gluons are:

⌃
q

(C(�)

1

) = e
�↵s

⇡
CF
� L

2

, ⌃
g

(C(�)

1

) = e
�↵s

⇡
CA
� L

2

. (3.6)

Note that at LL order, there is a simple relationship between these cumulative distributions:

⌃
g

(C(�)

1

) =
⇣

⌃
q

(C(�)

1

)
⌘

CA/CF

. (3.7)

Thus, if a sliding cut on C
(�)

1

retains a fraction x of the quarks, it will retain a fraction xCA/CF

of the gluons. The quark/gluon discrimination curve is then

disc(x) = xCA/CF = x9/4, (3.8)

which (perhaps surprisingly) is independent of �. This LL discrimination result holds for a

wide class of IRC safe observables sensitive to the overall jet color factor, including the jet

mass. Only beyond LL order does the discrimination curve depend on �.

3.2 Next-to-Leading Logarithmic Analysis

We continue our analysis to next-to-leading logarithmic (NLL) order, which we define as in-

cluding all terms that scale as ↵n

s

Ln+1 and ↵n

s

Ln in ln⌃. In addition, we will also include the

non-logarithmically enhanced term arising at O(↵
s

). At NLL order, there are several new

e↵ects that must be included, which together turn out to improve the quark/gluon discrim-

ination power of C(�)

1

compared to the LL estimate. The dominant e↵ects are subleading

terms in the splitting functions and phase space restrictions due to multiple emissions. In

addition, one must account for the running of ↵
s

, fixed-order corrections, and non-global log-

arithms [79] arising from the phase space cut of the jet algorithm. We will consider how these

a↵ect the discrimination power of C(�)

1

, ultimately showing that small values of � improve

quark/gluon discrimination. We will work in an approximation of small jet radius, R
0

⌧ 1,

which will allow us to consider only the e↵ects of radiation from the jet, while neglecting

modifications associated with the full antenna structure of initial and final-state partons.

The resummation to NLL for generic (global) observables was carried out in Ref. [54].

The central result of that analysis was an expression for the NLL cumulative distribution
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Figure 3: Left: Distribution of C(0.2)

1

for quark jets (purple) and gluon jets (orange) using

Pythia dijet samples. The sample consists of anti-k
T

jets with radius R = 0.6 and transverse

momentum in the range [400, 500] GeV. Right: Quark versus gluon discrimination curves

using C
(�)

1

for several values of � in Pythia. Also plotted is the leading log approximation

for the discrimination curve, Eq. (3.8).
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Figure 4: Gluon rejection rates at 50% quark e�ciency in Pythia, as a function of �.

Left: fixing the p
T

range to be [400, 500] GeV and sweeping the value of R
0

. Right: fixing

R
0

= 0.6 and sweeping the p
T

range. For all of these cases, small values of � yield the best

discrimination.

of R
0

= 0.4, 0.6, and 0.8. Because our broad conclusions hold for all samples generated, we

only show representative plots to illustrate the quark/gluon performance of C
1

.

In Fig. 3a, we plot the distribution of C(0.2)

1

for jets initiated by quarks and gluons with
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New Physics in dijet resonance searches
Sensitivity to wide angle emission

E1
E2

(a)

E1

E3

E2

(b)

Figure 1: Example kinematics with soft wide-angle radiation. Left: recoil of the jet axis

(dashed) away from the hard jet core (E
1

) due to soft wide-angle radiation (E
2

), which

is relevant for small values of �. Right: a three-particle configuration that highlights the

di↵erence between C
2

and ⌧
2,1

.

the subjet directions. While novel, this by itself does not necessarily imply that C
N

will have

better discrimination power than ⌧
N,N�1

, though it does mean that C
N

is a simpler vari-

able to study.8 We now explain two test cases where C
N

can perform better than ⌧
N,N�1

:

insensitivity to recoil for C
1

and sensitivity to soft wide-angle emissions for C
2

.

2.2.1 Insensitivity to Recoil

A recoil-sensitive observable is one for which soft emissions have an indirect e↵ect on the

observable. In addition to the direct contribution to the observable, soft radiation in a recoil-

sensitive observable changes the collinear contribution by an O(1) amount. An example of

a recoil-sensitive observable is angularities for the angular exponent a � 1 (�  1), which

was studied in Ref. [54]. Because C
N

is insensitive to recoils, it is better able to resolve the

collinear singularity of QCD.

For 1-prong jets, the e↵ect of recoil on an observable is illustrated in Fig. 1a. Because

of conservation of momentum, soft wide-angle radiation displaces the hard jet core from the

jet axis. Angularities (i.e. 1-subjettiness) are sensitive to this displacement since they are

measured with respect to the jet center. For a jet with two constituents separated by an

angle ✓
12

(using the notation in Eq. (2.1) for simplicity),

⌧
(�)

1

=
E

2

E�

1

(E
1

+ E
2

)�
(✓

12

)� +
E

1

E�

2

(E
1

+ E
2

)�
(✓

12

)� . (2.18)

8In particular, � serves two di↵erent roles for N -subjettiness. As in C(�)
N , � controls the weight given

to collinear or wide-angle emissions. In addition, when the minimization procedure is used, � controls the

location of the axes which minimize N -subjettiness. When trying to determine the optimal value for � for

subjet discrimination, it is di�cult to disentangle these two e↵ects.
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2.2.2 Sensitivity to Soft Wide-Angle Emissions

Another point of contrast between C
N

and ⌧
N,N�1

is in how the two variables behave in the

presence of emissions at multiple angular scales. The way N -subjettiness is defined, every jet

is partitioned into N subjets, even if there are fewer than N “real” subjets. For example,

when a jet has a soft subjet separated at large angle (as one might expect from the radiation

o↵ a quark or gluon), N -subjettiness will still identify that soft subjet region, yielding a

relatively low value of ⌧
N,N�1

(and therefore making the jet look more N -prong-like than

it really is). In contrast, because the energy correlation function is sensitive to all possible

soft and collinear singularities, C
N

takes on a relatively high value in the presence of a soft

wide-angle subjet, making the jet look less N -prong like (as desired).

We can show this concretely for C
2

using the configuration in Fig. 1b where there is the

following hierarchy of the energies and angles:10

E
1

� E
2

, E
3

, ✓
13

⌧ ✓
12

' ✓
23

. (2.23)

Again using the notation in Eq. (2.1), the energy correlation functions are

ECF(1,�) ' E
1

, ECF(2,�) ' E
1

max
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

,

ECF(3,�) = E
1

E
2

E
3

(✓
12

✓
23

✓
13

)� , (2.24)

yielding

C
(�)

2

=
ECF(3,�)ECF(1,�)

ECF(2,�)2
' E

2

E
3

(✓
12

)2� (✓
13

)�

max
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

2

. (2.25)

For N -subjettiness with three jet constituents, it is consistent to choose axes that lie along

the hardest particle in a subjet. For 1-subjettiness, the axis lies along particle 1. For 2-

subjettiness, one axis lies along particle 1 and the other axis lies along particle 2 or particle

3, depending on the relationship between E
3

✓
13

and E
2

✓
12

. This gives

⌧
(�)

1

' max
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

, ⌧
(�)

2

' min
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

) ⌧
(�)

2,1

=
min

⇥

E
2

(✓
12

)� , E
3

(✓
13

)�
⇤

max [E
2

(✓
12

)� , E
3

(✓
13

)� ]
. (2.26)

Regardless of the ordering of E
3

✓
13

and E
2

✓
12

we see that:

C
(�)

2

' ⌧
(�)

2,1

⇥ (✓
12

)� , (2.27)

so in the presence of a soft subjet at large angle ✓
12

, C
2

yields a larger value than ⌧
2,1

(i.e. more

background-like as desired). As we will see in Sec. 4, this allows C
2

to perform better than

⌧
2,1

for background rejection in regions of phase space where soft wide-angle radiation plays

an important role.

10 Roughly the same conclusions about C2 versus ⌧2,1 hold for the limit E1 ' E2 � E3 as well, which is

relevant for the Z boson discussion below.
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and E
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Regardless of the ordering of E
3

✓
13

and E
2

✓
12

we see that:

C
(�)

2

' ⌧
(�)

2,1

⇥ (✓
12

)� , (2.27)

so in the presence of a soft subjet at large angle ✓
12

, C
2

yields a larger value than ⌧
2,1

(i.e. more

background-like as desired). As we will see in Sec. 4, this allows C
2

to perform better than

⌧
2,1

for background rejection in regions of phase space where soft wide-angle radiation plays

an important role.

10 Roughly the same conclusions about C2 versus ⌧2,1 hold for the limit E1 ' E2 � E3 as well, which is

relevant for the Z boson discussion below.
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Higher-point energy correlation functions have been studied very little in the literature.

Two early studies for e+e� collisions are in Refs. [62, 65]. However, both define observables

that only make sense for systems with total momentum equal to zero and explicitly use oper-

ations only defined in three-dimensional space, such as cross-products and the properties of

momentum tensors with rank greater than 2. Thus, these observables cannot be easily gen-

eralized to determine if a (boosted) system has N (sub)jets. Historically, observables like the

D-parameter [61, 62, 66] have been used to identify peculiar phase space configurations such

as a planar configuration of particles. However, this is not directly related to the number of

jets in the event. Recent substructure variables like planar flow [7, 9], Zernike coe�cients [52],

and Fox-Wolfram moments [53] are similarly sensitive to peculiar phase space configurations

rather than prong-like substructure. Planar flow, for example, vanishes if the constituents of

the jet lie along a line, which is a good probe for some (but not all) 3-prong configurations.

The energy correlation double ratio C
N

is designed to directly probe N -prong configurations,

though the high computational cost of ECF(N + 1,�) likely limits the practical range to

N  3 (i.e. up to three-prongs).

2.2 Advantages Compared to N-subjettiness

The variable N -subjettiness [49, 50] (based on N -jettiness [67]) is a jet observable that can

be used to test whether a jet has N subjets, and it has been used in a number of theoretical

[14, 20, 68–72] and experimental [27, 31] substructure studies. Since both N -subjettiness and

the energy correlation double ratio C
N

share the same motivation, it is worth highlighting

some of the advantages of the energy correlation double ratio.

First, a quick review of N -subjettiness. It is defined in terms of N subjet axes n̂
A

as7

⌧
(�)

N

=
X

i

p
T i

min
n

R�

1,i

, R�

2,i

, . . . , R�

N,i

o

, (2.16)

where the sum runs over all particles in the jet and R
A,i

is the distance from axis A to particle

i. There are a variety of methods to determine the subjet directions, with arguably the most

elegant way being to minimize ⌧
N

over all possible subjet directions n̂
A

[50]. If a jet has N

subjets, then ⌧
N�1

should be much larger than ⌧
N

, so the observable that is typically used

for jet discrimination studies is the ratio

⌧
(�)

N,N�1

⌘ ⌧
(�)

N

⌧
(�)

N�1

. (2.17)

As discussed above, this ratio is directly analogous to the energy correlation double ratio

C
(�)

N

⌘ r
(�)

N

/r
(�)

N�1

.

One immediate point of contrast between N -subjettiness and the energy correlation dou-

ble ratio is that C
N

does not require a separate procedure (such as minimization) to determine

7In Refs. [49, 50], N -subjettiness was defined with an overall normalization factor to make it dimensionless.

Here, we remove the normalization factor so it has the same dimensions as Eq. (2.8).
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2.2.2 Sensitivity to Soft Wide-Angle Emissions

Another point of contrast between C
N

and ⌧
N,N�1

is in how the two variables behave in the

presence of emissions at multiple angular scales. The way N -subjettiness is defined, every jet

is partitioned into N subjets, even if there are fewer than N “real” subjets. For example,

when a jet has a soft subjet separated at large angle (as one might expect from the radiation

o↵ a quark or gluon), N -subjettiness will still identify that soft subjet region, yielding a

relatively low value of ⌧
N,N�1

(and therefore making the jet look more N -prong-like than

it really is). In contrast, because the energy correlation function is sensitive to all possible

soft and collinear singularities, C
N

takes on a relatively high value in the presence of a soft

wide-angle subjet, making the jet look less N -prong like (as desired).

We can show this concretely for C
2

using the configuration in Fig. 1b where there is the

following hierarchy of the energies and angles:10

E
1

� E
2

, E
3

, ✓
13

⌧ ✓
12

' ✓
23

. (2.23)

Again using the notation in Eq. (2.1), the energy correlation functions are

ECF(1,�) ' E
1

, ECF(2,�) ' E
1

max
h

E
2

(✓
12

)� , E
3
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13

)�
i

,

ECF(3,�) = E
1

E
2

E
3

(✓
12

✓
23

✓
13

)� , (2.24)

yielding

C
(�)

2

=
ECF(3,�)ECF(1,�)

ECF(2,�)2
' E

2

E
3

(✓
12

)2� (✓
13

)�

max
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

2

. (2.25)

For N -subjettiness with three jet constituents, it is consistent to choose axes that lie along

the hardest particle in a subjet. For 1-subjettiness, the axis lies along particle 1. For 2-

subjettiness, one axis lies along particle 1 and the other axis lies along particle 2 or particle

3, depending on the relationship between E
3

✓
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and E
2
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. This gives
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(�)

1

' max
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

, ⌧
(�)

2

' min
h

E
2

(✓
12

)� , E
3

(✓
13

)�
i

) ⌧
(�)

2,1

=
min

⇥

E
2

(✓
12

)� , E
3

(✓
13

)�
⇤

max [E
2

(✓
12

)� , E
3

(✓
13

)� ]
. (2.26)
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and E
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background-like as desired). As we will see in Sec. 4, this allows C
2

to perform better than

⌧
2,1

for background rejection in regions of phase space where soft wide-angle radiation plays

an important role.

10 Roughly the same conclusions about C2 versus ⌧2,1 hold for the limit E1 ' E2 � E3 as well, which is

relevant for the Z boson discussion below.
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One way to understand the improved performance of C
2

with respect to ⌧
2,1

is to consider

the concrete example of � = 2 at fixed jet mass m.11 Using the kinematic limit above, the

jet mass-squared is given approximately by

m2 ' E
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max
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E
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(✓
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)2
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, (2.28)

and it is convenient to define z as the energy fraction of the emission that dominates the mass

(e.g. z = E
2

/E
1

if E
2

(✓
12

)2 > E
3

(✓
13

)2). For fixed jet mass, QCD backgrounds tend to peak

at small values of z, but we see from Eq. (2.26) that ⌧
2,1

does not have any z-dependence

for fixed jet mass. For C
2

, if particle 2 dominates the mass (i.e. if a soft wide-angle emission

dominates the mass), then

C
(2)
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' ⌧
(2)

2,1

⇥ m2

(E
1

)2
1

z
, (2.29)

so C
2

penalizes small values of z. In this way, C
2

acts similarly to taggers that reject jets if

the kinematics of the dominant splitting of the jet is consistent with background [3–6, 11, 12].

In contrast, ⌧
2,1

only exploits the degree to which radiation is collimated with respect to the

two subjet directions, and does not take into account the z-dependence at fixed jet mass.

If particle 3 dominates the mass (i.e. if the mass is dominated by a hard core of energy),

then C
2

is constant in the energy fraction z, and so is no longer a↵ected by the kinematics

of the emission that generated the mass. However, there is still the potential for improved

performance in identifying boosted color singlet resonances like Z bosons. For a boosted

Z boson, emissions at wide angle with respect to the angle between decay products are

suppressed by color coherence. As one goes to higher boosts where the ratio of jet mass to jet

p
T

decreases for fixed jet radius, the volume of phase space for allowed emissions decreases,

which can also be seen as a consequence of angular ordering. It is therefore less likely for

a Z boson signal to generate final state radiation at large ✓
12

, while background QCD jets

will emit at large angle independently of the p
T

. Because radiation at large angles has an

enhanced e↵ect on C
2

as compared to ⌧
2,1

, cf. Eq. (2.27), we expect C
2

to be more e↵ective

at discriminating color-singlet signals from background QCD jets.

3 Quark vs. Gluon Discrimination with C
1

Our first case study is to use the energy correlation functions to discriminate between quark

jets and gluon jets. The observable C
1

contains the 2-point energy correlation function

ECF(2,�) and so is sensitive to radiation in a jet about a single hard core.12 This case

study is simple enough that we can predict the quark/gluon discrimination power through an

analytic calculation, which we will subsequently validate with Monte Carlo simulations. In

our later case studies involving higher-point correlators, we will rely on Monte Carlo alone.

11We thank Gregory Soyez for helpful discussions on these points.
12The CMS experiment uses an observable they call pTD =

P
i p

2
ti/(

P
i pti)

2 for quark versus gluon discrim-

ination [39, 75]. It is related to the � = 0 limit of C(�)
1 as pTD = 1� 2C(0)

1 .
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decreases for fixed jet radius, the volume of phase space for allowed emissions decreases,

which can also be seen as a consequence of angular ordering. It is therefore less likely for

a Z boson signal to generate final state radiation at large ✓
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, while background QCD jets

will emit at large angle independently of the p
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. Because radiation at large angles has an
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2

as compared to ⌧
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, cf. Eq. (2.27), we expect C
2

to be more e↵ective

at discriminating color-singlet signals from background QCD jets.
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QCD backgrounds peak at small values of z
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1.

P
HT > 900 GeV

2. Rfat-jet
CA = 1.0

3. Mass drop tagger.

4. pfat-jetT > 500 GeV

5. Recluster Rfat-jet
AK = 1.0

6. Find C�
N .

Event simulation

2 3 Event reconstruction, simulation and selection

QCD scaling sideband method where the events failing the mass and substructure require-
ments are used to predict the jet mass distribution from QCD in the signal region. Standard
model (SM) candles from the W and Z inclusive processes, also produced in association with
a high transverse momentum ISR jet, have a very similar topology to the Z’ signal. They are
used to validate the analysis method as a signal proxy and further constrain systematic effects
related to a potential signal. Section 5 describes the systematic uncertainties for the background
and signal contributions. This includes a validation of the Z’ tagging techniques using merged
jets from W bosons in tt̄ events. Finally, in Section 6, limits are set in the gB coupling-mass
plane in the 100-300 GeV mass range.

Z �

q

q̄

g

q̄

q

1

Figure 1: An example Feynman diagram of a Z0 ! qq̄ resonance production with an initial-
state radiation gluon.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapidity [38] coverage provided by the
barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and the relevant kinematic variables,
can be found in Ref. [38].

3 Event reconstruction, simulation and selection

This study uses proton-proton collision events from the 2015 Run 2 dataset corresponding to
2.7 fb�1 at

p
s = 13 TeV. Events are selected using a two-tier trigger system. Events satisfying

loose jet requirements at the first level (L1) are examined by the high-level trigger (HLT). We use
a logical ”OR” of the following HLT trigger requirements which make a selection on the total
hadronic transverse energy in the event (HT) and, in some cases, in conjunction with a selection
on the mass of the jet after cleaning it of soft radiation with the jet trimming technique [39]
(mtrimmed):

MadGraph, Pythia8, Delphes 
MCFM, Powheg, FastJet
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FIG. 1. The double ratio distribution for C(1)
1 for the di↵erent

kinds of resonances under consideration; Z0 with pink (small-

dashed), sextet-diquark �6 with black (dotted) , Coloron (Cµ)

with red (bold,thick), excited quark (q?, Xquark) with green

(large-dashed), Spin-2 (Xµ⌫) with blue (bold,thin), scalar

color octet (S8) with black (dot-dashed) . The cyan shaded

region corresponds to the distribution of the multi-jet back-

ground.

and pfat-jet
T

> 500 GeV, we see that C(1)

1

. 0.25. Further,141

since the p
T

spectrum is almost identical for all reso-142

nances under consideration the distribution for C(1)

1

look143

the same. The p
T

distribution for q? andXµ⌫ are slightly144

harder (and therefore C(1)

1

is shifted to smaller values)145

since their interactions are mediated by a dimension 5146

operators. We would also like to point out here that147

information about the initial state and therefore the na-148

ture of the resonance can be gleaned by comparing the p
T

149

distribution for cases when the resonance is produced in150

association with other particles such as a W -boson. The151

lower end of the C(1)

1

distribution is bounded by152

detector resolution. This is the minimal separa-153

tion between subjets that can be resolved, and is154

encoded in our implementation of the mass drop155

tagger.156

Higher point moments of the JEC depend crucially on157

the nature of the resonance, in particular, the color struc-158

ture not only of the resonance but also its decay products159

– in particular, since C
F

< C
A

, a color octet will radiate160

more widely than a color triplet. This implies that the161

correlator double ratios C(�)

N

should in general be larger162

for a color octet than a color triplet and smallest for a163

FIG. 2. The double ratio distributions C(2)
2 for the reso-

nances and the multi-jet background.

color singlet.164

In Fig. 2 we present distributions for the double ra-165

tios C(2)

2

. To understand the behavior of C�

2

, consider a166

simplified scenario of the two body hadronic decay of a167

resonance X with one soft emission– X ! 1 + 2 + 3
soft

168

where 3
soft

originates from 1. We also expect the distance169

measure R
13

to be small and pj1
T

' pj2
T

(= p
T

) >> pj3
T

in170

the soft and collinear approximation . C(�)

2

can then be171

approximated as,172

C(�)

2

' 2"R�

12

R�

13

R�

23

(R�

12

+ "R�

13

+ "R�

23

)2
, (4)

where "R
13

= pj3
T

/p
T

R
13

⌧ 1, and is doubly suppressed173

since the third jet, 3
soft

, is both low-momentum and col-174

inear with jet 1. We therefore expect C(2)

2

to peak near 0175

as seen in Fig. 2. As discussed earlier, C(2)

2

small implies176

that the event is mostly a two prong subjet system.177

In Fig. 2 we also see, as expected, that the color sin-178

glet Z 0 has the smallest values for C(2)

2

whereas, due to179

the presence of more radiation, the colored objects have180

larger values. Although the spin-2 is a color singlet its181

distribution is more similar to a coloron than a Z 0. This182

is because the spin-2 predominantly decays to gluons,183

which themselves produce wider radiation patterns (since184

C
F

< C
A

), whereas the coloron and Z 0 decays to quarks,185

which produce narrower radiation patterns. As expected,186

the color octet scalar resonance has the largest values of187

C(2)

2

since it is itself an octet which decays to a pair of188

octets (gluons). Also shown in Fig. 2 is the distribution189

Peaks close to zero. 

Colored resonances:  
shifted away from zero
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FIG. 3. The double ratio distributions for C(2)
3 for the reso-

nances and the multi-jet background.

glet its distribution is not identical to Z 0 and instead

has larger values of C(2)

2

. This is because the spin-2 pre-

dominantly decays to gluons, which themselves produce

broader jets (since C
F

< C
A

), whereas the coloron and

Z 0 decays to quarks, which produce narrower radiation

patterns. As expected, the color octet scalar resonance

has the largest values of C(2)

2

since it is itself an octet

which decays to a pair of octets (gluons). Also shown in

Fig. 2 is the distribution of C2

(2)

for the dominant multi-

jet background. We see that its distribution is signifi-

cantly di↵erent from most of the signal distributions and

therefore the JECs can be used not only to discriminate

between di↵erent signals but also to discriminate signal

from background.5 The scalar octet behaves most like

the QCD multi-jet background since, at low masses, the

background is mostly gluonic in origin.

Further discrimination between resonances can be

achieved by looking at the distribution for the higher

moment correlator C(�)

3

shown in Fig. 3. In contrast to

C(�))

2

we see that the peak of the distribution is shifted

away from 0. This behavior can be better understood by

considering the scenario where X ! 1 + 2 + 3
soft

+ 4
soft

.

5 CMS [2] uses JEC in its search to discriminate between a Z0 and

background. The behavior of C
(2)
2 , suggests that in addition to

enhancing S/
p
B we can simultaneously use it to discriminate

between resonances (S8 being an exception).

FIG. 4. The p-values testing hypothetical identities of var-

ious resonances as a function of luminosity. Horizontal lines

indicate 2 and 3 � exclusion of the alternate hypothesis. Ver-

tical lines show where S/
p
B = 3 or 4.

In this case, we assume that the transverse momentum

distribution follows, pj1
T

' pj2
T

(= p
T

) � (pj3
T

, pj4
T

= p
T

0)

We can then approximate C�

3

as (up to order " = pT 0
pT

)

C(�)

3

' [(R
13

R
14

R
23

R
24

R
34

)�

[(R
13

R
23

)� + (R
14

R
24

)� ]2
+O(✏) (5)

Thus the leading term is not proportional to ", resulting

in the peak that is shifted away from 0, and is deter-

mined by the relative opening angles. Similar to what

we saw for the lower moment correlator, we find that the

distribution of C(2)

3

is shifted to larger values depending

on the dimensionality of the SU(3) representation of the

resonance as well as its decay products. The color singlet

Z 0 decaying to a pair of quarks peaks closer to 0, whereas

the distribution for the others, which either are octets or

decay to gluons, is shifted away from 0.

An important point that should be noted finally is the

dependence of the JEC on the exponent �. As � ! 0,

the dependence on the relative angles vanishes, and the

JEC double ratio approaches an (approximately) con-

stant value away from 0. The exponent should there-

fore be viewed as a weighting factor that controls the

size of the variation of the JEC. Note that we have not

optimized � for maximal discrimination in this analysis.

Another aspect that we have not investigated and have
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2D binned likelihood analysis with C2 and C3

Current exclusion 

2

• A massive color singlet, spin 2 object (Xµ⌫) that

interacts with SM particles through the energy mo-

mentum tensor T
µ⌫

as 1

⇤

Xµ⌫T
µ⌫

[10].

• A color octet (but electroweak singlet) scalar

S
8

that interacts with gluons through the field

strength tensor as gsdABCks

⇤

SA

8

GB

µ⌫

GC,µ⌫ [9, 19].

While this list is not exhaustive, these examples serve to

illustrate the utility of this method.

The signal process of interest is the production of var-

ious resonances in association with a jet, viz. (pp !
X(! jj) + j ;X✏{Z 0

µ

, C
µ

,�
6

, q⇤, Xµ⌫ , S
8

})3, where the

resonance is boosted su�ciently that its decay products

lie within a single “fat jet”. The dominant background

originates from QCD multijet events. The various reso-

nance models were implemented in Feynrules [20]. Par-

ton level events for both signal and background were sim-

ulated using MADGRAPH AMC@NLO [21] assuming 13 TeV

LHC energy, with subsequent showering and hadroniza-

tion performed using PYTHIA8 [22]. We use FASTJET [23]

to reconstruct jets and calculate JECs. Additionally

jet energy smearing and detector granularity are sim-

ulated using Delphes3 [24] with parameters similar to

ATLAS. We use the Cambridge-Aachen algorithm [25]

to construct fat-jets of radius R = 1.0 and use the

mass-drop tagger [12] to resolve the fat jets into sub-

jets to reconstruct the mass of the resonance X within

M
X

± 20 GeV to help reduce the background. Impor-

tantly, we find that the mass-drop tagger does not signif-

icantly a↵ect JEC distributions of unfiltered signal fat-

jets. Further, the acceptance of the tagger does not de-

pend significantly on the nature of the resonance. We re-

quire H
T

= ⌃p
T

> 900 GeV and pfatjet
T

> 500 GeV. We

use MCFM [26] to determine K-factors for NLO produc-

tion of the V+jets, tt̄ and single top backgrounds. NLO

K-factors for the dijet production cross-section were de-

termined using POWHEGBOX [27–29]. Further, we use the

MLM [30] matching procedure in PYTHIA8 for multi-jet

events that were generated in MADGRAPH AMC@NLO.

For the purpose of demonstration, the mass of the res-

onance is set to M
X

= 250 GeV. The current 95 % CL

3 We also performed an analogous analysis of the production of the

resonances in association with a W boson, which will be reported

in a future work.

bound on a 250 GeV leptophobic Z 0 from 35.9 fb�1 of

13 TeV data is g
b

<⇠ 1.5 (g
q

<⇠ 0.22), compared with an

expected bound of g
b

<⇠ 1.1 [2]. We therefore consider a

Z 0 resonance with g
b

= 0.6, which is still allowed by the

data. For this coupling, we find that the cross section af-

ter all cuts is 25 fb. For all other resonances we adjust the

value of the couplings such that for all resonances under

consideration, the cross-section after cuts is 25 fb. We

find that our total background is ⇠ 50 pb with the domi-

nant contribution coming from QCD multi-jet processes.

We find that with our cuts we expect S/
p
B ⇠ 1.9� which

is comparable to the expectations of experimental results.

JECs were originally introduced in [31, 32] as a two

point correlator, and generalized in [33]. Studies on

JEC have focused on standard model processes, specially

to distinguish quark jets from gluon jets. Additionally,

JECs have been shown to be able to di↵erentiate boosted

Higgs and top quarks from QCD backgrounds [33].

The N-point generalized JEC is defined as [33],

ECF (N,�) =
X

(i1<..<iN2J)

NY

a=1

pTia

 
N�1Y

b=1

NY

c=b+1

Ribic

!�

. (1)

The sum runs over all objects (tracks4 or calorime-

ter cells) within a system J (individual jets or all final

states of the collision). p
Ti is the transverse momen-

tum of each constituent object. The variable R
ij

=p
(⌘

i

� ⌘
j

)2 + (✓
i

� ✓
j

)2, denotes a pairwise distance

measure and is raised to the power �. Here ⌘
i

is the

pseudo-rapidity while ✓
i

is the azimuthal angle of parti-

cle i. The entire function is infrared and collinear safe

for � > 0.

Using Eq. 1 one can construct a dimensionless double

ratio as

C(�)

N

=
ECF (N + 1,�)ECF (N � 1,�)

ECF (N,�)2
. (2)

In general, C(�)

N

quantifies radiation of higher order ↵n

s

,

emerging out of leading order hard sub-jets. In a boosted

Z 0 ! j
1

j
2

like system, if C(�)

2

< C(�)

1

, the fat jet has two

resolved hard subjets, and higher order substructure is

mostly soft or collinear. With subsequent soft emissions

of the final state, one can assume pj1
T

' pj2
T

>> pji
T

, where

4 Here we define the JECs in terms of the individual particles in

the “fat jet” in the simulated event, after using the detector

simulation as noted above.
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ter cells) within a system J (individual jets or all final

states of the collision). p
Ti is the transverse momen-

tum of each constituent object. The variable R
ij

=p
(⌘

i

� ⌘
j

)2 + (✓
i

� ✓
j

)2, denotes a pairwise distance

measure and is raised to the power �. Here ⌘
i

is the

pseudo-rapidity while ✓
i

is the azimuthal angle of parti-

cle i. The entire function is infrared and collinear safe

for � > 0.

Using Eq. 1 one can construct a dimensionless double

ratio as

C(�)

N

=
ECF (N + 1,�)ECF (N � 1,�)

ECF (N,�)2
. (2)

In general, C(�)

N

quantifies radiation of higher order ↵n

s

,

emerging out of leading order hard sub-jets. In a boosted

Z 0 ! j
1

j
2

like system, if C(�)

2

< C(�)

1

, the fat jet has two

resolved hard subjets, and higher order substructure is

mostly soft or collinear. With subsequent soft emissions

of the final state, one can assume pj1
T

' pj2
T

>> pji
T

, where

4 Here we define the JECs in terms of the individual particles in

the “fat jet” in the simulated event, after using the detector

simulation as noted above.

C.S  : 25 fb



Conclusions

• Jet Energy Correlators are powerful probes of resonances
• Can distinguish resonances based on their color and momentum structures
•  Powerful tool   to suppress SM backgrounds. 

Future plans : Work in progress

• Compare Jet Energy profiles, N-subjettiness,  JECs.
• Optimize over the angular exponent. 
• Are Jet Imaging techniques useful in this context ? 
• Machine learning techniques, unsupervised learning to optimize over a large number of jet 

observables
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We show that Jet Energy Correlation variables can be used e↵ectively to discover

and distinguish a wide variety of boosted light dijet resonances at the LHC through

sensitivity to their transverse momentum and color structures.

The LHC is actively seeking dijet res-

onances. However, for a given resonance

mass, the ability to probe smaller couplings

to quarks and gluons depends on the amount

of data collected and how well one can reduce

Standard Model (SM) backgrounds. Sensi-

tivity to light dijet resonances at the LHC,

in particular, is limited by the presence of

large SM backgrounds that accumulate at

a rate which is di�cult to manage by cur-

rently available trigger and data acquisition

systems at ATLAS and CMS. Looking for

such resonances produced with high trans-

verse momenta in association with a jet, pho-

ton, W± or Z boson (or even in pair produc-

tion of the resonances) can reduce both sig-

nal and background rates thus avoiding trig-

ger threshold limitations. Additionally, for

highly boosted light resonances, jet substruc-

ture techniques can be applied to further re-

duce backgrounds.

Recently, using this search strategy, AT-

LAS [1] and CMS [2] were able to set limits on

narrow light vector resonances (specifically a

leptophobic Z 0 [3]), decaying to a pair of jets,

in a coupling and mass range (100�600) GeV

that was not accessible to earlier colliders

such as UA2 and CDF. However there are

a plethora of possible dijet resonances that

could exist: colorons [4], sextet and triplet

diquarks [5, 6], excited quarks [7, 8], color-

octet scalars [9], massive spin-2 particles [10]

to name a few. While substructure tech-

niques can unearth new resonances, once a

light resonance is discovered the primary task

becomes understanding the nature of the res-

onance itself. In this note we demonstrate

how Jet Energy Corelators (JECs) aid in dif-

ferentiating between these numerous types of

resonances 1.

New dijet resonances may be classified

1 Elsewhere we will consider and compare other jet
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