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THEORY

WARM INFLATION

e Dissipation of inflaton (¢) energy => Dissipative term : T

@ Radiation is produced through friction and continuously replenish
through the inflaton field decay.

d+BH+T))+ Vy=0 pr +4Hp, = T ¢

@ Inflaton is a pNGB from a broken gauge symmetry (inspired by the
LiTTLE HIGGS MECHANISM).

e Quartic potential | V(¢) = \¢*

is tested in the linear dissipation

regime | T = C T |
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POWER SPECTRUM

@ Qe and ¢, can be computed from:

QS o C?— 3 2 4 C#— mp 0
T Freen |05 (6h) ()
e Q(k) is determined from:

dQ
— b€y — 21y
dN = 37 5Q 0%~ 2M)
@ Scalar power spectrum is given as:
Cc4 3Qx 27 Q.
Pr = I - : + 142N, | x G[Q.
K 72 x 36Cr [CT V1+47Q,/3 (@]

@ The tensor spectrum is defined to be:

2 1/3 4\ 2/3
PT—8< H. ) :8)\2 <4CT> 1
2wmp 472 \ 9Cg QZ(1+ Q.)%/3
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MODEL PARAMETERS

@ Model parameters: Ct, A, gx.

@ No. of e-folds (N(k)) is defined as:

k In 2 V213w pdt v/4
56.12 — In — 3 In —X il FRR [ el
s Te e R V172 HETET v/ 1N o1

w = 1/3 reduces Ne(k).
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MODEL PARAMETERS

@ Model parameters: Ct, A, gx.
@ No. of e-folds (N(k)) is defined as:

2 1/2 . 1/4 1/4
5612 nX "5 Y% L=3W | Prr g0 Vend

o 3(1+w) 2 HETET yi/a T e

o W =1/3 reduces N(k).

V12 VL4

_ k k end
N(k) = 56.02 — In P +1In Vl/j +1In 1016 GoV
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SCALAR POWER SPECTRUM
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Primordial spectrum as a function of k/ko, for different values of the
parameter C+ = 1077, 107°, ...10~! and for fixed A = 10714, g, = 12.5.
LHS is for a non-thermal inflaton, i.e, N, = 0 and RHS is for a thermal
inflation, i.e., NV, # 0.
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BACKGROUND DEPENDENCE
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Spectral index (ns) as a function of C; with g, = 12.5 in LHS and as a
function of g, with C+ = 0.004 in RHS. The solid lines are for N, = 0 and
the dashed lines are for NV, # 0.
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BACKGROUND DEPENDENCE
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Amplitude of spectrum (As) as a function of Cy with g, = 12.5 in LHS
and as a function of g, with C+ = 0.004 in RHS for different values of A
as indicated in the plot. The solid lines are for A, = 0 and dashed lines
are for NV, # 0.



THEORY

BACKGROUND DEPENDENCE
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Running of the spectral index (o) as a function of Cy with g, = 12.5 in
LHS, and as a function of g, with C+ = 0.004 in RHS, for different values
of A as indicated in the plot. The solid lines are for A, = 0 and dashed
lines are for \V, # 0.
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ANALYSIS

MCMC METHODOLOGY

e MCMC is performed using CosMOMC package coupled with
CAMB.

@ Slow mixing an bad convergence in CosMOMC due to multimodality
in the theory.
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@ Increase the temperature of the chains and changing the standard
Metropolis-Hastings algorithm to Wang-Landau algorithm.

@ In thermal case, hierarchical centering is employed to solve convoluted
multimodality.



NON-THERMAL CASE (N, = 0)
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THERMAL CASE (N, # 0)
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RESULTS

Constraints on cosmological parameters for non-thermal and thermal case

compared with ACDM + r using Planck 20154+BICEP2/Keck Array
observations.

Warm Inflation Cold Inflation
N.=0 N #0 ANCDM + r
parameters | mean value lo mean value lo parameters | mean value lo
Qph? 0.02233 0.00022 0.02224 0.00019 Quh? 0.02224 | 0.00017
Q.h? 0.1178 0.0015 0.1194 0.0013 Q.h? 0.1192 0.0016
1000 ¢ 1.04097 0.00046 1.04088 0.00038 1000y 1.04085 | 0.00034
T 0.077 0.019 0.068 0.021 T 0.064 0.018
Cr 0.0043 0.0018 0.0104 0.0077 In(As x 10%0) 3.06 0.031
A 9.77x107 [ 5.41x107 1> | 9.74x107%6 | 6.78x1071° ns 0.966 0.0052
8« 20.03 10.39 139.91 487.98 r < 0.07
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CONCLUSION

NON-THERMAL CASE(N, = 0)
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The predictions for the spectral index and tensor-to-scalar ratio for the
best-fit and mean value of parameters for non-thermal case(N, = 0).



CONCLUSION

THERMAL CASE(N, # 0)
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The predictions for the spectral index and tensor-to-scalar ratio for the
best-fit and mean value of parameters for thermal case(N, # 0).



CONCLUSION

DI1SCUSSIONS

@ No reheating is required in warm inflation => Warm exit to the
radiation dominated universe.

@ Model parameters are kept free and a statistical simulation is carried
out to constrain the parameters and inflationary observables.

@ The difficulties related to the MCMC simulations are dealt with more
sophisticated statistical tweaks.

o Non-thermal case (N, = 0): Spectral index is within the observational
bounds but the tensor-to-scalar ratio is close to the upper bound.

@ Thermal case (N, # 0): tensor-to-scalar ratio is well within the
observational bound.
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