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Bubble nucleation rate 
(zero temperature)

� = Ae�B

[C. G. Callan, S. R. Coleman, ’77]

B = SE(�̄)� SE(v)
O(4) symmetric solution to 

Euclidean EoM

Bounce solution
r. The bounce solution obeys

@2
r

�̄(r) +
3

r
@
r

�̄(r)� ��̄3(r) = 0, (4)

with boundary conditions @
r

�̄(0) = 0 and �̄(1) = 0. When � is negative, we have a series
of Fubini-Lipatov instanton solutions [22, 23] parametrized by the field value at the center
of the bounce, �̄

C

;

�̄(r) =
�̄
C

1 + |�|
8

�̄2

C

r2
. (5)

Then, the bounce action is given by

B = S(�̄)� S(� ⌘ 0) =
8⇡2

3|�| . (6)

At the one-loop level, the prefactor is decomposed into the contributions from the Higgs
boson (h), other scalars (�), fermions ( ), gauge bosons and Nambu-Goldstone bosons
(A

µ

,'), and Faddev-Poppov ghosts (c, c̄);

Ae�B =

Z
d�̄

C

�̄
C

 r
|�|
8
�̄
C

!
4

A0(h)A(�)A( )A0(Aµ,')A(c,c̄)e�B. (7)

Here, prime on A0 indicates subtraction of zero modes and we factor out (
p|�|/8�̄

C

)4/�̄
C

from the Higgs contribution for later convenience. Since we have a series of bounce solutions
labeled by �̄

C

and each of them contributes to the decay rate, we have an integration over
�̄
C

. Each of the factors looks like

A(X) =

✓
DetM(X)

DetcM(X)

◆
wX

, (8)

where w
X

is a constant depending on the spins of the species, and M(X) and cM(X) are the
fluctuation operators around the bounce solution and around the false vacuum, respectively.
The fluctuation operator is defined as the second derivative of the action;

M(X)�4(x� y) =

⌧
d2S(X)

dX(x)dX(y)

�

¯

�

, (9)

where the brackets indicate the expectation value with the bounce background.

A. Functional Determiant

For the evaluation of the ratio of the functional determinants, we first decompose the
fluctuations into partial waves, making use of the O(4) symmetry of the bounce;

DetM(X)

DetcM(X)

=
Y

J

 
DetM(X)

J

DetcM(X)

J

!
nJ

, (10)
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corrections break the scale invariance, the decay rate depends on the size of the bounce
solution. The center of the bounce solution with the largest decay rate reaches the Planck
scale. Since we expect non-neglegeble contributions to the decay rate from gravity at such
a high scale, we introduce a UV cut-o↵ for the bounce solution.

In the SM case, we find a small discrepancy between the decay rate at the tree level
and that at the one-loop level because of an accidental cancellation between corrections
from the top quark and those from the gauge bosons. It, however, need not be the case
when we consider extra fields. It is not only because the new contributions will not be
canceled by others, but also the SM couplings are a↵ected through renormalization group
(RG) evolution. Thus, we need to calculate both A and B to get a reliable result. We
evaluate the decay rates of the EW vacuum for models with extra fermions in addition to
the SM particles. In such models, the EW vacuum tends to be destabilized compared with
that of the SM [17–21]. We consider three cases where we have, in addition to the SM
particles, (i) vector-like fermions having the same SM charges as left quark and down quark,
(Q

ex

, Q̄
ex

, D
ex

, D̄
ex

), (ii) vector-like fermions having the same SM charges as left lepton and
electron, (L

ex

, L̄
ex

, E
ex

, Ē
ex

), and (iii) a right-handed neutrino, (N
R

). We give constraints
on their couplings and masses, requiring the lifetime of the EW vacuum is longer than the
age of the universe.

This paper is organized as follows. In section II, we explain the formulation that is used
in the calculation of one-loop corrections to a decay rate. We provide analytic formulae
for each particle that couples to the Higgs boson and discuss re-summation using RG. In
section III, we give a detailed analysis of a vacuum decay rate in the SM. All the technical
details are covered in this section. In section IV, we analyze decay rates in models with
extra fermions. Finally, we conclude in section V.

II. FORMULATION

In this paper, we concentrate on the case where another vacuum is developed at a very
high energy scale through quantum corrections. To make things more concrete, we assume
the bounce is along the Higgs direction, but generalization is straightforward. The Higgs
potential is approximately given by

V (�) = �(�†�)2, (2)

with � being the Higgs doublet and � is the Higgs coupling constant evaluated at a fixed
renormalization scale, µ. An appropriate scale for µ will be discussed later, but for the
moment, we only assume that it is taken so that � becomes negative.

A deeper vacuum appears after the quartic coupling becomes negative through RG run-
ning. For consistency with the scale invariance, we assume it occurs at a much higher scale
compared to those of the dimensionful couplings. In the SM, for example, it occurs when
the field value of the Higgs boson is around 1010 GeV.

Using the SU(2)
L

⇥ U(1)
Y

symmetry, we can express the bounce solution as

�|
bounce

=
1p
2

✓
0

�̄(r)

◆
, (3)

without loss of generality, where �̄ is a real function of the radius from the center the bounce,

3

In the Standard Model

Fubini-Lipatov instanton

� < 0

B =
8⇡2

3|�|
independently of �̄C



Bubble nucleation rate 
(zero temperature)

[C. G. Callan, S. R. Coleman, ’77]

� = Ae�B

A =
B2
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Zero mode
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Zero mode
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Gauge boson loops



Gauge contribution
LGF =

1

⇠
(@µAµ)
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It is difficult to calculate it numerically, 
but we succeeded in calculating it semi-analytically.

lnA(Gauge) = �1
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Gauge contribution

After the zero mode subtraction

lim
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No gauge dependence!
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A little more detail 
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Dilatational invariance 
in the Standard model

r. The bounce solution obeys

@2
r

�̄(r) +
3

r
@
r

�̄(r)� ��̄3(r) = 0, (4)

with boundary conditions @
r

�̄(0) = 0 and �̄(1) = 0. When � is negative, we have a series
of Fubini-Lipatov instanton solutions [22, 23] parametrized by the field value at the center
of the bounce, �̄

C

;

�̄(r) =
�̄
C

1 + |�|
8

�̄2

C

r2
. (5)

Then, the bounce action is given by

B = S(�̄)� S(� ⌘ 0) =
8⇡2

3|�| . (6)

At the one-loop level, the prefactor is decomposed into the contributions from the Higgs
boson (h), other scalars (�), fermions ( ), gauge bosons and Nambu-Goldstone bosons
(A

µ

,'), and Faddev-Poppov ghosts (c, c̄);

Ae�B =

Z
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A0(h)A(�)A( )A0(Aµ,')A(c,c̄)e�B. (7)

Here, prime on A0 indicates subtraction of zero modes and we factor out (
p|�|/8�̄

C

)4/�̄
C

from the Higgs contribution for later convenience. Since we have a series of bounce solutions
labeled by �̄

C

and each of them contributes to the decay rate, we have an integration over
�̄
C

. Each of the factors looks like

A(X) =

✓
DetM(X)

DetcM(X)

◆
wX

, (8)

where w
X

is a constant depending on the spins of the species, and M(X) and cM(X) are the
fluctuation operators around the bounce solution and around the false vacuum, respectively.
The fluctuation operator is defined as the second derivative of the action;

M(X)�4(x� y) =

⌧
d2S(X)

dX(x)dX(y)

�

¯

�

, (9)

where the brackets indicate the expectation value with the bounce background.

A. Functional Determiant

For the evaluation of the ratio of the functional determinants, we first decompose the
fluctuations into partial waves, making use of the O(4) symmetry of the bounce;

DetM(X)

DetcM(X)

=
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, (10)
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� =

Z
d(ln �̄C)
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d ln �̄C

Tree level action is invariant under a change of �̄C

Thus, we need to integrate over �̄C

ln

r
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µ
µ : renormalization scale

However, the integrand suffers from large logarithmic corrections



One-loop 
+ log re-summation

� =

Z
d(ln �̄C)
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q
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To avoid large logs in higher order corrections, we improve our result by RG
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FIG. 1: Top: The RG evolution of the relevant SM couplings. The black dotted line indicates
�̄

C

= M

Pl

. The horizontal axis is common with the bottom panel. Bottom: The log of the
integrand of the decay rate. We use the central values for the SM parameters. In the shaded
region, � is positive and thus the integrand is zero.

The RG equations for � and y
t

are given by

8⇡2

d�

d lnµ
= 6�

✓
2�+ y2

t

� g2
Y

+ g2
2

4
� g2
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◆
� 3y4 + 3

✓
g2
Y

+ g2
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◆
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, (180)

8⇡2

dy
t

d lnµ
= y

t

✓
9

4
y2
t

� 4g2
3

� 9

8
g2
2

� 17

24
g2
Y

◆
, (181)

at the one-loop level. At a low energy scale, the term proportional to y4 drives � to a
negative value. As the scale increases, y

t

decreases and g
Y

increases, and � returns to a
positve value eventually. Notice that � is bounded from below in the SM because we know
that g

Y

finally brows up and it brings back � to positive value as shown in the figure.
As formulated in the previous section, the decay rate of the EW vacuum in the SM is

given by

� =

Z
d(lnR�1)

1

R4

e�B
e↵

(µ), (182)

where

µ =
1

R
, (183)

and
B
e↵

= B � ⇥
lnA0(h)⇤

MS

� 3
⇥
lnA(t)

⇤
MS

� ⇥
lnA0(Aµ,')

⇤
MS

, (184)
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FIG. 2: Top: The integrand of the decay rate with the central SM parameters. The solid line
corresponds to a result at the one-loop level and the dashed one corresponds to that at the tree
level. The horizontal axis is common with the bottom figure. We show �̄
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with the
vertical dotted line. Bottom: The size of each quantum correction. The dashed line corresponds
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� B).

A. Vector-like quarks

The first example is vector-like quarks, having the same SM charges as left quark,
(Q

ex

, Q
ex

), and down quark, (D
ex

, D
ex

). The Lagrangian is given by

L = L
SM

+ Y
ex

�Q
ex

D
ex

+ Y
ex

�†Q
ex

D
ex

+M
ex

Q
ex

Q
ex

+M
ex

D
ex

D
ex

, (196)

where M
ex

, Y
ex

and Y
ex

are new parameters. For simplicity, we do not consider mixing of
vector-like quarks and SM fermions. We set renormalization conditions as

M
ex

|
µ=M

ex

= m
ex

, Y
ex

|
µ=M

ex

= y
ex

, Y
ex

|
µ=M

ex

= y
ex

. (197)

Here, we assume the same renormalization conditions for Y
ex

and Y
ex

to reduce input pa-
rameters.

The calculation of the decay rate is parallel to the SM case, but with

B
e↵

= BSM

e↵

� 3
h
lnA(Q

ex

,D

ex

)

i
� 3

h
lnA(Q

ex

,D

ex

)

i
, (198)

where BSM

e↵

is the SM contributions given in eq. (184).
Since the additional Yukawa couplings drive � strongly to a negative value, the decay rate

typically becomes larger than that of the SM. It also shifts the minimum of � to a higher
energy scale.

29

d�

d ln �̄C

����
µ=

q
|�|
8 �̄C

log10 µ

all in GeV unit

�̄C = MPl

dashed: sum

ln
d�

d ln �̄C

����
µ=

q
|�|
8 �̄C

Contrib. to



Instabililty

Meta-stability

Absolute stability

ONE-LOOP

120 122 124 126 128 130
170

172

174

176

178

180

mh /GeV

m
t
/G
eV

Standard Model 
@one-loop

Preliminary

S. Chigusa, T. Moroi, YS; ‘17
A. Andreassen, W. Frost, M. D. Schwartz; ‘17

+ we are preparing a follow-up paper

Notice that S̃ includes canonically normalizaed fields and depends only on 

|�| ,
yp
|�| and

gp
|�| .

Working with S̃, we can show that quantum corrections to a decay rate have the following
structure;

• Only positive powers of 

|�| ,
yp
|�| and

gp
|�| can appear since we know that there is no

singularity when any of these goes to zero.

• When we renormalize divergences, we introduce a renormalization scale, µ̃. It is always
in a logarithmic function.

• For each subtraction of a zero mode, we have a Jacobian
q

8

|�| if we keep the same

normalization of the zero mode as eq. (31).

After restoring the physical scale and ~, we can say

B
e↵

= B +
n
zero

2
ln

|�|
8

+
1X

i=1

✓ |�|
8

◆
i�1

P
i

 


|�| ,
yp|�| ,

gp|�| , ln
s

8

|�|
µ

�̄
C

!
. (174)

Here, n
zero

is the number of zero modes and P
i

(⇤) indicates a polynomial of ⇤.
Since |�| is typically small in the region of our interest, it is preferable to remove ln |�|,

as well as ln �̄
C

, from higher order corrections. Thus, we take

etµ /
r

|�|
8
�̄
C

⌘ 1

R
, (175)

and use lnR for the integral valuable;

� =

Z
d (lnR)

1

R4

e�B
e↵

(e

t
µ). (176)

III. STANDARD MODEL

In this section, we calculate the decay rate of the EW vacuum in the SM, with one-loop
corrections from the top quark, the W and Z bosons, and the Higgs boson.

We adopt the following set of SM parameters in this and next sections [28];

m
h

= 125.09± 0.24, (177)

m(pole)

t

= 173.1± 0.6, (178)

↵
s

(m
Z

) = 0.1181± 0.0011. (179)

First, we discuss the RG evolution of the couplings, which is shown in the top panel of
fig. 1. We use RG equations that include full two-loop beta functions and important three-
loop and four-loop beta functions [], and use the central values for the SM parameters. The
black dotted line indicates where �̄

C

reaches the Planck scale. We also give an extrapolation
above the Planck scale assuming there is no correction from gravity to show what the RG
evolution generically looks like.
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FIG. 2: Top: The integrand of the decay rate with the central SM parameters. The solid line
corresponds to a result at the one-loop level and the dashed one corresponds to that at the tree
level. The horizontal axis is common with the bottom figure. We show �̄

C

= M

Pl

with the
vertical dotted line. Bottom: The size of each quantum correction. The dashed line corresponds
to (B

e↵

� B).

Integrating over R, we have

log
10

⇥
�
pl

⇥Gyr Gpc3
⇤
= �564+38 +177 +139 +2

�43 �312 �208 �2

, (190)

log
10

⇥
�1 ⇥Gyr Gpc3

⇤
= �563+38 +177 +139 +1

�43 �313 �209 �3

, (191)

where the errors come from the Higgs mass, the top mass, the strong coupling constant,
and the renormalization scale, respectively. Here, we changed the renormalization scale
from 1/(2R) to 2/R to get the uncertainty. Since H�4

0

' 103Gyr Gpc3, the lifetime is long
enough compared with the age of the universe.

For comparison, we also give the values for the tree level evaluation;

log
10

⇥
�tree

pl

⇥Gyr Gpc3
⇤
= �573, (192)

log
10

⇥
�tree

1 ⇥Gyr Gpc3
⇤
= �570. (193)

The di↵erence between � and �tree turns out to be rather small. This is just a consequence
of an accidental cancellation among the quantum corrections. In the bottom panel of fig. 2,
we show each quantum correction separately. The dashed line indicates B

e↵

� B. We can
see that the quantum corrections cancel accidentally around 1017 GeV . 1/R < 1018 GeV.

In fig. 3, we show the decay rate in (m
h

,m
t

)-plane with using the central value for ↵
s

.
The left panel shows the constraint at the tree level and the right shows that at the one-loop
level. As we can see, the stability constraint on the top mass shifts by about 0.25 GeV from

28
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Gauge contributions 
~Beyond the SM~

Standard Model + extra fields
work in progress; S. Chigusa, T. Moroi, YS

Tree level true vacuum (ONE bounce field)

Radiatively generated true vacuum

Gauge symmetry is BROKEN in the false vacuum

Gauge symmetry is UNBROKEN in the false vacuum

JHEP 1711 (2017) 074; M. Endo, T. Moroi, M. M. Nojiri, YS 
Phys. Lett. B771 (2017) 281; M. Endo, T. Moroi, M. M. Nojiri, YS

JHEP 1711 (2017) 074; M. Endo, T. Moroi, M. M. Nojiri, YS

CCB in the MSSM
work in progress; M. Endo, T. Moroi, M. M. Nojiri, YS

Tree level true vacuum (MORE THAN ONE bounce fields)



Summary
• The gauge invariance of a vacuum decay rate had been 
unclear and there had been no prescription for gauge 
zero modes. 

• We subtracted the gauge zero modes analytically, and get 
a gauge independent result, showing that the gauge 
invariance of the decay rate at one-loop level. 

• We calculated the decay rate of the EW vacuum at the 
one-loop level in the standard model, and confirmed that 
the decay rate is much longer than the age of the 
universe.


