

On the Validity of Effective Potential and the Precision of Higgs Self Coupling

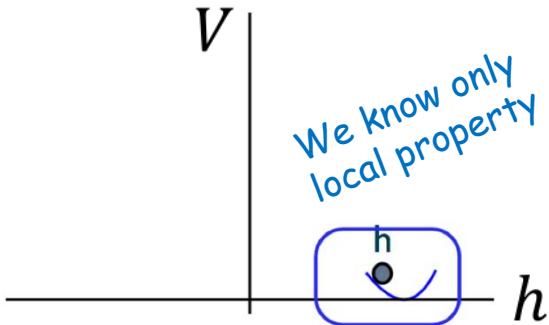
Bithika Jain

IFT-UNESP & ICTP-SAIFR
Sao Paulo, Brazil

On behalf of Minho Son

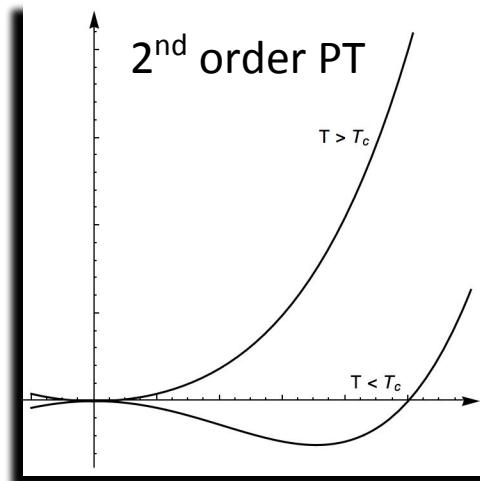
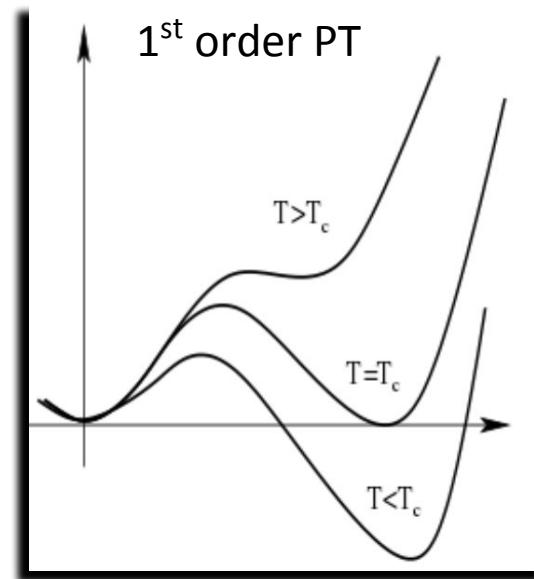
Based on work with S. Lee, M. Son 1709.03232

Various global structure/thermal histories
are still plausible



$$V_h = \frac{1}{2} m_h^2 h^2 + c_3 \frac{1}{6} \left(\frac{3 m_h^2}{v} \right) h^3 + c_4 \frac{1}{24} \left(\frac{3 m_h^2}{v^2} \right) h^4$$

An interesting physics still allowed
is baryogenesis based on
strong 1st order EW-phase transition



Strong 1st order Electroweak Phase Transition

An interesting physics that can be related to the
large deviation of the Higgs self coupling

The effective potential

is a main tool to examine the thermal history of the Higgs potential

$$V_{eff} = V_{tree} + V_{CW} [m_i^2(h) + \Pi_i] + V_T [m_i^2(h) + \Pi_i]$$

$$V_T = \sum_{i=B,F} (-1)^{F_i} \frac{g_i T^4}{2\pi^2} \int_0^\infty dx x^2 \log \left[1 \mp \exp \left(-\sqrt{x^2 + (m_i^2(h) + \Pi_i)/T^2} \right) \right]$$

Obtaining the exact thermal mass is very non-trivial

What most people do is using

Truncated Full Dressing (TFD):

→: thermal mass Π_i is still obtained in the high-T approximation

We call this
Prescription A

At Leading order in Temperature, Π_i is mass-independent
→ non-decoupling issue

: the related uncertainty has not been well understood in BSM scenarios

The effective potential

In the High-T approximation

$$V_{eff} = V_{tree} + V_{CW} + V_T + V_{ring}$$

$$\left\{ \begin{array}{l} V_{CW} = \sum_{i=t,W,Z,h,G,\dots} (-1)^{F_i} \frac{g_i}{64\pi^2} \left[m_i^4(h) \left(\log \frac{m_i^2(h)}{m_i^2(v)} - \frac{3}{2} \right) + 2m_i^2(h)m_i^2(v) \right] \\ V_T = \sum_{i=B,F} (-1)^{F_i} \frac{g_i T^4}{2\pi^2} J_{B/F} \left(\frac{m_i^2(h)}{T^2} \right) \\ V_{ring} = \sum_{i=\text{bosons}} \frac{\bar{g}_i T}{12\pi} \left[m_i^3(h) - \left(m_i^2(h) + \Pi_i(T) \right)^{\frac{3}{2}} \right] \end{array} \right.$$

$$x^2 = \frac{m^2}{T^2} \ll 1$$

1st order PT via
thermal effect

$$J_B(x^2) \approx -\frac{\pi^4}{45} + \frac{\pi^2}{12} x^2 - \boxed{-\frac{\pi}{6} x^3} - \frac{1}{32} x^4 \log \left(\frac{x^2}{c_b} \right)$$

$$J_F(x^2) \approx \frac{7\pi^4}{360} - \frac{\pi^2}{24} x^2 - \frac{1}{32} x^4 \log \left(\frac{x^2}{c_f} \right)$$

- ✓ Validity of this approx. carefully has to be checked

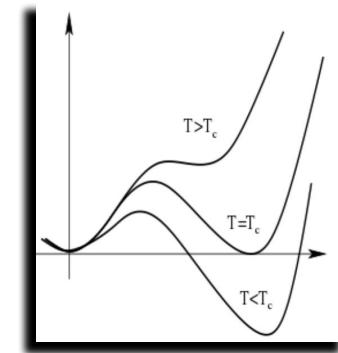
On the criteria for strong 1st order phase transition

: There has been an ambiguity on how to quantify the strong first order phase transition and this ambiguity can cause $\mathcal{O}(1)$ fluctuation on the precision of Higgs self coupling

List of sources that can cause $\mathcal{O}(1)$ uncertainty

$$\frac{m_i^2(v_c)}{T_c^2} = \frac{m^2}{T_c^2} + \text{coupling} \times \frac{v_c^2}{T_c^2} \gtrsim 1$$

For $v_c \gtrsim T_c$ and $\gtrsim \mathcal{O}(1)$ coupling, integral needs to be exactly evaluated



1. The High-temperature Approximation

2. A Large coupling

$$3. \frac{v_c}{T_c} \text{ vs } \frac{v_N}{T_N}, \text{ and confusion on}$$

: checks if the potential develops degenerate vacua

: checks if the transition actually happens

$$\frac{v_c}{T_c} \gtrsim 0.6 - 1.4$$

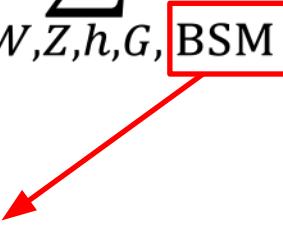
The impact on the precision of the Higgs self-coupling of these issues has not been well studied in most literature in the context of BSM physics

To illustrate the issues we take

Most commonly considered frameworks

$$V_{eff} = \sum_{i=t,W,Z,h,G, \text{BSM}} V_i$$

No mixing with Higgs
: less constrained



Higgs portal Z_2 -symmetry, e.g. $\langle S \rangle = 0$:
new scalar S

Effective Field Theory:
higher-dimensional operators

$$\mathcal{O}_H = (\partial|H|^2)^2 \quad \text{vs} \quad \mathcal{O}_6 = |H|^6$$

Higgs decay
: strongly constrained

Higgs self coupling
: poorly constrained

E.g. Strongly coupled theory

PGB vs non-pGB
Higgs Portal

$\mathcal{O}_H \ll \mathcal{O}_6$ possible

Strong 1st order
Electroweak Phase Transition

Higgs Portal with a singlet scalar

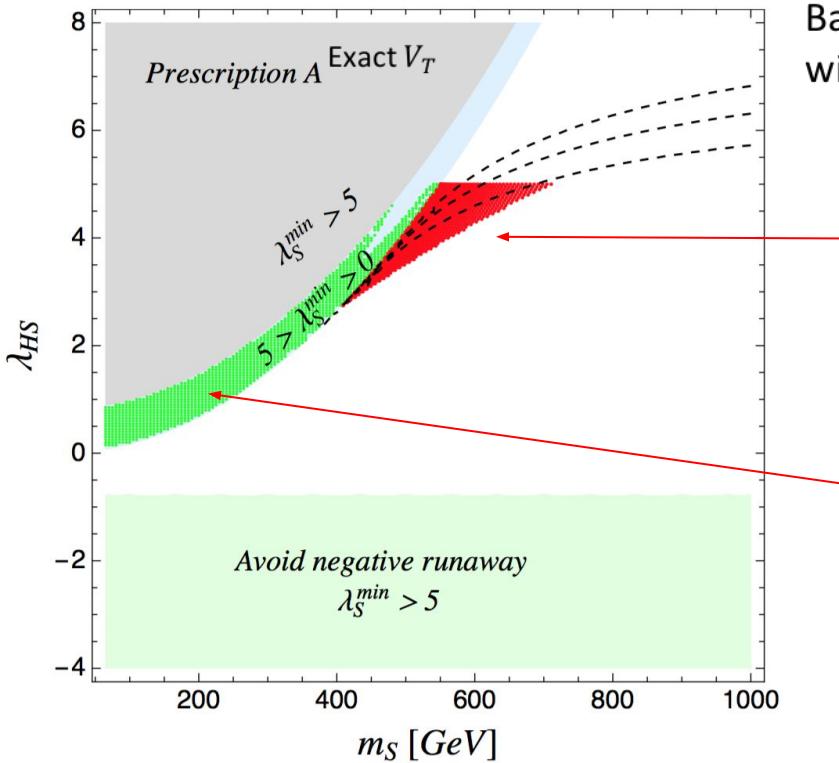
Noble, Perelstein 08'
Katz, Perelstein 14'
Curtin, Meade, Yu 14'
Kurup, Perelstein 17'
Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughness 03'
Espinosa, Konstandin, Riva 11'
Cline, Kaiulainen 12'
Alanne, Tuominen, Vaskonen 14'
Many others

Very sorry if I missed your paper

Higgs Portal SM + a singlet scalar with Z2

$$V_{tree} = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\lambda_{HS} h^2 S^2 + \frac{1}{2}m_0^2 s S^2 + \frac{1}{4}\lambda_S S^4$$

$(\langle h \rangle, \langle s \rangle) = (v, 0)$ is a global minimum



Scan:

$m_s = [100, 800]$ GeV in steps of 10 GeV

$\lambda_{HS} = [1, 5]$ in steps of 0.2

Based on naïve criterion, existence of degenerate vacua, with $v_c/T_c > 1$ * Note cutoff $\lambda_{HS} < 5$ by hand

1. One-step strong 1st phase transition
(**RED**)

$$V(\mathbf{0}, \mathbf{0}) \rightarrow V(v, \mathbf{0}) , \langle S \rangle = \mathbf{0}$$

2. Two-step strong 1st phase transition
(**GREEN**)

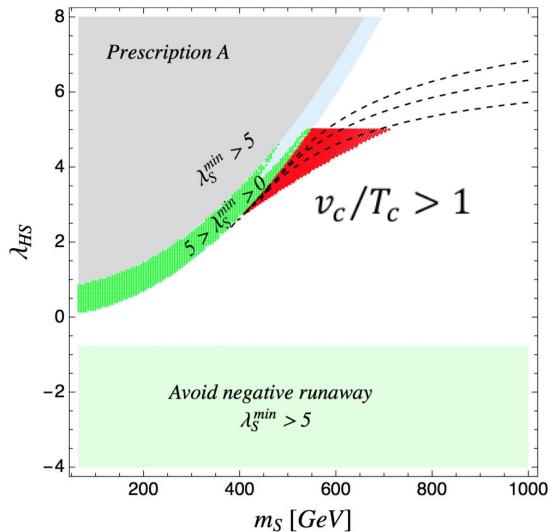
$$V(\mathbf{0}, \mathbf{0}) \rightarrow V(\mathbf{0}, v_s) \rightarrow V(v, \mathbf{0})$$

$$V(0, v_s) > V(v, 0) \rightarrow$$

$$\lambda_s > \lambda_s^{\min} \equiv \lambda \frac{m_0^4 s}{\mu^4} = \frac{2(m_s^2 - v^2 \lambda_{HS})^2}{m_h^2 v^2}$$

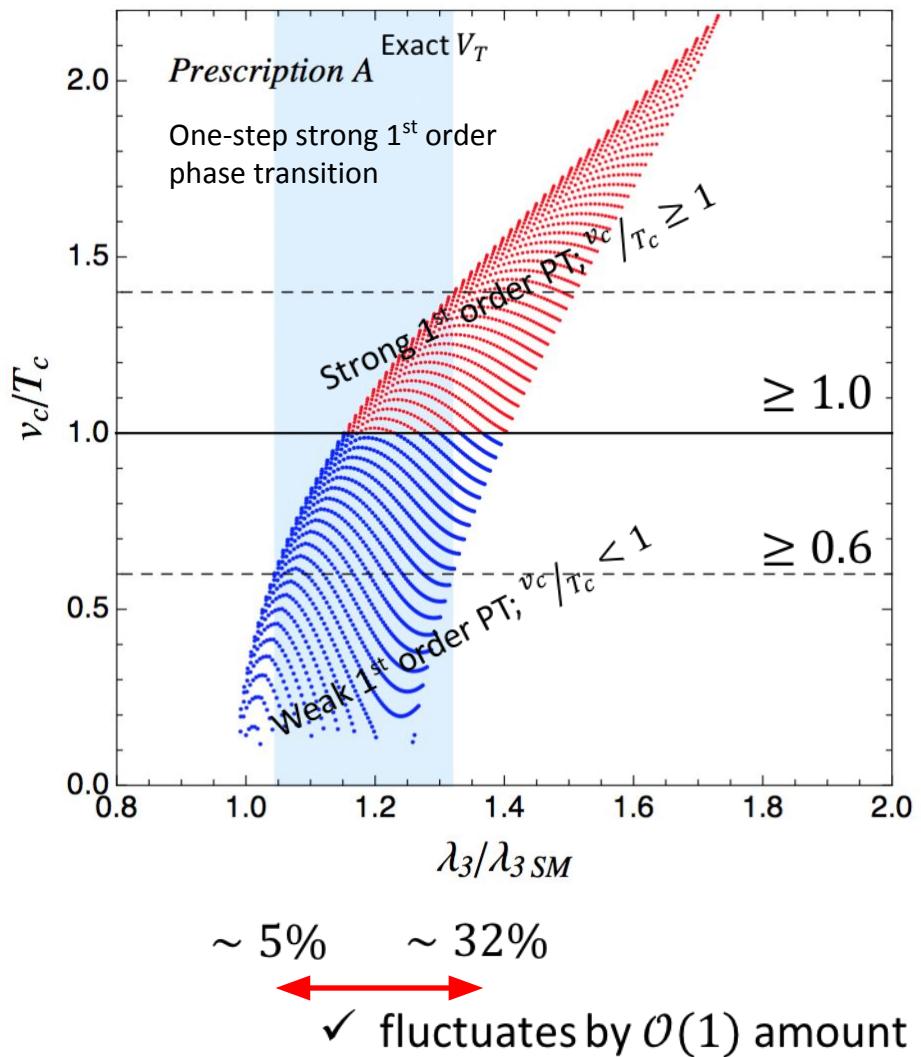
$$\text{parametrize } \lambda_s = \lambda_s^{\min} + \delta_s$$

$(\langle h \rangle, \langle s \rangle) = (v, 0)$ is a global minimum



Future collider plan can sensitively depend on the exact criteria

E.g. only 100 TeV pp
vs various colliders 100 TeV, ILC?



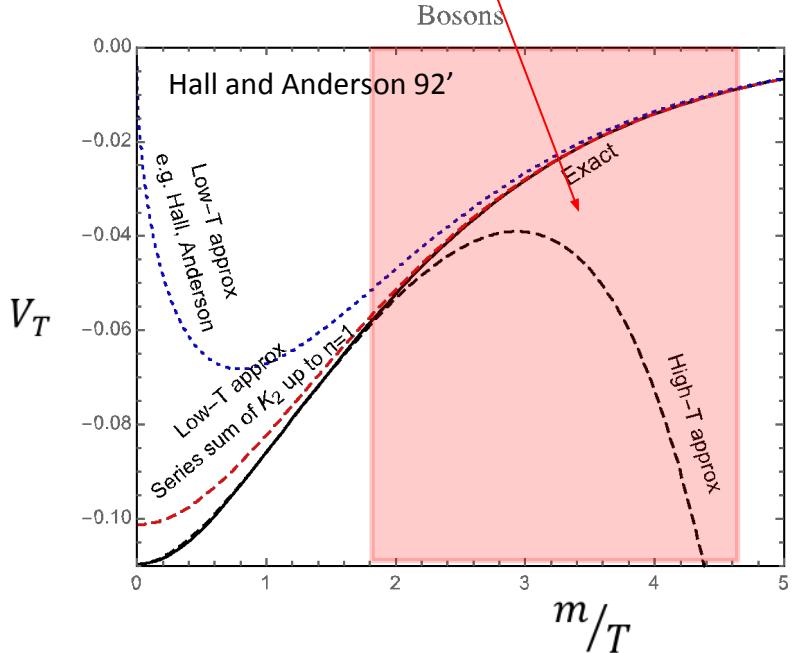
Q. Is there a preferred v_c/T_c ?

Jain, SON in progress

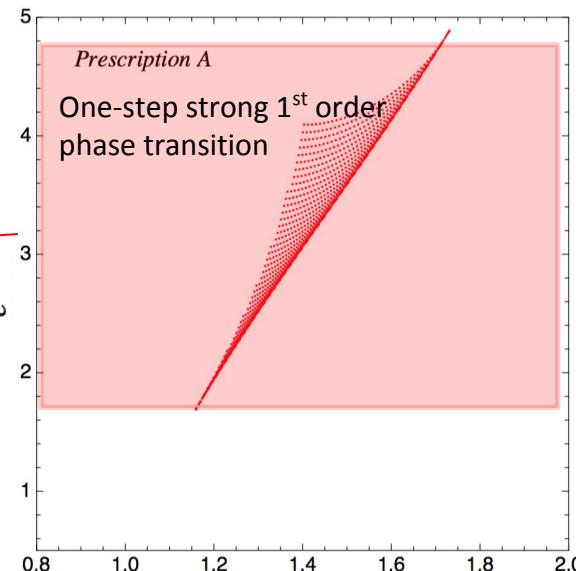
Validity of High-T approximation

One-step PT
High-T approx. fails

(The issue is more pronounced in two step PT)



Low-T approx with $n = \mathcal{O}(10)$
= Exact evaluation, e.g. chose $n = 50$



λ_3/λ_3^{SM} $\star\star \frac{m_s(v) + \Pi}{T_c}$ will be even bigger

$x^2 = \frac{m^2}{T^2} \ll 1$: High T approximation

$$J_B(x^2) \approx -\frac{\pi^4}{45} + \frac{\pi^2}{12}x^2 - \frac{\pi}{6}x^3 - \frac{1}{32}x^4 \log\left(\frac{x^2}{c_b}\right)$$

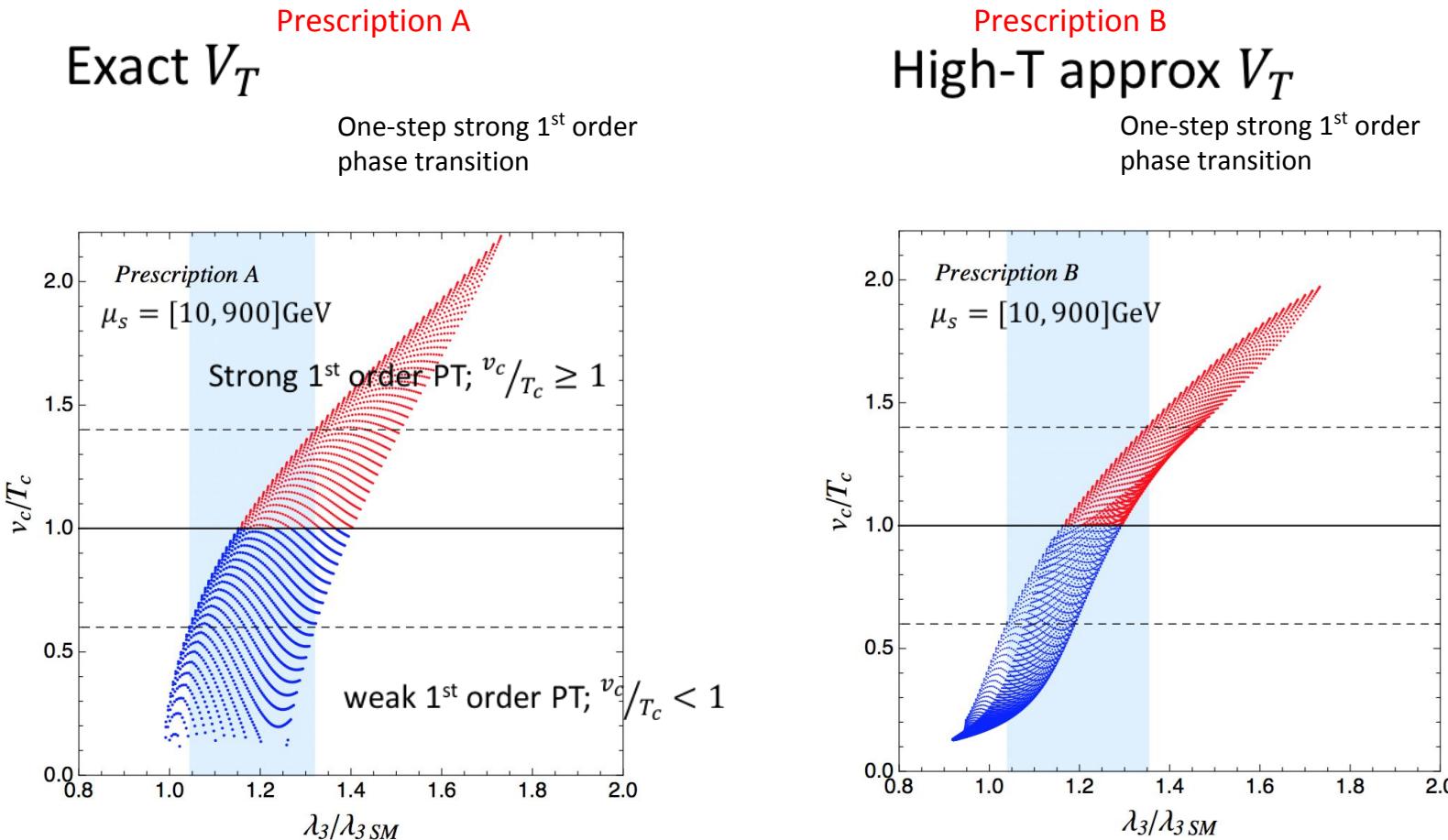
$$J_F(x^2) \approx \frac{7\pi^4}{360} - \frac{\pi^2}{24}x^2 - \frac{1}{32}x^4 \log\left(\frac{x^2}{c_f}\right)$$

$x^2 = \frac{m^2}{T^2} \gg 1$: Low T approximation

$$J_B(x^2; n) = -\sum_{k=1}^n \frac{1}{k^2} x^2 K_2(x k)$$

$$J_F(x^2; n) = -\sum_{k=1}^n \frac{(-1)^k}{k^2} x^2 K_2(x k)$$

$\mathcal{O}(1)$ fluctuation in Higgs self-coupling

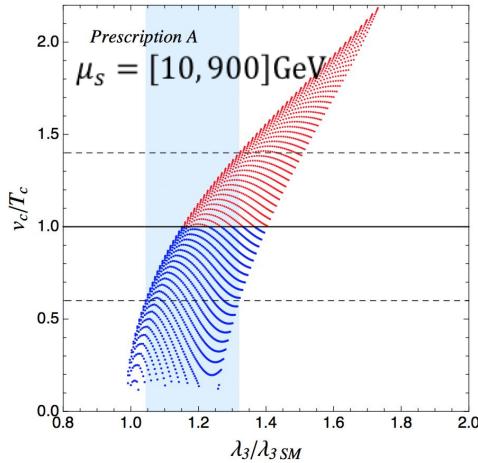
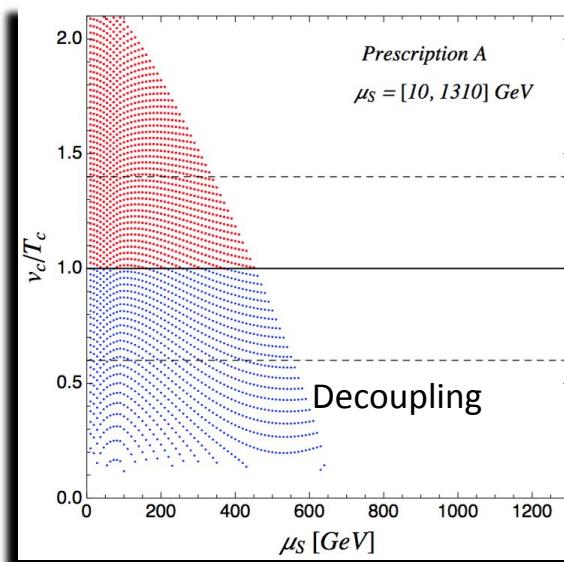


Similarly for both, the smallest deviation, $\delta \left(\frac{\lambda_3}{\lambda_3^{SM}} \right) \sim [5, 32]\% \text{ for } \frac{v_c}{T_c} \geq [0.6, 1.4]$

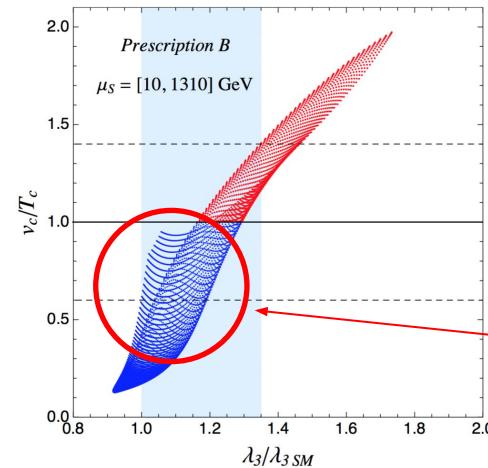
The patterns of parameter space in two cases look very different! What's going on ?

$\mathcal{O}(1)$ fluctuation in Higgs self-coupling

Exact V_T

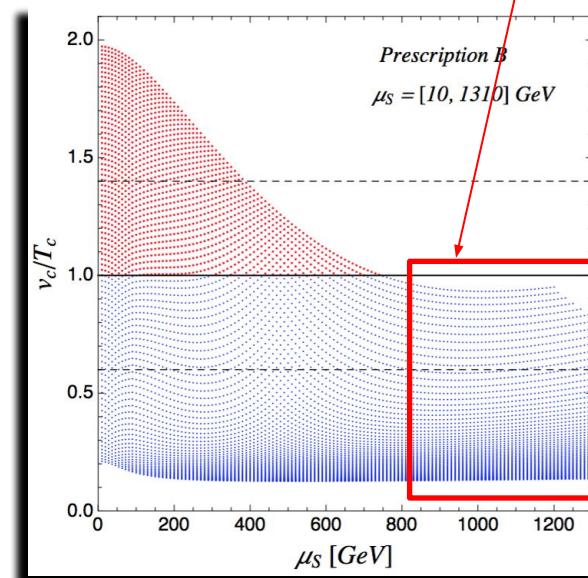


High-T approx. V_T



$\mu_S = [10, 1310] \text{ GeV}$

High masses do not decouple and screws up Higgs self coupling



High-T approx. does not seem to be appropriate for Higgs portal.

Strong 1st order
Electroweak Phase Transition

EFT approach

Grojean, Gervant, Well 04'
Noble, Perelstein 06'
Delaunay, Grojean, Wells, 08'
Huang, Joglekar, Li, Wagner 15'
Huang, Gu, Yin, Yu, Zhang 16'
Chung, Long, Wang 16'
Gan, Long, Wang 17'
Reichert, Eichhorn, Gies, Pawlowski, Plehn, Scherer 17'
Many others....

Very sorry if I missed your paper

1st order phase transition in EFT approach

I. Only dim-6 operator $\mathcal{O}_6 \sim |H|^6$

** Suitable for the case with $\mathcal{O}_H \ll \mathcal{O}_6$, nevertheless we will present results in SILH basis

& assume Higgs as pGB: NDA in SILH basis: $c_6 \sim \left(\frac{v}{f}\right)^2 \equiv \xi$

$$V_{EFT} = m^2 |H|^2 + \lambda |H|^4 + \frac{c_6}{v^2} \frac{m_h^2}{2} |H|^6$$

$$\rightarrow \frac{1}{2} m^2 h^2 + \frac{1}{4} \lambda h^4 + \frac{1}{8} \frac{c_6}{v^2} \frac{m_h^2}{2} h^6$$

At “tree”-level

$$\lambda_3 / \lambda_3^{SM} = 1 + c_6$$

$$\lambda_4 / \lambda_4^{SM} = 1 + 6 c_6$$

Relation holds only at the level of dimension-six

1st order phase transition in EFT approach

II. Resum all $\mathcal{O}_{4+2n} \sim |H|^{4+2n}$

$$\begin{aligned} V_{EFT} &= m^2 |H|^2 + \lambda |H|^4 + \sum \frac{c_{4+2n}}{v^{2n}} \frac{m_h^2}{2 v^2} |H|^{4+2n} \\ &\rightarrow \frac{1}{2} m^2 h^2 + \frac{1}{4} \lambda h^4 + \sum \frac{c_{4+2n}}{v^{2n}} \frac{m_h^2}{2 v^2} \left(\frac{h^2}{2} \right)^{2+n} \end{aligned}$$

NDA in SILH basis: $c_{4+2n} \sim \left(\frac{v}{f}\right)^{2n}$ $c_{4+2n} \sim c \left(\frac{v}{f}\right)^{2n} \equiv c \xi^n$

:can be resummed up to infinite order in Higgs field and
 ``EFT can make sense as long as $E < \Lambda_{\text{cutoff}}$ ''

At “tree”-level

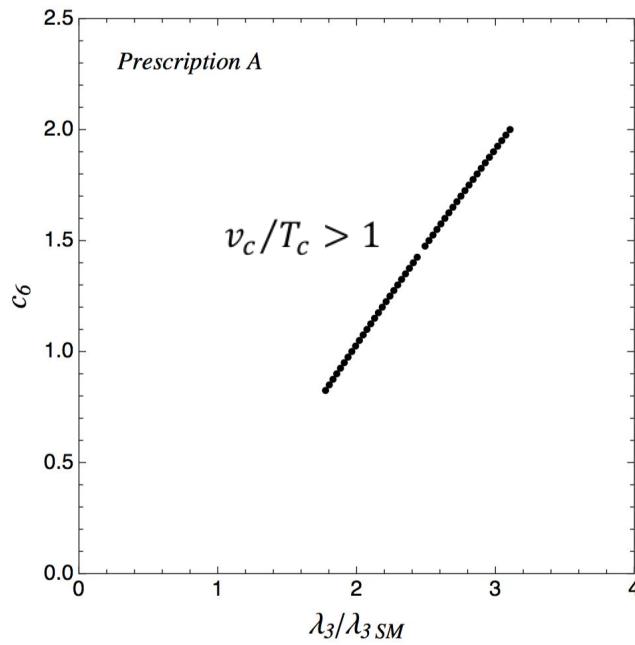
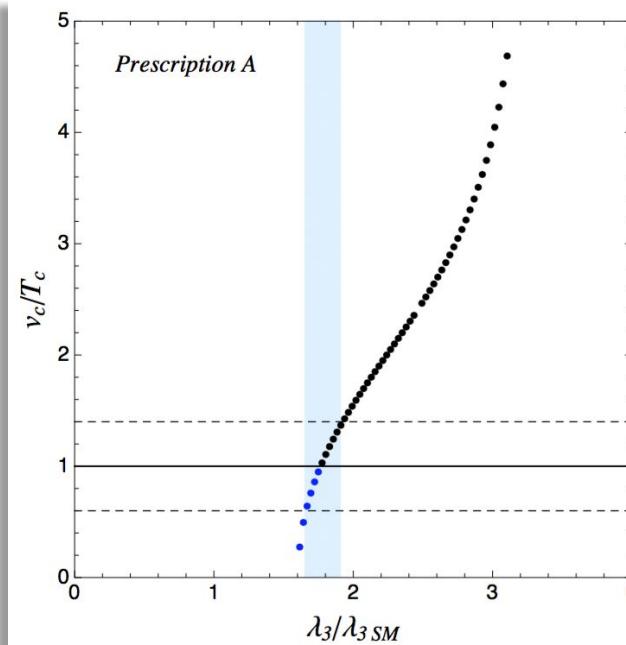
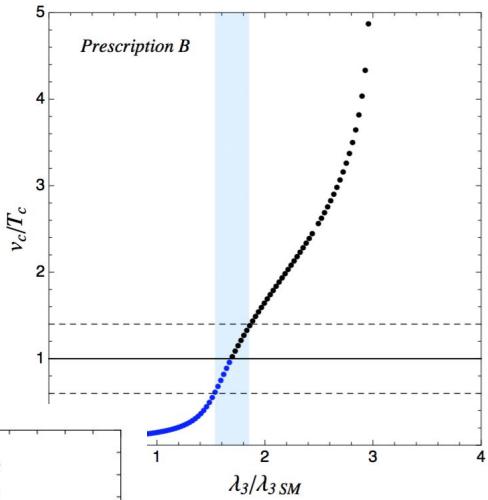
$$\lambda_3 / \lambda_3^{SM} = 1 + 16c \frac{\xi}{(2 - \xi)^4}$$

$$\lambda_4 / \lambda_4^{SM} = 1 + 32c \frac{(6 + \xi)\xi}{(2 - \xi)^5}$$

$$\frac{\lambda_4 / \lambda_4^{SM}}{\lambda_3 / \lambda_3^{SM}} = 2 \frac{6 + \xi}{2 - \xi} \rightarrow \boxed{14} \text{ as } \xi \rightarrow 1 \text{ (or } f \rightarrow v\text{)}$$

Only dim-6 operator

$$\Delta V_{EFT} = \frac{1}{8} \frac{c_6}{v^2} \frac{m_h^2}{2 v^2} h^6$$



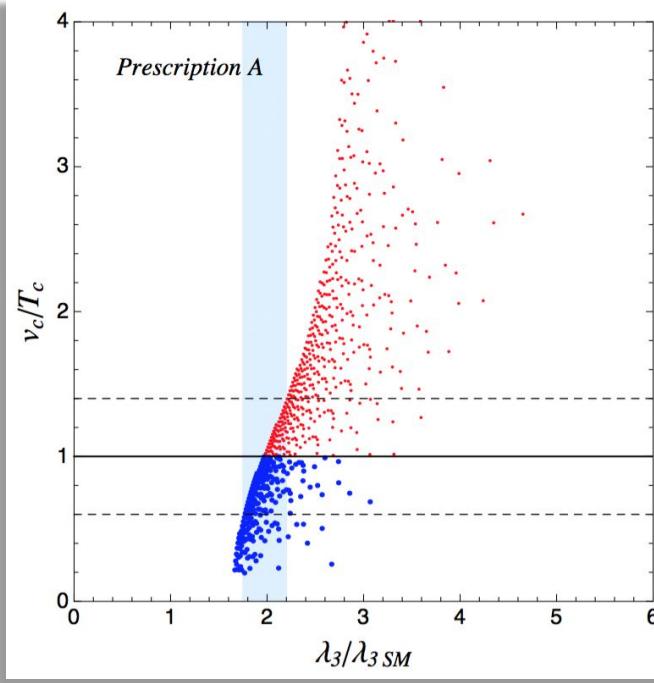
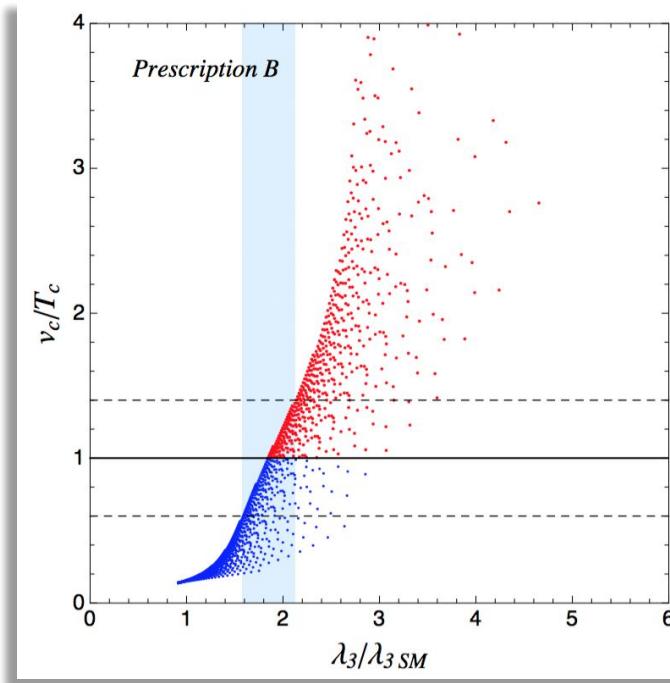
$c_6 \sim \mathcal{O}(1)$: Validity of EFT

- ✓ High-T approximation seems to be ok, e.g. no large mass involved
- ✓ The uncertainty due to the finite v_c/T_c is not pronounced

All orders of $|H|^{4+2n}$

$$\Delta V_{EFT} = \sum \frac{c_{4+2n}}{v^{2n}} \frac{m_h^2}{2} \left(\frac{h^2}{2} \right)^{2+n}$$

where $c_{4+2n} \sim c \left(\frac{v}{f} \right)^{2n} \equiv c \xi^n$

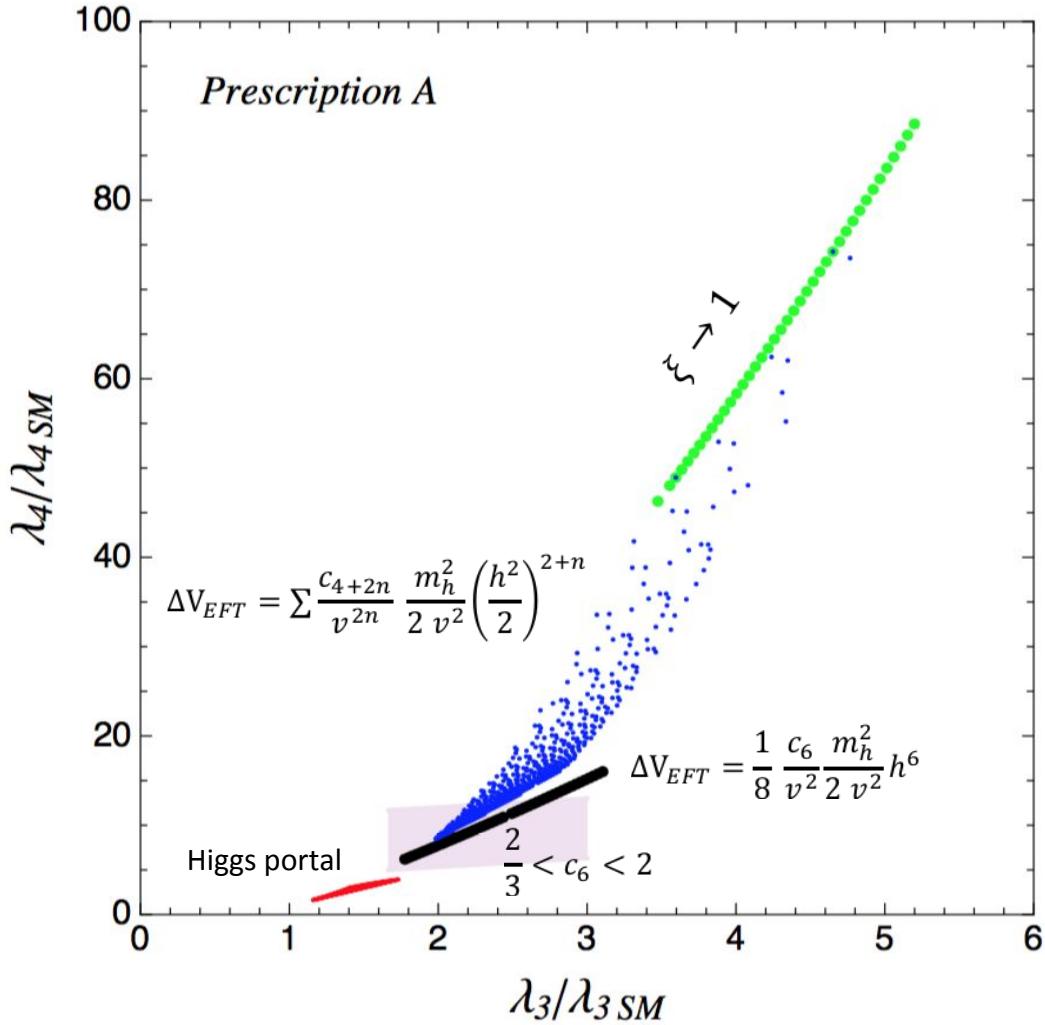


- ✓ High-T approximation seems to be ok, e.g. no large mass involved
- ✓ The uncertainty due to the finite v_c/T_c is not pronounced

Strong 1st order
Electroweak Phase Transition

Cubic vs. Quartic
Higgs self-coupling

Cubic vs. Quartic



EFT prefers large Higgs self-couplings

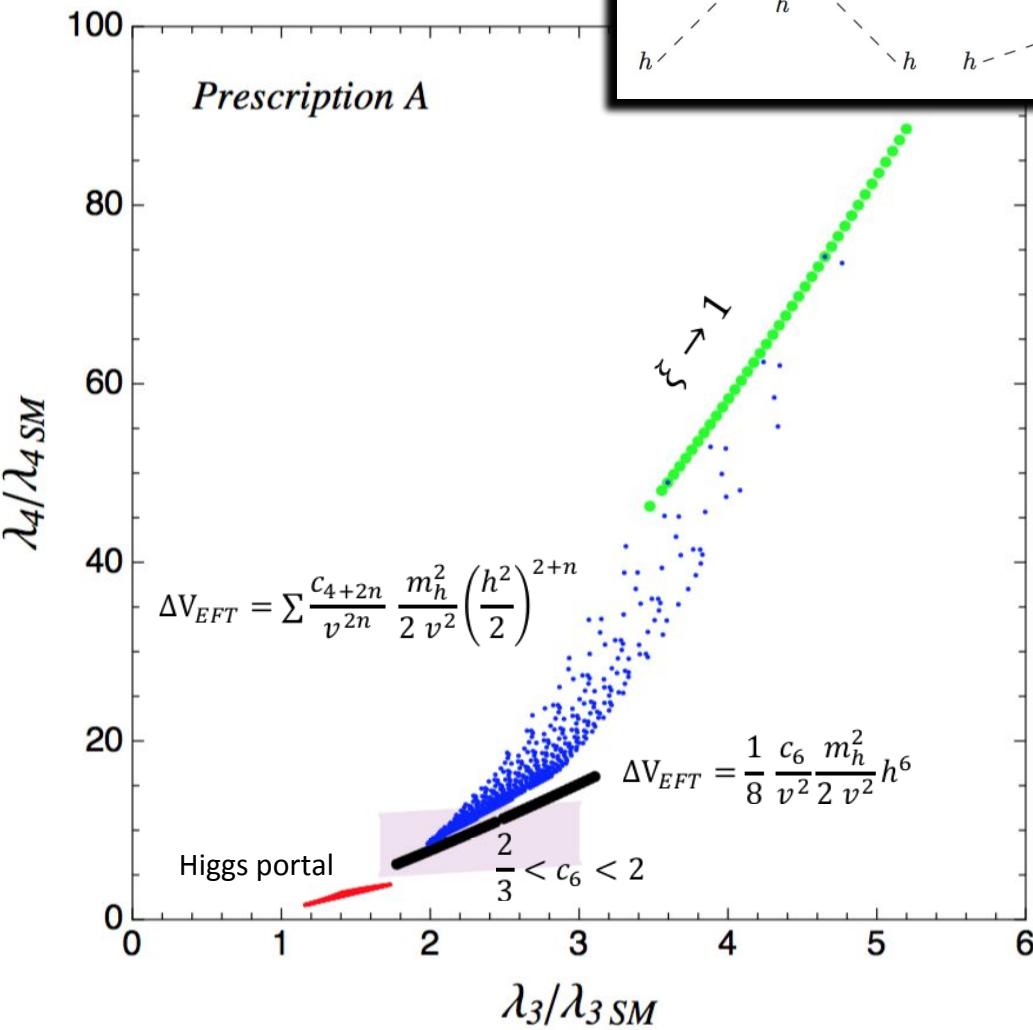
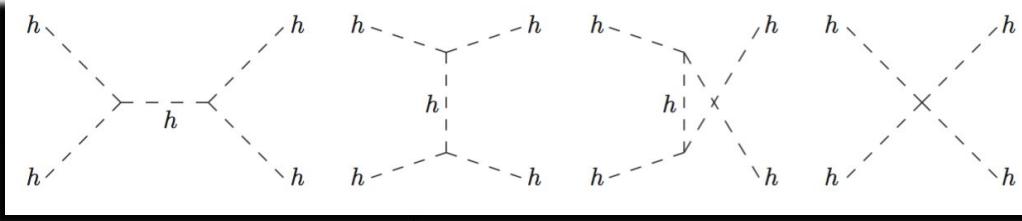
Large quartic coupling might be able to be tested at future collider

Unitarity bound

Electroweak Precision Test

Unitarity bound

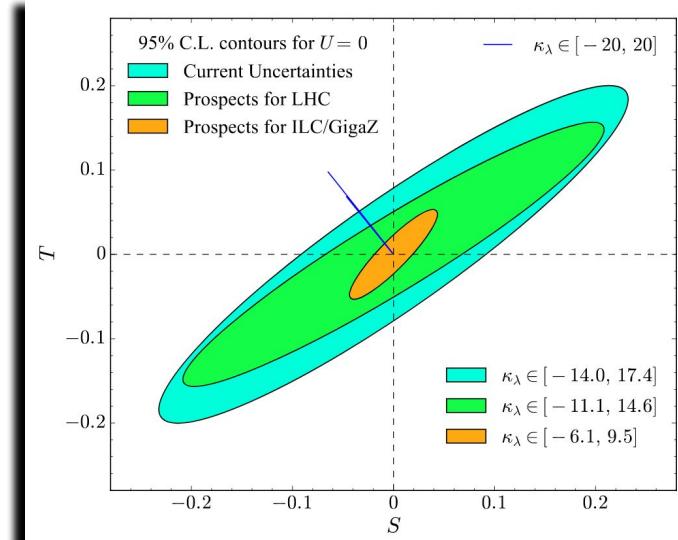
Cubic vs. Quartic



$$\left| \frac{\lambda_3}{\lambda_3^{SM}} \right| \lesssim 6.5 \quad \left| \frac{\lambda_4}{\lambda_4^{SM}} \right| \lesssim 65$$

Luzio, Grober, Spannowsky 17'

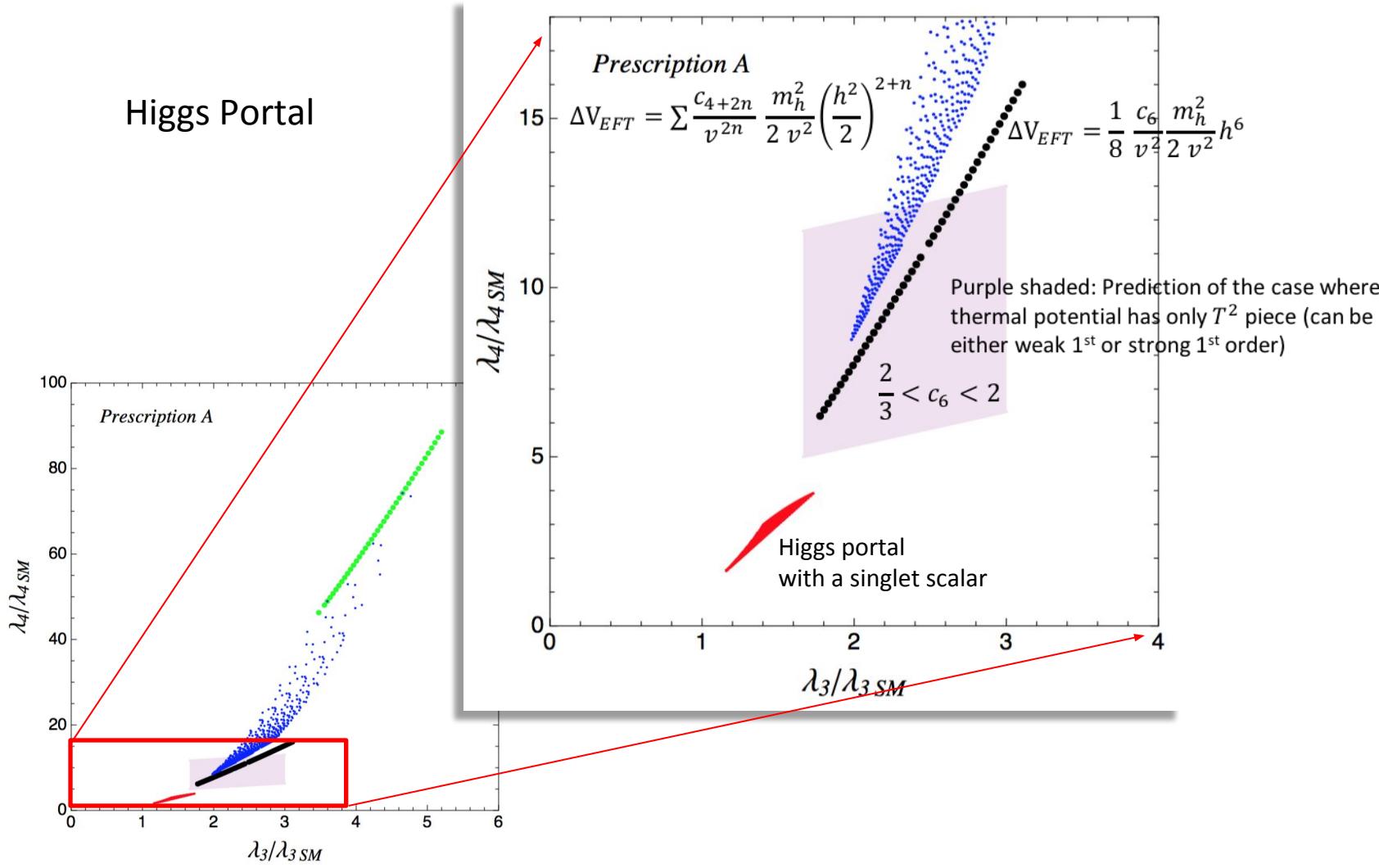
Electroweak Precision Test



Kribs, Maier, Rzehak, Spannowsky, Waite 17'

Cubic vs. Quartic

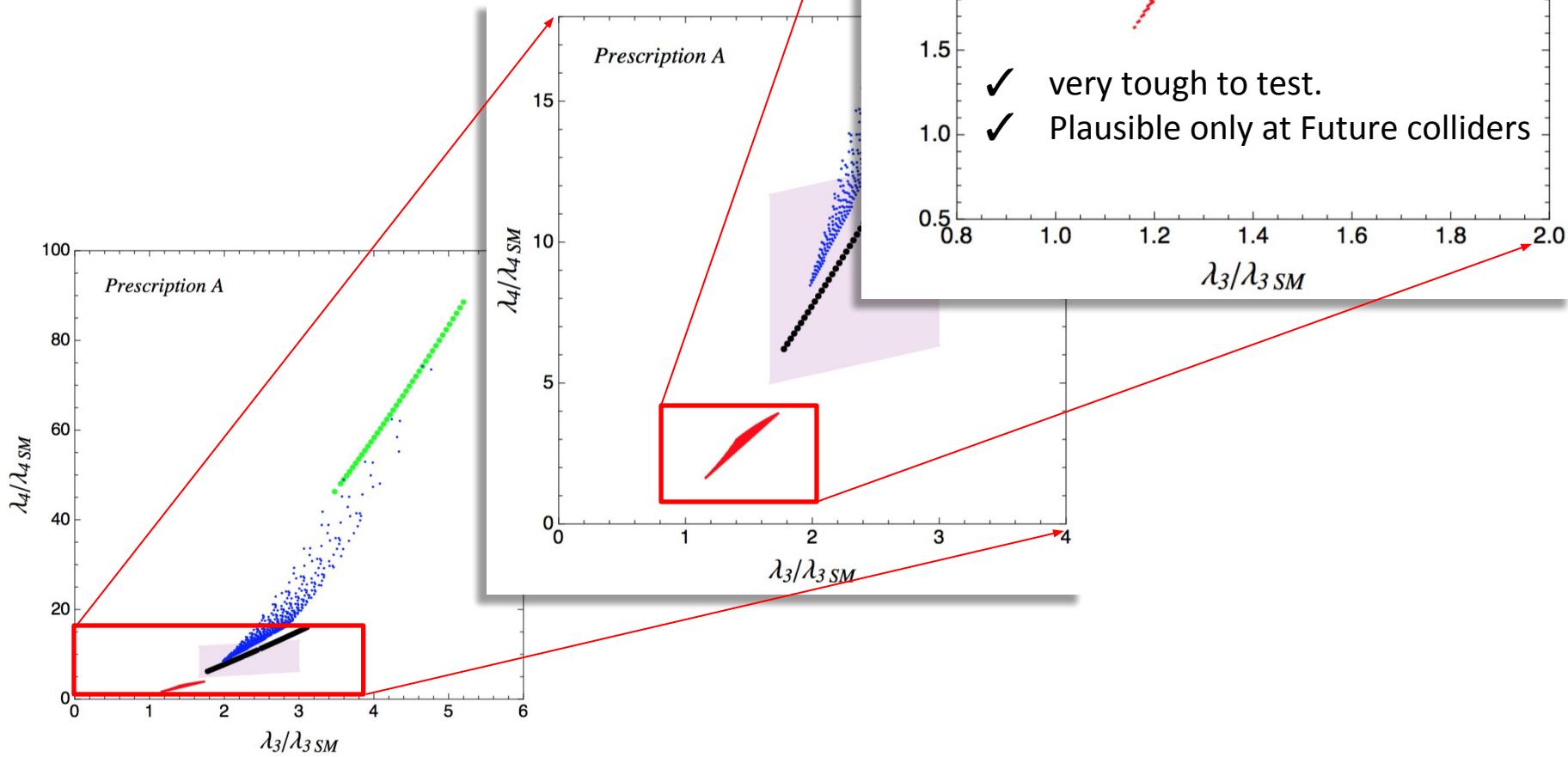
$$V(h) = \frac{1}{2}m_h^2 h^2 + c_3 \frac{1}{6} \left(\frac{3 m_h^2}{v} \right) h^3 + c_4 \frac{1}{24} \left(\frac{3 m_h^2}{v^2} \right) h^4$$



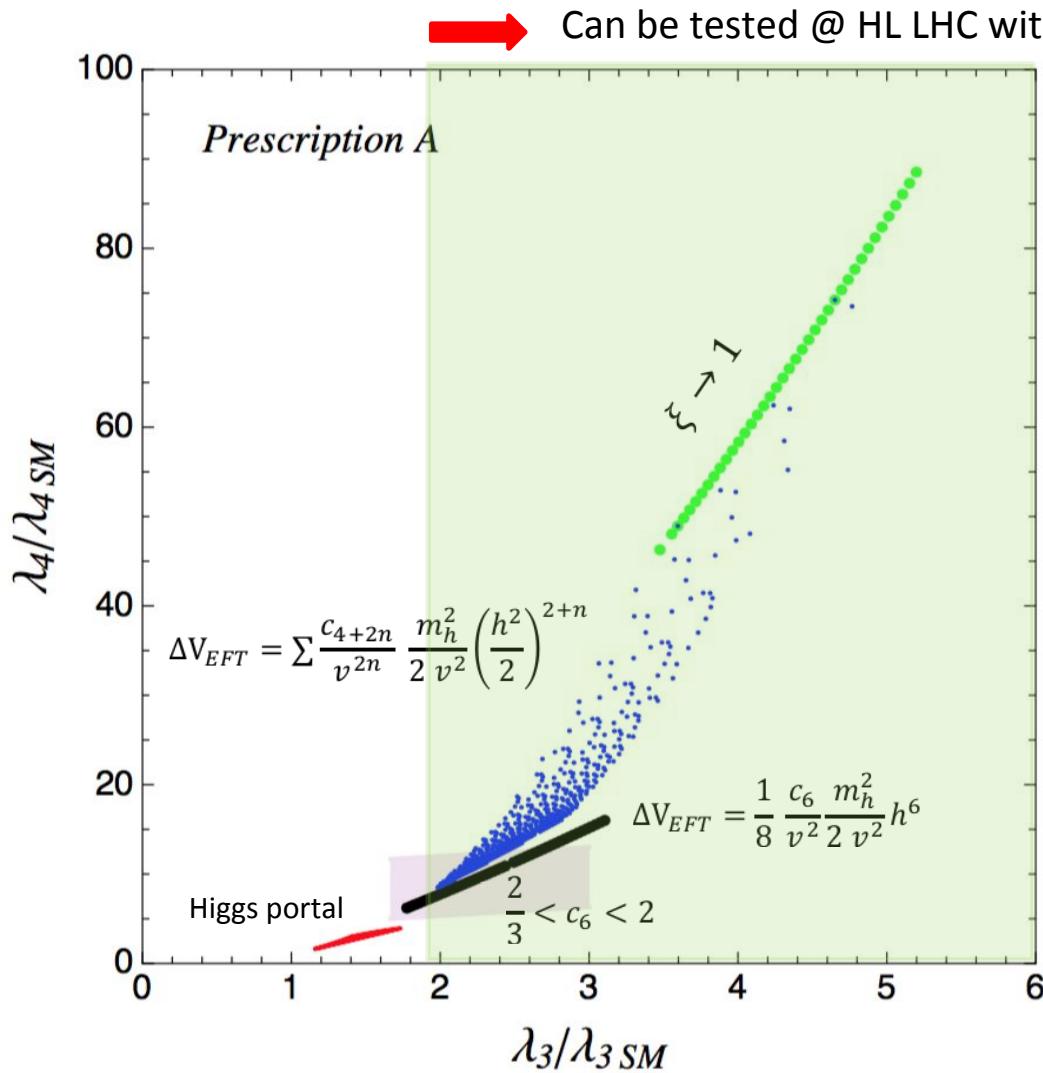
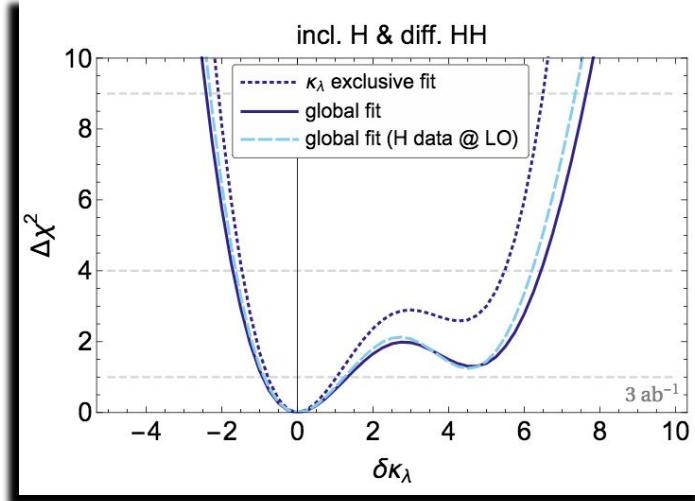
Cubic vs. Quartic

$$V(h) = \frac{1}{2}m_h^2 h^2 + c_3 \frac{1}{6} \left(\frac{3 m_h^2}{v} \right) h^3 + c_4 \frac{1}{24} \left(\frac{3 m_h^2}{v^2} \right) h^4$$

Higgs Portal

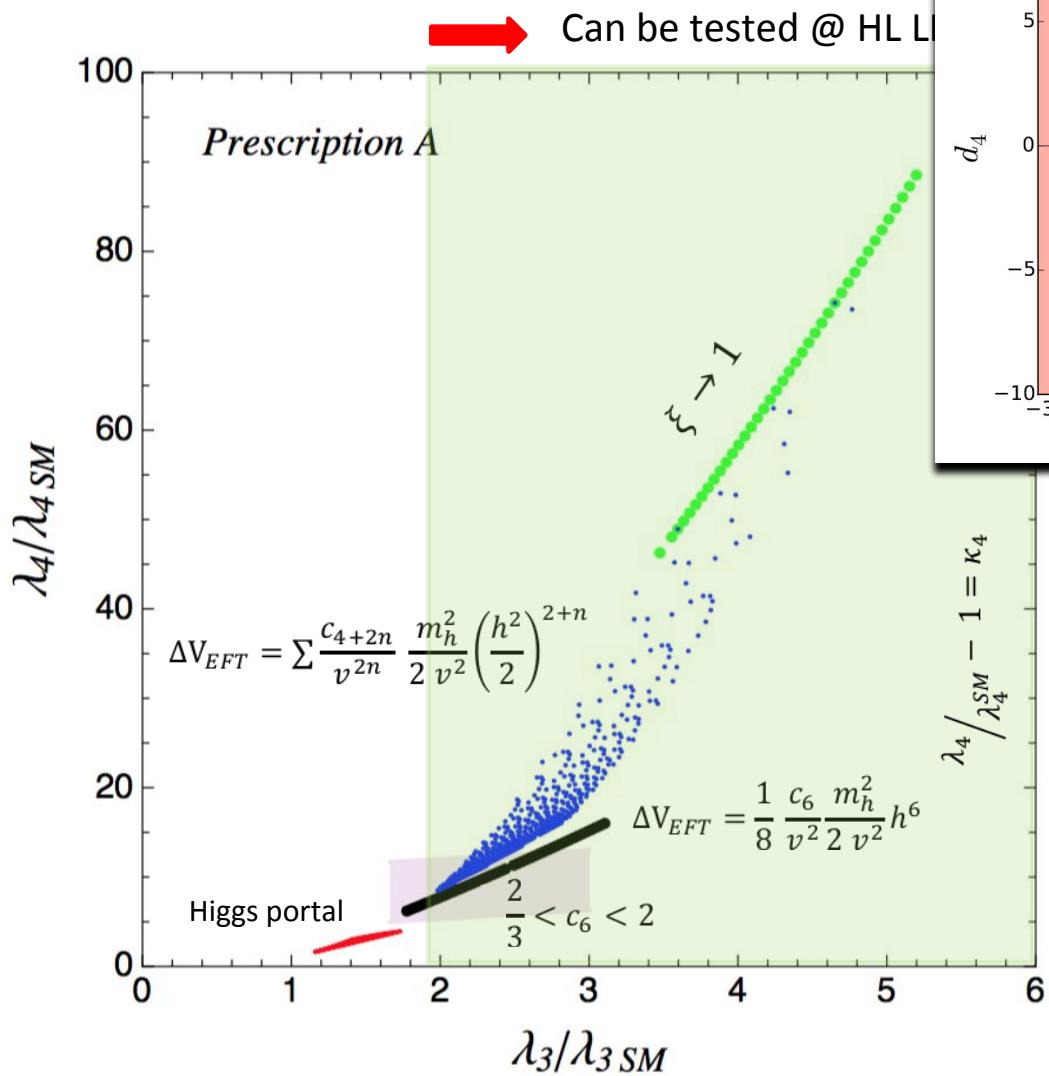
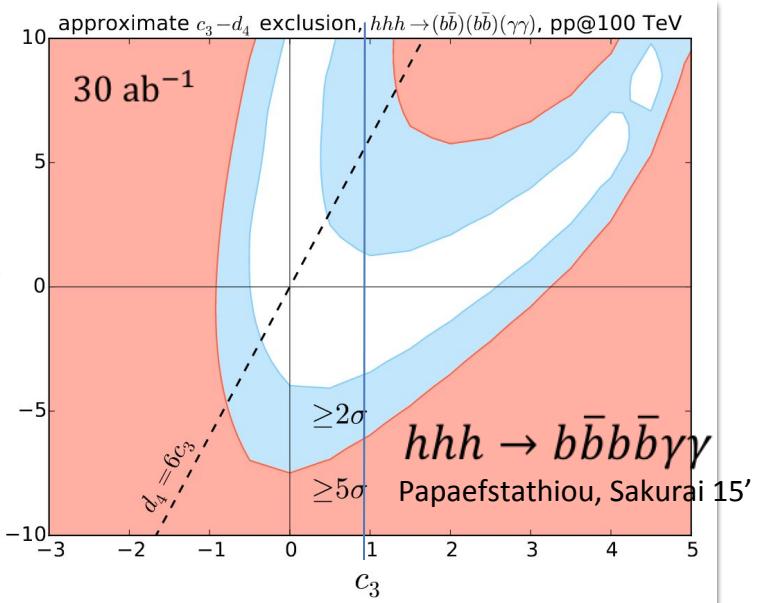


$\mathcal{O}(1)$ fraction of EFT parameter space can be tested at the HL LHC



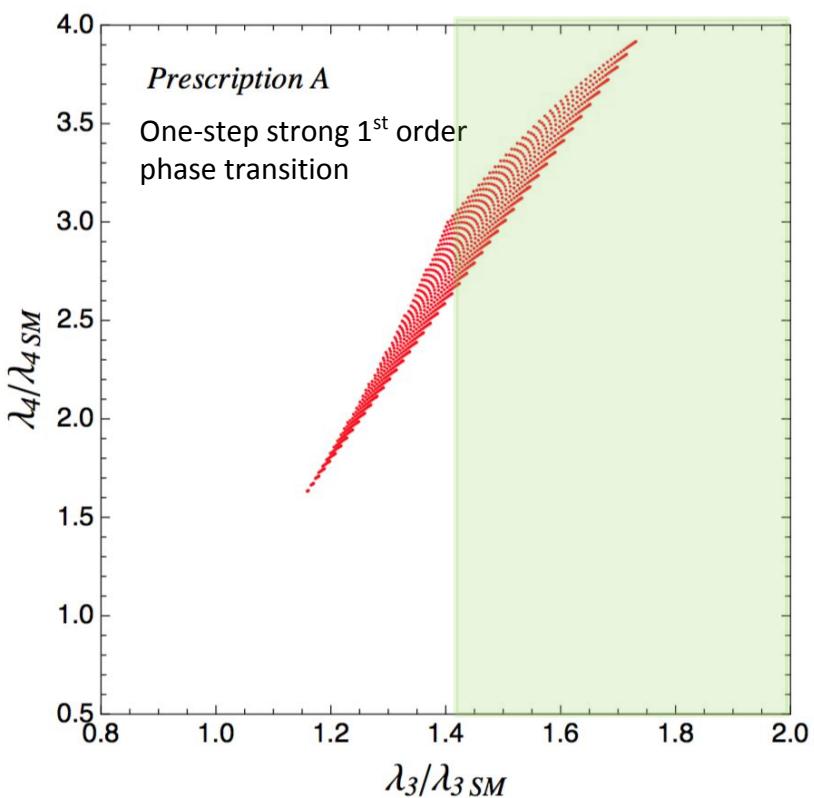
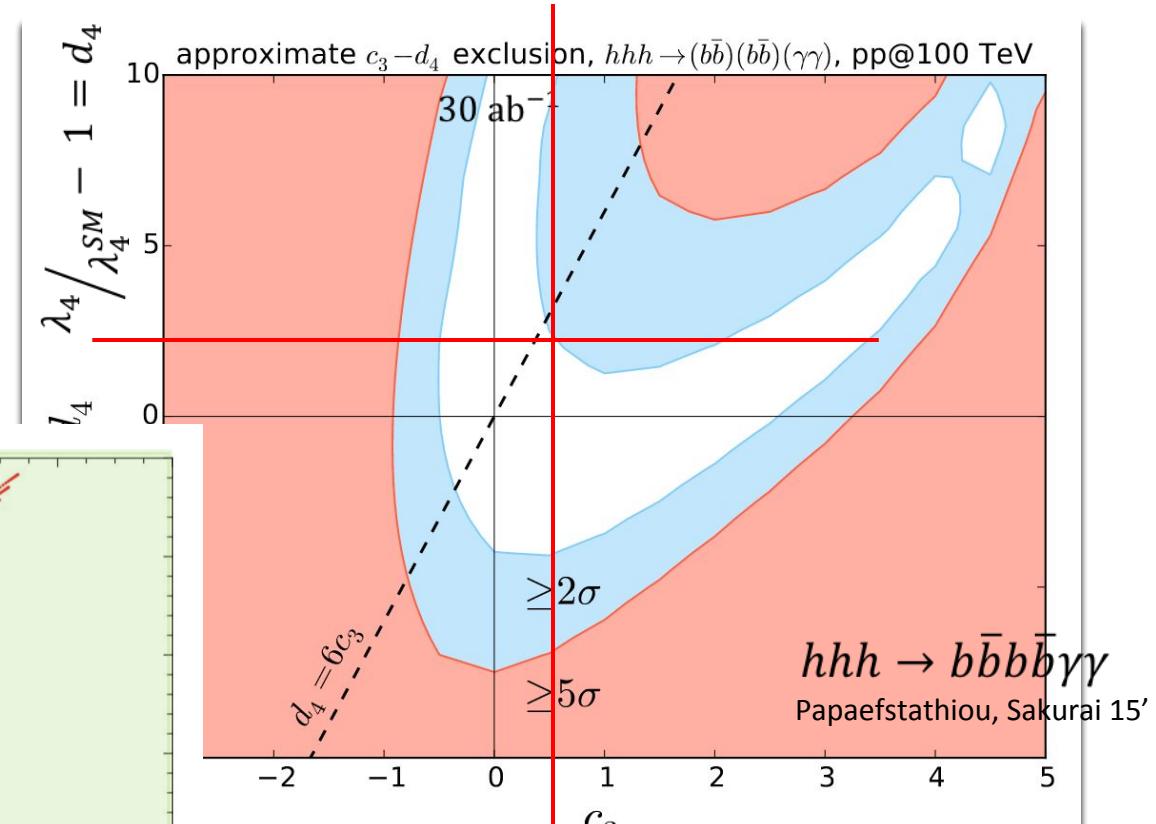
Vita, Grojean, Panico, Riembau, Vantalon 17'
 $c_3 = [0.1, 2.3] @ 1\sigma$

Quartic coupling IS useful to distinguish different EFTs!



**Strong sensitivity on quartic when a large deviation of the cubic is observed

Quartic coupling IS also useful for Higgs portal



$$\lambda_3/\lambda_{3SM} - 1 = c_3$$

Summary

- High-T approximation, finite v/T , A large coupling
 - Higgs Portal with a singlet scalar with $Z2$
 - ✓ Do not use high-T approximation
 - ✓ $\mathcal{O}(1)$ fluctuation on the precision of Higgs self-coupling due to v/T criteria
→ dramatic impact on future collider plan
 - Effective Field Theory Approach
 - ✓ Above issues become mild
 - ✓ Large deviation of coupling -> Validity of EFT -> Any reasonable EFT model?
- BSM maps in (λ_3, λ_4)
 - ✓ λ_4 can be used to differentiate different BSM scenarios in a situation when a large $\delta\lambda_3$ is observed
 - ✓ The quartic couplings in any BSM scenarios have a good sensitivity @ 100 TeV in that situation