

Non-thermal dark matter with stable charged particles : a study in some non-supersymmetric scenarios

Avirup Ghosh

Harish-Chandra Research Institute

Based on [1706.06815 \(Accepted in JHEP\)](#)
in collaboration with T.Mondal and B.Mukhopadhyaya

14th December, 2017

Abstract: A few words

In view of the fact DM particles has yet not left its footprints in direct-detection and LHC experiments

- ⇒ Two BSM scenarios with a non-thermal Dark Matter(DM) candidate accompanied by a charged long-lived particle have been discussed.
- ⇒ Discovery prospects of both the scenarios during upcoming runs of LHC has also been analyzed.

Dark Matter: current status and motivation for non-thermal Dark Matter

- ▶ **WIMP miracle**: DM particles with electroweak scale mass and couplings (in the same order as electroweak couplings)
⇒ $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$
⇒ **Correct Relic Abundance (~ 0.12)**

Dark Matter: current status and motivation for non-thermal Dark Matter

- ▶ **WIMP miracle**: DM particles with electroweak scale mass and couplings (in the same order as electroweak couplings)
⇒ $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$
⇒ **Correct Relic Abundance (~ 0.12)**
- ▶ Direct search experiments, try to measure the DM-Nucleon cross-section.

Dark Matter: current status and motivation for non-thermal Dark Matter

- ▶ **WIMP miracle**: DM particles with electroweak scale mass and couplings (in the same order as electroweak couplings)
⇒ $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$
⇒ **Correct Relic Abundance (~ 0.12)**
- ▶ Direct search experiments, try to measure the DM-Nucleon cross-section.
- ▶ Recent direct search experiments data ⇒ $\sigma_{SI} \sim 10^{-46} \text{ cm}^2$ (For DM mass ~ 100 GeV) ⇒ **Still no sign of DM.**

Dark Matter: current status and motivation for non-thermal Dark Matter

- ▶ **WIMP miracle:** DM particles with electroweak scale mass and couplings (in the same order as electroweak couplings)
⇒ $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$
⇒ **Correct Relic Abundance (~ 0.12)**
- ▶ Direct search experiments, try to measure the DM-Nucleon cross-section.
- ▶ Recent direct search experiments data ⇒ $\sigma_{SI} \sim 10^{-46} \text{ cm}^2$ (For DM mass $\sim 100 \text{ GeV}$) ⇒ **Still no sign of DM.**
- ▶ **DM interaction strength is much smaller with the SM particles**
⇒ DM particles had never been in thermal equilibrium ⇒ $\frac{\Gamma_x}{H} < 1$.
⇒ **Non-thermal dark matter. (FIMP)**

Non-thermal DM : Intrduction

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ long-lived particle(LLP).

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ **long-lived particle(LLP)**.
- ▶ LLP candidates are charged ⇒ For example in MSSM+ $\tilde{\nu}_R$, stau **NLSP** and dirac-sneutrino **LSP** ($y_\nu \sim 10^{-13}$).

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ **long-lived particle(LLP)**.
- ▶ LLP candidates are charged ⇒ For example in MSSM+ $\tilde{\nu}_R$, stau **NLSP** and dirac-sneutrino **LSP** ($y_\nu \sim 10^{-13}$).
- ▶ Charged LLP ⇒ **BBN** constraint → $\tau_{LLP}^{max} \sim 100\text{sec}$

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ **long-lived particle(LLP)**.
- ▶ LLP candidates are charged ⇒ For example in MSSM+ $\tilde{\nu}_R$, stau **NLSP** and dirac-sneutrino **LSP** ($y_\nu \sim 10^{-13}$).
- ▶ Charged LLP ⇒ **BBN** constraint → $\tau_{LLP}^{max} \sim 100\text{sec}$
- ▶ Two non-supersymmetric scenarios have been considered,

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ **long-lived particle(LLP)**.
- ▶ LLP candidates are charged ⇒ For example in MSSM+ $\tilde{\nu}_R$, stau **NLSP** and dirac-sneutrino **LSP** ($y_\nu \sim 10^{-13}$).
- ▶ Charged LLP ⇒ **BBN** constraint → $\tau_{LLP}^{max} \sim 100\text{sec}$
- ▶ Two non-supersymmetric scenarios have been considered,
⇒ (A) [Type III seesaw model with a sterile neutrino DM](#).

Non-thermal DM : Intrdution

- ▶ Non-thermal DM are produced from decay or collision of heavier particles.
- ▶ The non-thermal DM coupling $\sim 10^{-10}$ [[L. J. Hall et al 0911.1120](#)]
⇒ **long-lived particle(LLP)**.
- ▶ LLP candidates are charged ⇒ For example in MSSM+ $\tilde{\nu}_R$, stau **NLSP** and dirac-sneutrino **LSP** ($y_\nu \sim 10^{-13}$).
- ▶ Charged LLP ⇒ **BBN** constraint → $\tau_{LLP}^{max} \sim 100\text{sec}$
- ▶ Two non-supersymmetric scenarios have been considered,
⇒ (A) [Type III seesaw model with a sterile neutrino DM](#).
⇒ (B) [IDM with a Majorana neutrino DM](#).

Type III seesaw with a sterile neutrino

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM
- ▶ \mathbb{Z}_2 odd:- Σ_{3R}, ν_{sR}

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM
- ▶ \mathbb{Z}_2 odd:- Σ_{3R}, ν_{sR}
- ▶ Neutrino(ν) mass: $\sqrt{2} \bar{L}_{Lj} Y_\Sigma \Sigma_{\alpha R} \tilde{\Phi}$, $\alpha = 1, 2$

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM
- ▶ \mathbb{Z}_2 odd:- Σ_{3R}, ν_{sR}
- ▶ Neutrino(ν) mass: $\sqrt{2} \bar{L}_j Y_\Sigma \Sigma_{\alpha R} \tilde{\Phi}$, $\alpha = 1, 2$
- ▶ dimension-5 interactions:-
 $\frac{\alpha_{\Sigma\nu_s}}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Phi \nu_{sR}^c$, $\frac{\alpha_{\nu_s}}{\Lambda} \Phi^\dagger \Phi \bar{\nu}_{sR} \nu_{sR}^c$, $\frac{\alpha_\Sigma}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Sigma_{3R}^c \Phi$
- ▶ Λ :- Scale of new physics.

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM
- ▶ \mathbb{Z}_2 odd:- Σ_{3R} , ν_{sR}
- ▶ Neutrino(ν) mass: $\sqrt{2} \bar{L}_j Y_\Sigma \Sigma_{\alpha R} \tilde{\Phi}$, $\alpha = 1, 2$
- ▶ dimension-5 interactions:-
 $\frac{\alpha_{\Sigma\nu_s}}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Phi \nu_{sR}^c$, $\frac{\alpha_{\nu_s}}{\Lambda} \Phi^\dagger \Phi \bar{\nu}_{sR} \nu_{sR}^c$, $\frac{\alpha_\Sigma}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Sigma_{3R}^c \Phi$
 Λ :- Scale of new physics.
- ▶ Dirac Fermions:- $\eta_3^- = \Sigma_{3R}^- + \Sigma_{3R}^{+c}$
Majorana Fermions:- $\eta_3^0 = \Sigma_{3R}^0 + \Sigma_{3R}^{0c}$, $N^0 = \nu_{sR}^0 + \nu_{sR}^{0c}$.

Model A: Type III seesaw with a sterile neutrino

- ▶ SM fields + Σ_{jR} ($\Rightarrow \Sigma_{jR}^+, \Sigma_{jR}^0, \Sigma_{jR}^-$) + ν_{sR}
 Σ_{jR} :- $Y=0$, $SU(2)_L$ Triplet Fermion ($j=1,2,3$)
 ν_{sR} :- SM gauge singlet Fermion
- ▶ \mathbb{Z}_2 symmetry:- stable DM
- ▶ \mathbb{Z}_2 odd:- Σ_{3R}, ν_{sR}
- ▶ Neutrino(ν) mass: $\sqrt{2} \bar{L}_j Y_\Sigma \Sigma_{\alpha R} \tilde{\Phi}$, $\alpha = 1, 2$
- ▶ dimension-5 interactions:-
 $\frac{\alpha_{\Sigma\nu_s}}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Phi \nu_{sR}^c$, $\frac{\alpha_{\nu_s}}{\Lambda} \Phi^\dagger \Phi \bar{\nu}_{sR} \nu_{sR}^c$, $\frac{\alpha_\Sigma}{\Lambda} \Phi^\dagger \bar{\Sigma}_{3R} \Sigma_{3R}^c \Phi$
 Λ :- Scale of new physics.
- ▶ Dirac Fermions:- $\eta_3^- = \Sigma_{3R}^- + \Sigma_{3R}^{+c}$
Majorana Fermions:- $\eta_3^0 = \Sigma_{3R}^0 + \Sigma_{3R}^{0c}$, $N^0 = \nu_{sR}^0 + \nu_{sR}^{0c}$.
- ▶ dimension-5 interactions $\Rightarrow \eta_3^0$ and N^0 mixes.

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

- ▶ The mixing angle:- $\tan 2\beta = \frac{(\alpha_{\Sigma\nu_s} v^2)/\sqrt{2}\Lambda}{(M_{\Sigma} - \alpha_{\Sigma} v^2/2\Lambda - M_{\nu_s} + \alpha_{\nu_s} v^2/\Lambda)}$

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

- ▶ The mixing angle:- $\tan 2\beta = \frac{(\alpha_{\Sigma\nu_s} v^2)/\sqrt{2}\Lambda}{(M_{\Sigma} - \alpha_{\Sigma} v^2/2\Lambda - M_{\nu_s} + \alpha_{\nu_s} v^2/\Lambda)}$
- ▶ $M_{\Sigma} \Rightarrow$ Majorana mass for Σ_{3R}
 $M_{\nu_s} \Rightarrow$ Majorana mass for ν_{sR} .

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

- ▶ The mixing angle:- $\tan 2\beta = \frac{(\alpha_{\Sigma\nu_s} v^2)/\sqrt{2}\Lambda}{(M_\Sigma - \alpha_\Sigma v^2/2\Lambda - M_{\nu_s} + \alpha_{\nu_s} v^2/\Lambda)}$
- ▶ $M_\Sigma \Rightarrow$ Majorana mass for Σ_{3R}
 $M_{\nu_s} \Rightarrow$ Majorana mass for ν_{sR} .
- ▶ Assume, $M_\Sigma > M_{\nu_s} \Rightarrow \chi$ is lightest \mathbb{Z}_2 odd particle
 \Rightarrow Dark Matter.

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

- ▶ The mixing angle:- $\tan 2\beta = \frac{(\alpha_{\Sigma\nu_s} v^2)/\sqrt{2}\Lambda}{(M_\Sigma - \alpha_\Sigma v^2/2\Lambda - M_{\nu_s} + \alpha_{\nu_s} v^2/\Lambda)}$
- ▶ $M_\Sigma \Rightarrow$ Majorana mass for Σ_{3R}
 $M_{\nu_s} \Rightarrow$ Majorana mass for ν_{sR} .
- ▶ Assume, $M_\Sigma > M_{\nu_s} \Rightarrow \chi$ is lightest \mathbb{Z}_2 odd particle
 \Rightarrow Dark Matter.
- ▶ All χ interactions $\propto \frac{1}{\Lambda}$

Model A: Type III seesaw with a sterile neutrino

- ▶ Majorana mass eigenstates:-

$$\chi = \cos \beta \ N^0 - \sin \beta \ \eta_3^0, \ \psi = \sin \beta \ N^0 + \cos \beta \ \eta_3^0.$$

- ▶ The mixing angle:- $\tan 2\beta = \frac{(\alpha_{\Sigma\nu_s} v^2)/\sqrt{2}\Lambda}{(M_\Sigma - \alpha_\Sigma v^2/2\Lambda - M_{\nu_s} + \alpha_{\nu_s} v^2/\Lambda)}$
- ▶ $M_\Sigma \Rightarrow$ Majorana mass for Σ_{3R}
 $M_{\nu_s} \Rightarrow$ Majorana mass for ν_{sR} .
- ▶ Assume, $M_\Sigma > M_{\nu_s} \Rightarrow \chi$ is lightest \mathbb{Z}_2 odd particle
 \Rightarrow Dark Matter.
- ▶ All χ interactions $\propto \frac{1}{\Lambda}$
- ▶ Large $\Lambda \Rightarrow \chi$ is non-thermal DM.

Model A: Type III seesaw with a sterile neutrino

- ▶ χ production in early universe:- $\eta_3^\pm \rightarrow \chi W^\pm$ and $\psi \rightarrow \chi h$ (No Z_μ coupling) \Rightarrow From decay of next-to-lightest odd particles (NLOP).

Model A: Type III seesaw with a sterile neutrino

- ▶ χ production in early universe:- $\eta_3^\pm \rightarrow \chi W^\pm$ and $\psi \rightarrow \chi h$ (No Z_μ coupling) \Rightarrow From decay of next-to-lightest odd particles (NLOP).
- ▶ χ relic density, $\Omega_\chi h^2 = \Omega_\chi h^2|_{freeze-in} + \Omega_\chi h^2|_{freeze-out}$

Model A: Type III seesaw with a sterile neutrino

- ▶ χ production in early universe:- $\eta_3^\pm \rightarrow \chi W^\pm$ and $\psi \rightarrow \chi h$ (No Z_μ coupling) \Rightarrow From decay of next-to-lightest odd particles (NLOP).
- ▶ χ relic density, $\Omega_\chi h^2 = \Omega_\chi h^2|_{freeze-in} + \Omega_\chi h^2|_{freeze-out}$
- ▶ $\Omega_\chi h^2|_{freeze-in} \approx \frac{1.09 \times 10^{27}}{g_*^{3/2}} \frac{g_{NLOP}}{M_{NLOP}^2} \frac{M_\chi \Gamma_{NLOP}}{M_{NLOP}^2}$
 $\Omega_\chi h^2|_{freeze-out} = \frac{M_\chi}{M_{NLOP}} \Omega_{NLOP} h^2$

Model A: Type III seesaw with a sterile neutrino

- ▶ χ production in early universe:- $\eta_3^\pm \rightarrow \chi W^\pm$ and $\psi \rightarrow \chi h$ (No Z_μ coupling) \Rightarrow From decay of next-to-lightest odd particles (NLOP).
- ▶ χ relic density, $\Omega_\chi h^2 = \Omega_\chi h^2|_{freeze-in} + \Omega_\chi h^2|_{freeze-out}$
- ▶ $\Omega_\chi h^2|_{freeze-in} \approx \frac{1.09 \times 10^{27}}{g_*^{3/2}} \frac{g_{NLOP}}{M_{NLOP}^2} \frac{M_\chi \Gamma_{NLOP}}{M_{NLOP}^2}$
 $\Omega_\chi h^2|_{freeze-out} = \frac{M_\chi}{M_{NLOP}} \Omega_{NLOP} h^2$
- ▶ Constraints on Γ_{NLOP}
 \Rightarrow Upper limit from $\Omega_\chi h^2 \lesssim 0.12$
 \Rightarrow Lower limit from $\tau_{NLOP} \lesssim 100\text{sec}$

Model A: Type III seesaw with a sterile neutrino

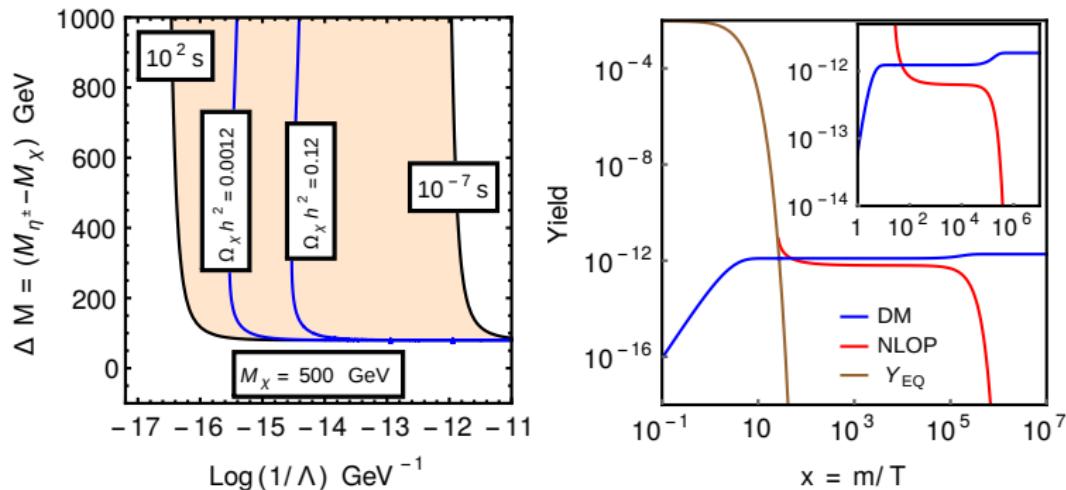


Figure : Region of parameter space allowed by DM relic density and BBN constraints (left). DM and NLOP yield as a function of $x = \frac{M_\Sigma}{T}$ (right). Plot is for $M_\chi = 500 \text{ GeV}$.

Model A: Type III seesaw with a sterile neutrino

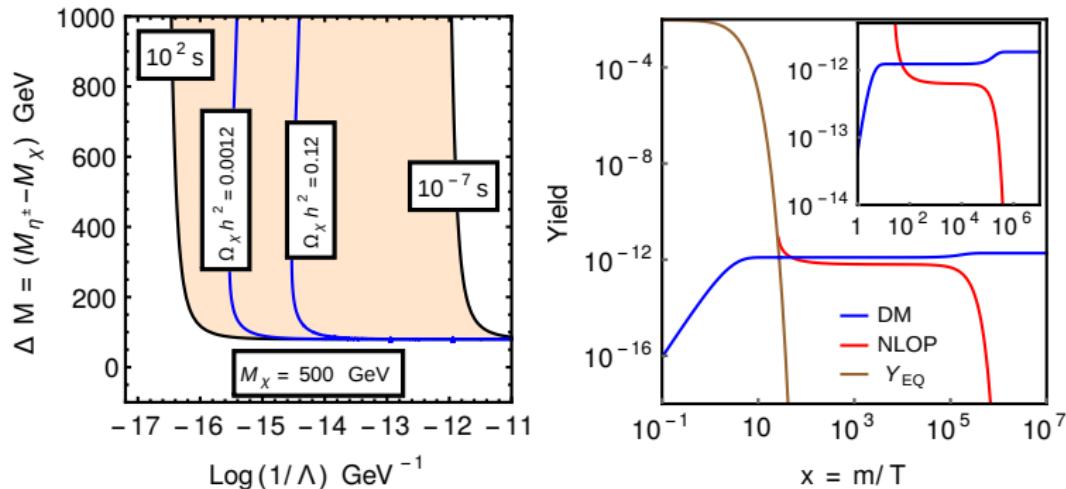


Figure : Region of parameter space allowed by DM relic density and BBN constraints (left). DM and NLOP yield as a function of $x = \frac{M_\Sigma}{T}$ (right). Plot is for $M_\chi = 500$ GeV.

- $\Lambda \sim 14.5$ GeV, $\Delta M \sim 300$ GeV \Rightarrow **Correct Relic density and collider scale stable NLOP (η^\pm, ψ)**.

IDM with majorana neutrino DM

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet $(H^+, H^0 + iA^0)$
 N_{jR} :- SM gauge singlet

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet $(H^+, H^0 + iA^0)$
 N_{jR} :-SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet $(H^+, H^0 + iA^0)$
 N_{jR} :-SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.
- ▶ \mathbb{Z}_2 odd Φ_2 \Rightarrow no VEV
 $\Rightarrow V(\Phi_1, \Phi_2) \supset$
 $\{\mu_2 \Phi_2^\dagger \Phi_2, \lambda_2 (\Phi_2^\dagger \Phi_2)^2, \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2), \lambda_4 (\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_2), \frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2\}$

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet ($H^+, H^0 + iA^0$)
 N_{jR} :- SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.
- ▶ \mathbb{Z}_2 odd Φ_2 \Rightarrow no VEV
 $\Rightarrow V(\Phi_1, \Phi_2) \supset$
 $\{\mu_2 \Phi_2^\dagger \Phi_2, \lambda_2 (\Phi_2^\dagger \Phi_2)^2, \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2), \lambda_4 (\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_2), \frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2\}$
- ▶ N_{1R}, N_{2R} are \mathbb{Z}_2 even \Rightarrow Neutrino mass (Type I Seesaw)

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet ($H^+, H^0 + iA^0$)
 N_{jR} :-SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.
- ▶ \mathbb{Z}_2 odd Φ_2 \Rightarrow no VEV
 $\Rightarrow V(\Phi_1, \Phi_2) \supset$
 $\{\mu_2 \Phi_2^\dagger \Phi_2, \lambda_2 (\Phi_2^\dagger \Phi_2)^2, \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2), \lambda_4 (\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_2), \frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2\}$
- ▶ N_{1R}, N_{2R} are \mathbb{Z}_2 even \Rightarrow Neutrino mass (Type I Seesaw)
- ▶ N_{3R} interactions :- $y_{\nu j} \bar{N}_{3R} \tilde{\Phi}_2^\dagger L_{Lj}$

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet ($H^+, H^0 + iA^0$)
 N_{jR} :-SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.
- ▶ \mathbb{Z}_2 odd Φ_2 \Rightarrow no VEV
 $\Rightarrow V(\Phi_1, \Phi_2) \supset$
 $\{\mu_2 \Phi_2^\dagger \Phi_2, \lambda_2 (\Phi_2^\dagger \Phi_2)^2, \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2), \lambda_4 (\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_2), \frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2\}$
- ▶ N_{1R}, N_{2R} are \mathbb{Z}_2 even \Rightarrow Neutrino mass (Type I Seesaw)
- ▶ N_{3R} interactions :- $y_{\nu j} \bar{N}_{3R} \tilde{\Phi}_2^\dagger L_{Lj}$
- ▶ Proper choice of $\mu_2, \lambda_3, \lambda_4, \lambda_5$ and M_3 (Majorana mass for N_{3R})
 $\Rightarrow M_{A^0}^2 \simeq M_{H^0}^2 > M_{H^\pm}^2 > M_3$

Model B: IDM with a Majorana neutrino DM

- ▶ SM fields + Φ_2 + N_{jR}
 Φ_2 :- $Y = 1, SU(2)_L$ Doublet ($H^+, H^0 + iA^0$)
 N_{jR} :-SM gauge singlet
- ▶ \mathbb{Z}_2 symmetry \Rightarrow stable DM $\Rightarrow \Phi_2$ and N_{3R} odd.
- ▶ \mathbb{Z}_2 odd Φ_2 \Rightarrow no VEV
 $\Rightarrow V(\Phi_1, \Phi_2) \supset$
 $\{\mu_2 \Phi_2^\dagger \Phi_2, \lambda_2 (\Phi_2^\dagger \Phi_2)^2, \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2), \lambda_4 (\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_2), \frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2\}$
- ▶ N_{1R}, N_{2R} are \mathbb{Z}_2 even \Rightarrow Neutrino mass (Type I Seesaw)
- ▶ N_{3R} interactions :- $y_{\nu j} \bar{N}_{3R} \tilde{\Phi}_2^\dagger L_{Lj}$
- ▶ Proper choice of $\mu_2, \lambda_3, \lambda_4, \lambda_5$ and M_3 (Majorana mass for N_{3R})
 $\Rightarrow M_{A^0}^2 \simeq M_{H^0}^2 > M_{H^\pm}^2 > M_3$
- ▶ N_{3R} is only \mathbb{Z}_2 odd fermion $\Rightarrow \chi (= N_{3R} + N_{3R}^c)$ is DM.
 $\Rightarrow M_\chi = M_3$

Model B: IDM with a Majorana neutrino DM

- ▶ All χ interactions $\propto y_{\nu j}$

Model B: IDM with a Majorana neutrino DM

- ▶ All χ interactions $\propto y_{\nu j}$
- ▶ Small $y_{\nu j} \Rightarrow \chi$ is non-thermal DM candidate.

Model B: IDM with a Majorana neutrino DM

- ▶ All χ interactions $\propto y_{\nu j}$
- ▶ Small $y_{\nu j} \Rightarrow \chi$ is non-thermal DM candidate.
- ▶ χ production in early universe $\Rightarrow H^\pm \rightarrow \chi l^\pm, H^0(A^0) \rightarrow \chi \nu$
 \Rightarrow from decay of NLOPs (H^\pm, H^0, A^0)

Model B: IDM with a Majorana neutrino DM

- ▶ All χ interactions $\propto y_{\nu j}$
- ▶ Small $y_{\nu j} \Rightarrow \chi$ is non-thermal DM candidate.
- ▶ χ production in early universe $\Rightarrow H^\pm \rightarrow \chi l^\pm, H^0(A^0) \rightarrow \chi \nu$
 \Rightarrow from decay of NLOPs (H^\pm, H^0, A^0)
- ▶ Relic density, $\Omega_\chi h^2 = \Omega_\chi h^2|_{freeze-in} + \Omega_\chi h^2|_{freeze-out}$

Model B: IDM with a Majorana neutrino DM

- ▶ All χ interactions $\propto y_{\nu j}$
- ▶ Small $y_{\nu j} \Rightarrow \chi$ is non-thermal DM candidate.
- ▶ χ production in early universe $\Rightarrow H^\pm \rightarrow \chi l^\pm, H^0(A^0) \rightarrow \chi \nu$
 \Rightarrow from decay of NLOPs (H^\pm, H^0, A^0)
- ▶ Relic density, $\Omega_\chi h^2 = \Omega_\chi h^2|_{freeze-in} + \Omega_\chi h^2|_{freeze-out}$
- ▶ Relic density and BBN data constraints Γ_{NLOP} .

Model B: IDM with a Majorana neutrino DM

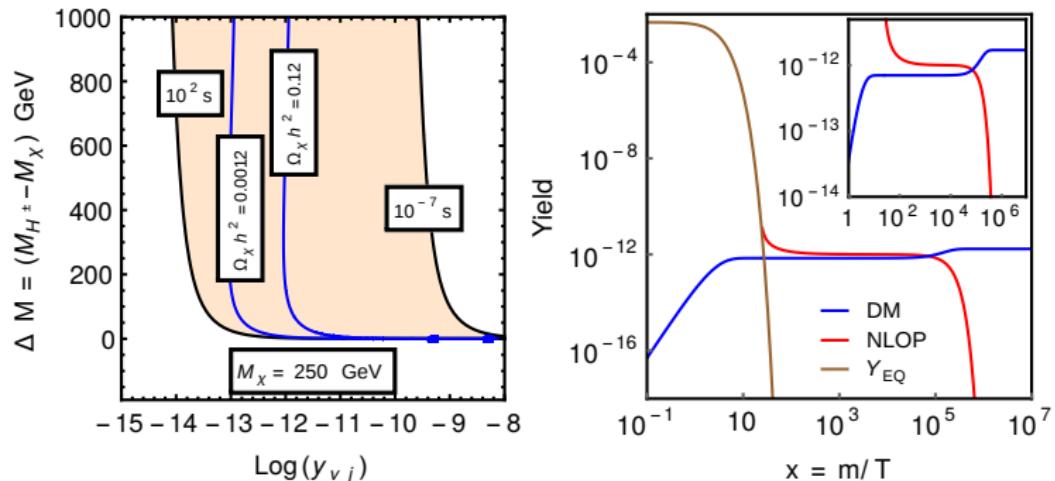


Figure : Region of parameter space allowed by DM relic density and BBN constraints (left) and DM and NLOP yield as a function of $x = \frac{M_{H^\pm}}{T}$. Plot is for $M_\chi = 250$ GeV.

Model B: IDM with a Majorana neutrino DM

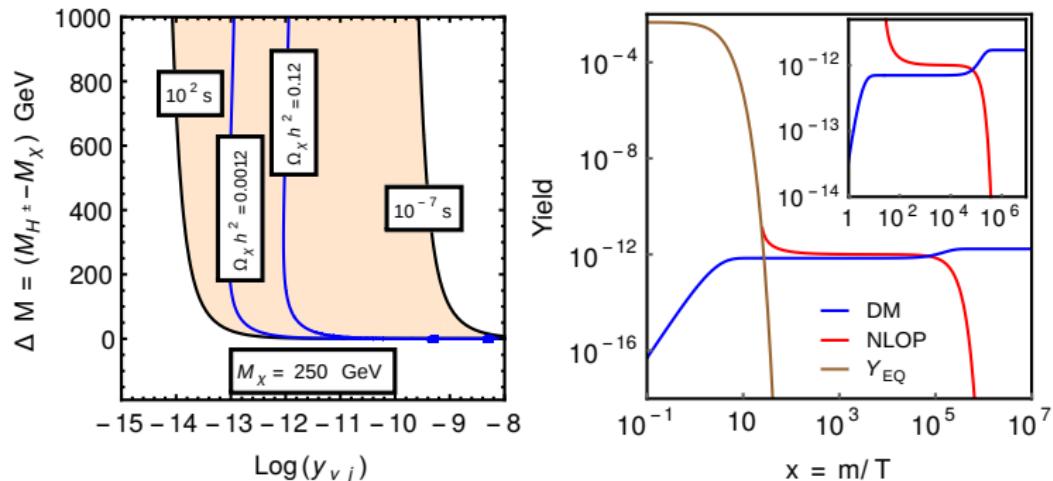


Figure : Region of parameter space allowed by DM relic density and BBN constraints (left) and DM and NLOP yield as a function of $x = \frac{M_{H^\pm}}{T}$. Plot is for $M_\chi = 250$ GeV.

- ▶ $y_{\nu_j} \sim 10^{-12}$, $M_{H^\pm} \sim 500$ GeV and $M_\chi \sim 250$ GeV $\Rightarrow \tau_{NLOP} \sim 0.0297$ s $\Rightarrow H^\pm$ will decay outside detectors.

Collider signal

- ▶ **Model A :-**

$p p \rightarrow \eta_3^\pm \eta_3^\mp$ (**Opposite-sign tracks**) \Rightarrow Z -mediation

$p p \rightarrow \eta_3^\pm \psi$ (**Single track + \cancel{E}_T**) \Rightarrow W^\pm -mediation

Collider signal

- ▶ **Model A :-**

$p p \rightarrow \eta_3^\pm \eta_3^\mp$ (Opposite-sign tracks) \Rightarrow Z-mediation

$p p \rightarrow \eta_3^\pm \psi$ (Single track + $\notin T$) \Rightarrow W^\pm -mediation

- ▶ **Model B :-**

$p p \rightarrow H^\pm H^\mp$ Z-mediation

$p p \rightarrow H^\pm H^0(A^0) \rightarrow H^\pm H^\mp X \rightarrow W\text{-mediation} \rightarrow$ Opposite-sign tracks

$p p \rightarrow H^\pm H^0(A^0) \rightarrow H^\pm H^\pm X \rightarrow W\text{-mediation} \rightarrow$ Same-sign tracks

where $X = l^+ \nu, l^- \bar{\nu}, jj$

Collider signal

- ▶ **Model A :-**

$p p \rightarrow \eta_3^\pm \eta_3^\mp$ (**Opposite-sign tracks**) \Rightarrow Z-mediation

$p p \rightarrow \eta_3^\pm \psi$ (**Single track + \cancel{E}_T**) \Rightarrow W^\pm -mediation

- ▶ **Model B :-**

$p p \rightarrow H^\pm H^\mp$ Z-mediation

$p p \rightarrow H^\pm H^0(A^0) \rightarrow H^\pm H^\mp X \rightarrow$ W-mediation \rightarrow **Opposite-sign tracks**

$p p \rightarrow H^\pm H^0(A^0) \rightarrow H^\pm H^\pm X \rightarrow$ W-mediation \rightarrow **Same-sign tracks**

where $X = l^+ \nu, l^- \bar{\nu}, jj$

- ▶ **Background :-**

Opposite sign :- Drell-yan, $t \bar{t}$ and di-boson.

Single track :- $t \bar{t}$, di-boson.

Same sign :- $t \bar{t}$, $t \bar{t} W^\pm$ and di-boson.

\rightarrow Cosmic-ray muon in each case.

Collider Analysis

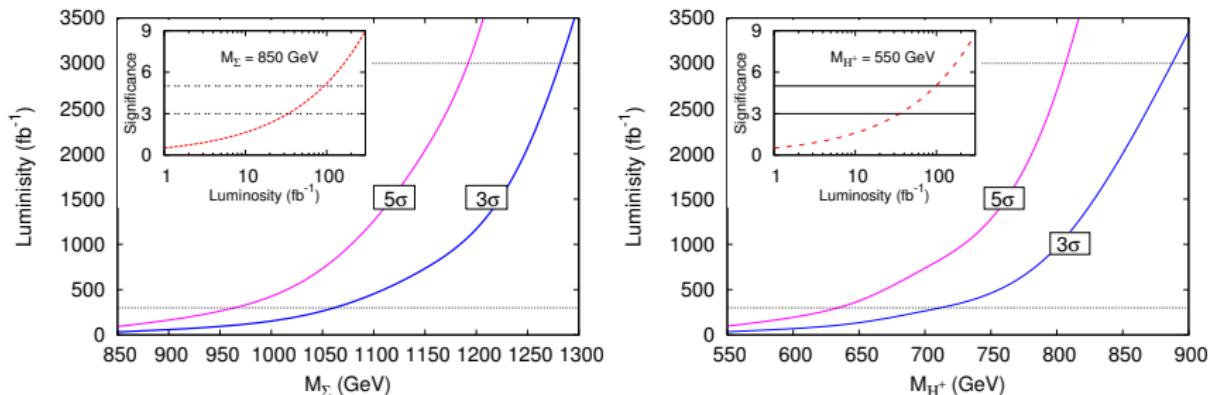


Figure : Integrate luminosity vs NLOP mass reach for Opposite-sign charged tracks of the Model A(left) and Model B(right) in 14 TeV run of LHC. Inset shows the significance vs luminosity for fixed BP in each case.

- ▶ Proper choice of kinematic cuts (JHEP 01 (2015) 068, 1411.6795)
+ $\int \mathcal{L} dt \ 300 \text{ fb}^{-1} \Rightarrow$
Model A:- $M_{\Sigma} = 970(1060)\text{GeV}$ at $5\sigma(3\sigma)$ statistical significance.
Model B:- $M_{H^\pm} = 630(710)\text{GeV}$ at $5\sigma(3\sigma)$ statistical significance.

Summary

- ▶ Stability of DM is usually achieved by imposition of some symmetry. In general DM candidate is lightest particle charged under that symmetry.

Summary

- ▶ Stability of DM is usually achieved by imposition of some symmetry. In general DM candidate is lightest particle charged under that symmetry.
- ▶ Production of any of the particles charged under this *extra* symmetry ultimately leads to the production of DM.

Summary

- ▶ Stability of DM is usually achieved by imposition of some symmetry. In general DM candidate is lightest particle charged under that symmetry.
- ▶ Production of any of the particles charged under this *extra* symmetry ultimately leads to the production of DM.
- ▶ The DM particle leaves its signature within the collider-detectors as large missing transverse momentum (\vec{p}_T) or transverse energy (\cancel{E}_T) along with jets (or photons).

Summary

- ▶ Stability of DM is usually achieved by imposition of some symmetry. In general DM candidate is lightest particle charged under that symmetry.
- ▶ Production of any of the particles charged under this *extra* symmetry ultimately leads to the production of DM.
- ▶ The DM particle leaves its signature within the collider-detectors as large missing transverse momentum (\vec{p}_T) or transverse energy (\cancel{E}_T) along with jets (or photons).
- ▶ Heavy stable charged tracks are very interesting and unusual signature of DM.

Thank You

Back-up slides

Backup

- ▶ Type III seesaw model + $SU(2)_L$ singlet singly charged Weyl fermion $\lambda_{L,R}$ + $SU(2)_L$ triplet scalar Δ .
- ▶ Interactions :- $-M_\lambda \bar{\lambda} \lambda - Y_\lambda \text{Tr}(\bar{\Sigma}_{3R}^c \Delta \lambda_R + \bar{\Sigma}_{3R} \Delta \lambda_R^c) + h.c$
- ▶ η_3^\pm and λ mixes among themselves \Rightarrow For $M_\lambda > M_\Sigma$ the lower mass eigenstate is η_3^\pm dominated.

M_Σ (GeV) $\approx M_\psi$	M_λ (GeV)	Y_λ	Eigenvalues	
			Light(GeV) $\approx M_{\eta_3^\pm}$	Heavy (GeV)
850	2000	5	849.65	2000.35
	2500	5	849.76	2500.24
950	2000	5	949.62	2000.38
	2500	5	949.74	2500.26

Table : Eigenvalues of the nearly degenerate charged and neutral fermions for few benchmark points after mixing between the triplet fermion and vector-like heavy charged fermion. Scalar triplet vev is $v_\Delta = 4$ GeV.

Backup

- The chosen benchmarks for model A:-

Parameters	M_{Σ} (GeV)	M_{ν_s} (GeV)	Λ (GeV)
BP1	850	500	10^{15}
BP2	950	500	10^{15}

Table : Benchmark points for studying the discovery prospects of stable charged tracks of η_3^\pm and ψ for Type III seesaw model at 14 TeV run of LHC.

- The chosen benchmarks for model B:-

Parameters	M_{H^\pm} (GeV)	M_{H^0} (GeV)	M_{A^0} (GeV)	M_3 (GeV)	y_{ν_j}
BP1	550	555	555	250	10^{-12}
BP2	600	605	605	250	10^{-12}

Table : Benchmark points for studying the discovery prospects of stable charged tracks of H^\pm for IDM at 14 TeV run of LHC. We have considered $\lambda_2=0.5$ and $\lambda_L=0.04$.

Backup

- ▶ Chosen kinematical cuts:-

Parameter	β	p_T	$ y(\mu_{1,2}) $	$\Delta R(\mu_1, \mu_2)$
Cut values	(A)[0.2, 0.95] (B)[0.2, 0.80]	> 70 GeV > 70 GeV	< 2.5 < 2.5	> 0.4 > 0.4

Table : Basic selection cuts applied to analyze signals of heavy stable charged track.

- ▶ Results for Model A:-

Signal	Benchmark point	$\int \mathcal{L} dt$ for 5σ	N_S	N_B	N_S/N_B
Opposite Sign	BP1	92.95	92	248	0.37
	BP2	263.23	146	702	0.21
Single Track + \not{E}_T	BP1	(A)340.40	841	27436	0.030
		(B) 24.81	46	40	1.150
	BP2	(A)1076.19 (B) 56.60	1485 62	86741 91	0.017 0.681

Table : Integrated luminosity (fb^{-1}) required to attain 5σ statistical

Backup

- ▶ Results for Model B :-

Signal	Benchmark point	$\int \mathcal{L} dt$ for 5σ	N_S	N_B	N_S/N_B
Opposite Sign	BP1	97.81	94	261	0.36
	BP2	195.16	127	520	0.24
Same Sign	BP1	71.62	67	115	0.58
	BP2	137.45	88	220	0.40

Table : Integrated luminosity(fb^{-1}) required to attain 5σ statistical significance for $H^\pm H^\mp$ signal for the considered benchmark points during 14 TeV run of LHC.