

Sterile neutrinos as SIMP dark matter

Johannes Herms

Technical University of Munich

SUSY 17, Mumbai

12.12.2017

in collaboration with Alejandro Ibarra and Takashi Toma

Dark Matter

- what is it?
- where did it come from?

Classification by production mechanism

- has it been in equilibrium with visibles?
 - yes: freeze-out like
 - no: freeze-in like
 - neither: asymmetric DM, primordial axion condensate, dilution by entropy production, ...
- particle physics setting the relic abundance?
 - complete BSM model
 - higgs, hidden photon, neutrino portals
 - dark sector internals

Sterile Neutrinos

- Majorana fermion, singlet under SM
- neutrino portal: [Dodelson, Widrow'94], [Shi, Fuller'99]
- extended dark sector: production through scalar decays [Merle et.al.'14]
- this talk: **relic abundance set by sterile neutrino self-interactions**

- “strongly interacting massive particle” = relic abundance set by freeze out of number changing interactions $N \rightarrow N'$ [Hochberg et.al. ’14]
[Carlson et.al. ’92]
- requires self-thermalised dark sector before fo.
 - dark matter chemical potential $\mu = 0$, dark sector temperature T'
 - may or may not be in kinetic eq. with the visible sector, $T' \neq T$ possible
- two options for a self-thermalised dark sector
 - DM not lightest dark particle
 - freeze out of annihilations to the lighter, unstable (else ΔN_{eff}) dark particle, parameter space very constrained [eg. 1704.02149]
 - DM is lightest dark particle
 - freeze out of number changing interactions \rightarrow SIMP DM

What if a sterile neutrino is the lightest particle in a self-thermalised dark sector?

- Majorana singlet χ , or “sterile neutrino”
- dark matter Lagrangian, including operators up to dimension 6:

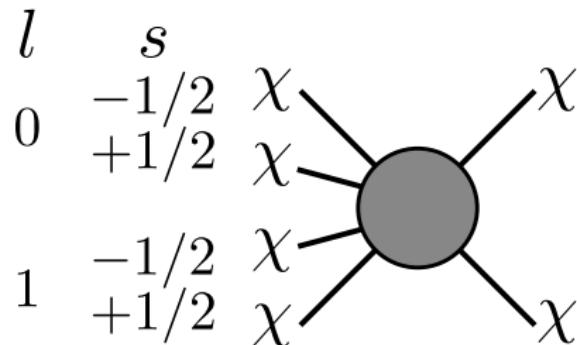
$$\mathcal{L}_{\text{DM}} = \frac{1}{2} \overline{\chi^c} i \not{d} \chi - \frac{1}{2} m_\chi \overline{\chi^c} \chi - y_\chi \bar{L} \tilde{H} \chi - \frac{1}{4! \Lambda^2} (\overline{\chi^c} \chi) (\overline{\chi^c} \chi) + \text{h.c.} ,$$

- $y_\chi \lesssim 10^{-16} \left(\frac{\text{MeV}}{m_\chi} \right)^{3/2}$ from decay $\chi \rightarrow \nu \gamma$ to γ -ray background
- dim-6 operator induces dark matter two-to-two scatterings

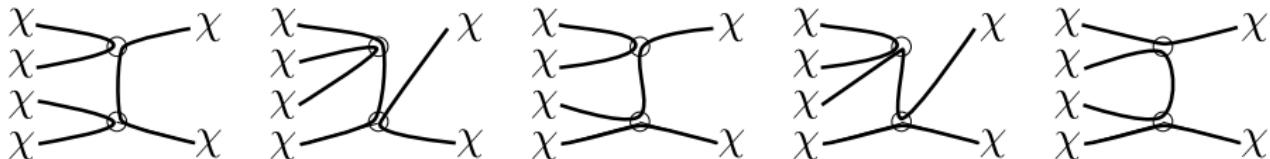
$$\sigma_{2 \rightarrow 2} = \frac{1}{72\pi} \frac{m_\chi^2}{\Lambda^4}$$

- cluster collision bound: $\sigma_{2 \rightarrow 2}/m_{\text{DM}} \lesssim 1 \text{ cm}^2/\text{g}$ [e.g. 1503.07675]
- may address small scale structure hints if $\gtrsim 0.1 \text{ cm}^2/\text{g}$ [e.g. 1508.03339]

- $2 \rightarrow$ SM annihilation rate required to be small by gamma ray bound
- $3 \rightarrow 2$ annihilation impossible by Lorentz structure
- $4 \rightarrow 2$ annihilation *d*-wave velocity suppressed for Majorana fermions



- including fermion lines: 5 topologies



- including external state permutations, > 100 diagrams, solved by FeynCalc, nonrelativistic limit, expand in velocities
- by diagram:
 - first: $\bar{v}(p_4)u(p_3)\bar{v}(p_2)u(p_1) \sim v^2 \rightarrow |\mathcal{M}|^2 \sim v^4$
 - last: $\mathcal{O}(v^0)$
 - total: $|\mathcal{M}|^2 \sim (v_i v_j)(v_k v_l) \sim T'^2/m^2 \sim x'^{-2}$

$$\langle \sigma v^3 \rangle = \frac{1201}{20480\sqrt{3}\pi\Lambda^8} \frac{1}{x'^2}$$

Boltzmann equation:

$$\frac{dY_\chi}{dx} \simeq -\frac{s^3}{Hx} \langle \sigma v^3 \rangle (Y_\chi^4 - Y_\chi^2 Y_{\chi, \text{eq}}^2)$$

- interactions freeze at T'_f determined by

$$H(T_f) = \langle \sigma v^3 \rangle n_{\chi, \text{eq}}^3(T'_f)$$

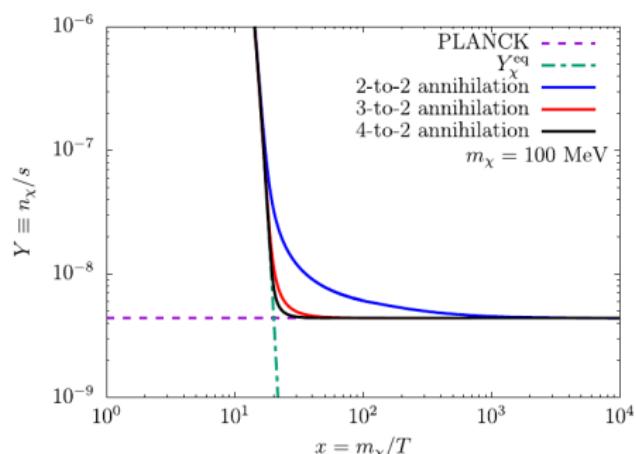
- freeze-out abundance given by

$$Y_\infty \simeq Y_{\text{eq}}(T'_f, T_f)$$

- WIMP: $\Gamma_{2 \rightarrow 2} = \langle \sigma v \rangle n_\chi \sim T^3$,

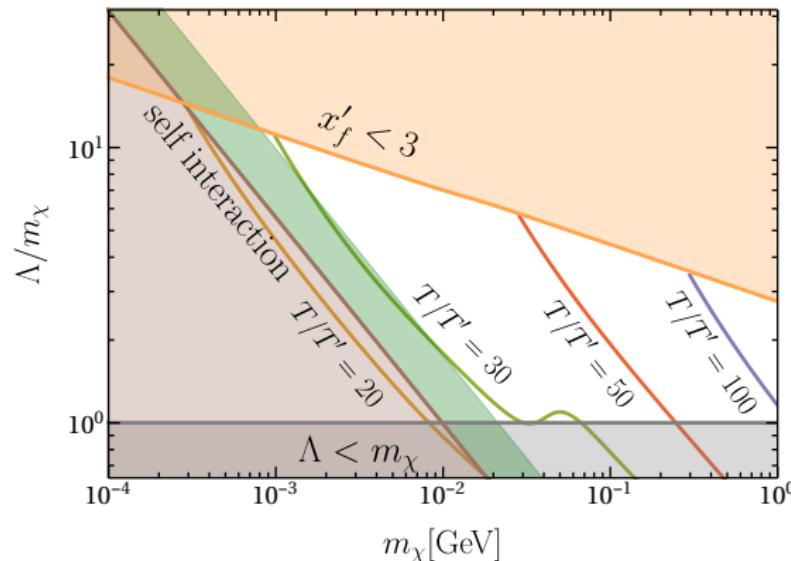
Majorana SIMP:

$$\Gamma_{4 \rightarrow 2} = \langle \sigma v^3 \rangle n_\chi^3 \sim T'^2 T^9$$



Correct relic abundance $\{m_\chi, \Lambda, T_f/T'_f = x'_f/x_f\}$

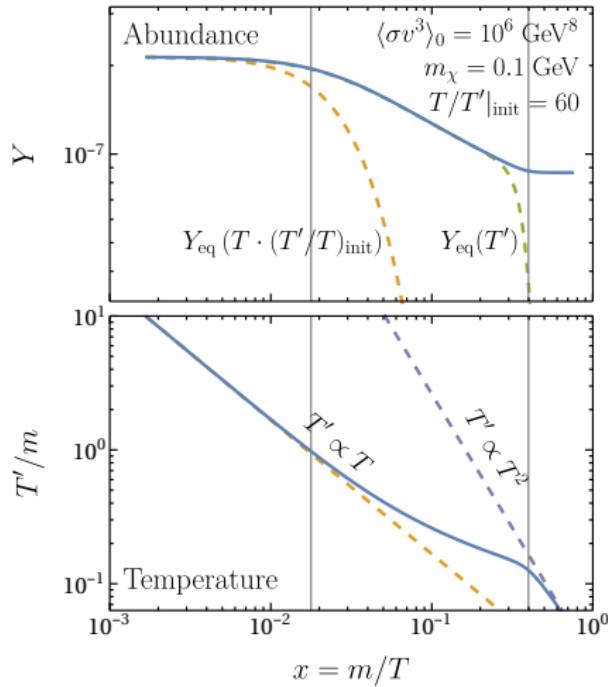
- $x'_{\text{fo}} = 7.2 + \log \left[\left(\frac{m}{\text{MeV}} \right) \left(\frac{x_{\text{fo}}/x'_{\text{fo}}}{10} \right)^3 \left(\frac{x'_{\text{fo}}}{7.2} \right)^{3/2} \left(\frac{10}{h_{\text{eff}}(x_{\text{fo}})} \right) \right]$
- $\Lambda \approx 0.045 \text{ GeV} \left(\frac{m_\chi}{\text{GeV}} \right)^{1/2} \left(\frac{x'_{\text{fo}}}{x_{\text{fo}}} \right)^{7/8} \left(\frac{x'_{\text{fo}}}{10} \right)^{-9/8} \left(\frac{g_{\text{eff}}(x_{\text{fo}})}{10} \right)^{-1/16} \left(\frac{h_{\text{eff}}(x_{\text{fo}})}{10} \right)^{3/8}$



The dark sector evolution is described by the Boltzmann equations for number and energy density (assuming Boltzmann statistics and kinetic equilibrium):

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle\sigma v^3\rangle \left(n_\chi^4 - n_\chi^2 n_\chi^{\text{eq}2} \right) + \Gamma_{\text{particle injection from visible sector}},$$
$$\frac{d\rho_\chi}{dt} + CH\rho_\chi = \Gamma_{\text{energy injection from visible sector}}$$

- $C(T') \in [3, 4]$, depending on dark sector redshifting as matter or radiation
- expansion $H(T)$ governed by SM temperature T (assuming $g_s^{\text{SM}} \gg g_s^{\text{DM}}$)
- \Rightarrow system of equations, coupled by $T'(n, \rho)$



[Carlson et.al. '92]

- Temperature ratio T/T' not constant
- initially, T' scales as radiation $T, T' \propto R^{-1}$
- $4 \rightarrow 2$ heat the dark sector, decreasing T/T'
- after freeze out, T' scales as a nonrelativistic decoupled species $T' \propto R^{-2} \propto T^{-2}$
- better way to characterise the dark sector?

- disconnected ($T \neq T'$) sectors: Comoving entropies of visible sector S , and dark sector S' stay constant
- \Rightarrow ratio ζ stays constant:

$$\zeta = \frac{s}{s'} = \left(\frac{T}{T'} \right)^3 \frac{g_{\text{SM}}^s(T)}{g_{\text{dark}}^s(T')}.$$

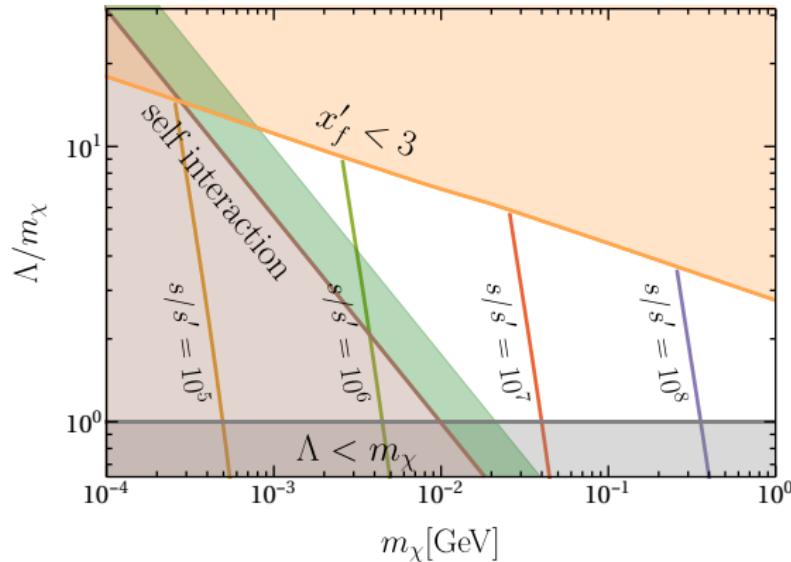
- Instantaneous freeze-out approx. of number changing interactions in a decoupled dark sector

$$Y_\chi^{\text{eq}} = \frac{n_\chi^{\text{eq}}(T')}{s(T)} = \frac{45}{4\pi^4} \frac{g_\chi}{g_{\text{SM}}^s(T)} \left(\frac{T'}{T} \right)^3 x'^2 K_2(x').$$

- substitute $g_{\text{dark, Maxwell}}^s(x') = \frac{45}{4\pi^4} g_\chi (x'^3 K_1(x') + 4x'^2 K_2(x'))$
- instantaneous freeze-out result as function of the entropy ratio

$$Y_\chi^\infty \simeq Y_\chi^{\text{eq}}(x'_f, \zeta) = \frac{1}{\zeta} \frac{K_2(x'_f)}{x' K_1(x'_f) + 4K_2(x'_f)}$$

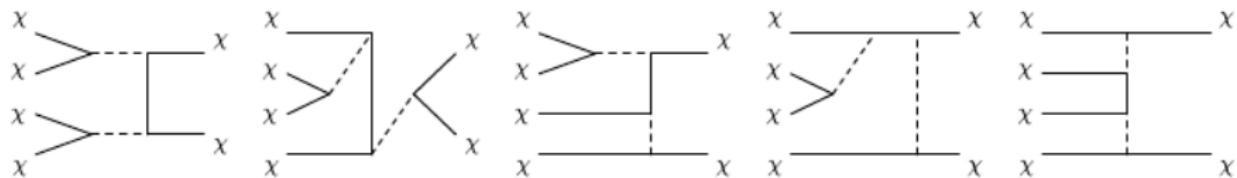
Correct relic abundance – $\{m_\chi, \Lambda, s/s'\}$



- add real scalar singlet φ , $m_\varphi > m_\chi$

$$\mathcal{L}_{\text{int}} \supset -\frac{y_\varphi}{2}\varphi\overline{\chi}^c\chi - y_\chi\bar{L}\tilde{H}\chi - \frac{\lambda_{\varphi H}}{2}\varphi^2|H|^2 - \mu\varphi|H|^2 + \text{h.c.}$$

- φ mediates $\chi\chi \rightarrow \chi\chi$ self interaction and $\chi\chi\chi\chi \leftrightarrow \chi\chi$ number-changing interaction



$$\langle\sigma v^3\rangle = \frac{27\sqrt{3}y^8 \sum_{n=0}^8 a_n \xi^n}{81920\pi m_\chi^8 (16-\xi)^2 (4-\xi)^4 (2+\xi)^6 x'^2}$$

where $\xi = m_\varphi^2/m_\chi^2$ and the coefficients $\{a_i\} = \{2467430400, -1648072704, 491804416, -25463616, 4824144, -1528916, 473664, -35259, 1201\}$, and off resonances at resonances at $m_\varphi \sim 2, 4 m_\chi$

- dark sector can be populated by freeze-in via higgs decays through $\lambda_{\varphi H}$ or scalar mixing $\sin \theta$

$$\Gamma(h \rightarrow ss, h \rightarrow \chi\chi) = \frac{\lambda_{h\varphi}^2 v^2}{8\pi m_h} + \frac{m_h}{16\pi} y^2 (\sin \theta)^2$$

- energy yield from

$$\frac{d(\rho'/\rho)}{dT} = -\frac{1}{HT\rho} \Gamma_h m_h n_h(T)$$

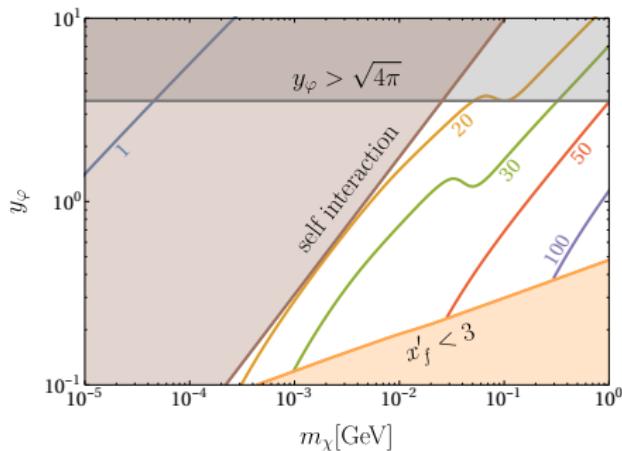
- temperature ratio, assuming all particles stay relativistic between start of freeze-in and dark matter chemical equilibration

$$T'_{\text{fi}} = T_{\text{fi}} \left(\frac{g_{\text{SM}}(T_{\text{fi}})}{g_{\text{dark}}(T'_{\text{fi}})} \cdot \left. \frac{\rho'}{\rho} \right|_{\text{fi}} \right)^{1/4}$$

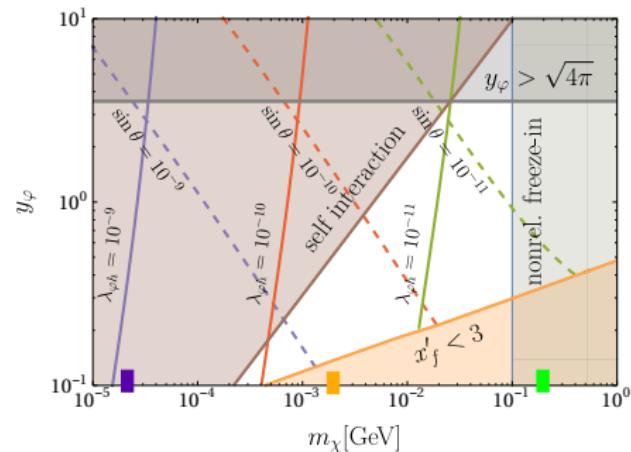
- entropy ratio ζ calculated at end of freeze in then stays constant

[Carlson et.al. '92] [Bernal, Chu '2016]

- Temperature ratio T_f/T_f'



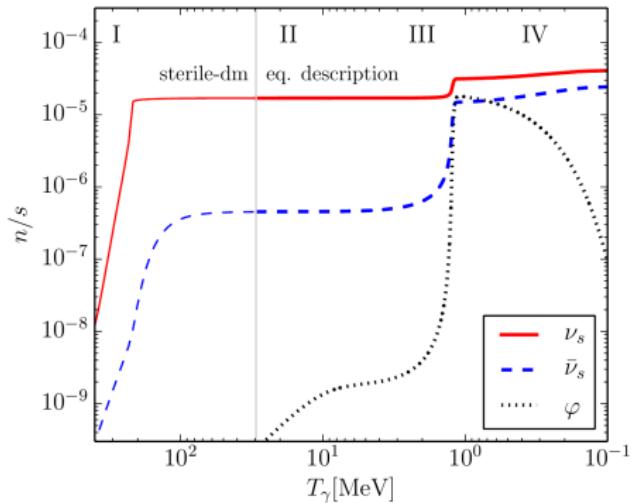
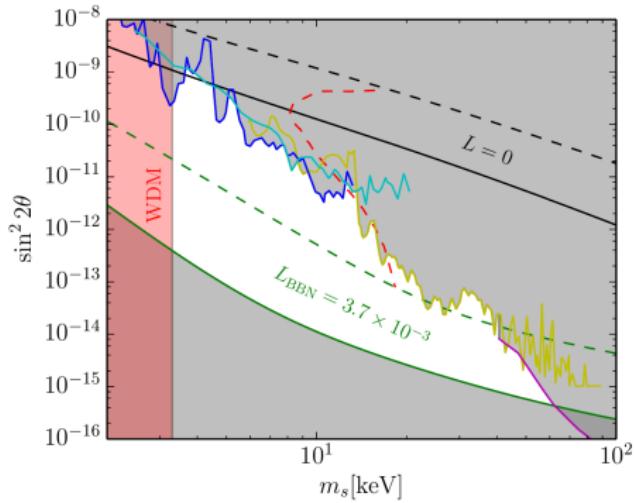
- Freeze-in production $\lambda_{\varphi H}, \sin \theta$



- plots for $m_\varphi = 3m_\chi$
- abundance enhanced by $2 \rightarrow 4$ scatterings in viable parameter space
- limited region of parameter space from self-interaction constraints and non-rel. freeze-out condition

- New mechanism to set sterile neutrino relic abundance
 - dark sector thermalises itself through $2 \rightarrow 4$ reactions
 - freeze out of number changing interaction within dark sector sets relic abundance
 - relevant number changing interaction $4 \rightarrow 2$ d -wave velocity suppressed
- ν_s self-interaction
 - small scale structure hints may (if corroborated) indicate non-minimal dark sector physics
 - interesting ν_s self interaction indicates SIMP mechanism for production
- decoupled dark sector evolution: s/s'
- 100 keV – few GeV decaying dark matter $\rightarrow \gamma$ -rays!

- $m_\chi \lesssim 100$ keV sterile neutrinos cannot thermalise through $4 \rightarrow 2$ without violating self interaction bounds
- coupling them to a thermalising scalar field circumvents this constraint
[Hansen, Vogl '2017]



- The energy density of an isolated sector shifts as

$$C(T) = \frac{1}{\rho}(3\rho + 3\mathcal{P}) = 3 \left(1 + \frac{1}{x} \frac{K_2(x)}{K_1(x) + 3K_2(x)/x} \right),$$

- Coupling of Boltzmann equations for ρ, n

The equations for n_χ and ρ_χ are linked via the dark sector temperature, which can be obtained from the average energy per particle

$$\frac{\rho}{n} = m \left(\frac{K_1(x')}{K_2(x')} + \frac{3}{x'} \right).$$

This relation can be numerically inverted to give $x'(\rho/nm)$.

- Entropy ratio result in the toy model

$$\zeta = \frac{s}{s'} \simeq 1.6 \cdot 10^5 \left(\frac{\lambda_{h\varphi}}{10^{-10}} \right)^{-3/2} + 7.4 \cdot 10^5 \left(\frac{y_\varphi^2 \sin^2 \theta}{10^{-10}} \right)^{-3/2},$$

- [N. Bernal, X. Chu '1510.08527]: scalar SIMP via $4 \rightarrow 2$ annihilations:
- DM abundance $Y = n/s$
- Temperature T'

