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I INT RODUCT ION
MSSM

• 2 Higgs doubletts
ESB
→ 5 Higgs bosons: h, H, A, H±

• LO: 2 input parameters: MA, tgβ = v2
v1

• radiative corrections ∝ m4
t log

mt̃1
mt̃2

m2
t

→ Mh
<∼ 135 GeV

Haber
Carena,. . .

Heinemeyer,. . .
Zhang

Slavich,. . .
· · ·

• Yukawa couplings: tgβ↑ ⇒ g
φ
u↓ g

φ
d↑ g

φ
V ↓

• LHC: gg → φ dominant for tgβ <∼ 10

gg → φb̄b dominant for tgβ >∼ 10



↓ ↓

gg → b̄bφ0, gg → φ0 φ0 → τ+τ−



• large SUSY–QCD corrections to φ0 → b̄bh b
�b~g~b~b + · · · ∝ αs

π
mg̃µtgβ

m2
b̃

Hall,. . .
Carena,. . .
Nierste,. . .
Guasch,. . .

etc.
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SUSY-QCD Corrections to b̄bφ0 [∆ <∼ 1%]

Leff = −λbbR

[

φ0
1 +

∆b

tgβ
φ0∗
2

]

bL + h.c. valid to all orders in ∆b

= −mb̄b

[

1 + iγ5
G0

v

]

b− mb/v

1 + ∆b
b̄

[

gh
b

(

1− ∆b

tgα tgβ

)

h

+gH
b

(

1 + ∆b
tgα

tgβ

)

H − gA
b

(

1− ∆b

tg2β

)

iγ5A

]

b

∆b = ∆
QCD(1)
b + ∆

elw(1)
b

∆
QCD(1)
b =

2

3

αs(µR)

π
Mg̃ µ tgβ I(m2

b̃1
, m2

b̃2
, M2

g̃ )

∆
elw(1)
b =

λ2
t (µR)

(4π)2
µ At tgβ I(m2

t̃1
, m2

t̃2
, µ2)

I(a, b, c) = −
ab log

a

b
+ bc log

b

c
+ ca log

c

a
(a− b)(b− c)(c− a)

⇒ resummed Yukawa couplings
Carena, Garcia, Nierste, Wagner

Guasch, Häfliger, S.



II HIGGS PRODUCT ION

Gluon fusion: pp→ gg → h/H/A�0t; b; ~t;~bgg Georgi, Glashow, Machacek, Nanopoulos

• third generation dominant

• NLO QCD corrections: ∼ 10 . . .100% S., Djouadi, Graudenz, Zerwas

Dawson, Kauffman

• elw. corrections: ∼ 5%
Aglietti,. . .

Degrassi, Maltoni
Actis, Passarino, Sturm, Uccirati

• NNLO QCD for mt ≫Mφ ⇒ + 20–30%

[mass effects small]

Harlander, Kilgore
Anastasiou, Melnikov

Ravindran, Smith, van Neerven
Marzani, Ball, Del Duca, Forte, Vicini

Harlander, Ozeren
Pak, Rogal, Steinhauser



• N3LO for mt ≫Mφ ⇒ scale stabilization Moch, Vogt
Ravindran

de Florian, Mazzitelli, Moch, Vogt
Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

Ball, Bonvini, Forte, Marzani, Ridolfi
Anastasiou, Duhr, Dulat, Herzog, Mistlberger

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger

• N3LL soft gluon resummation [mt ≫Mφ]:
<∼ 5%
Catani, de Florian, Grazzini, Nason

Ravindran
Ahrens, Becher, Neubert, Yang

Ball, Bonvini, Forte, Marzani, Ridolfi

Schmidt, S.
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w/ Q
∼

w/o Q
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Mühlleitner, S.

tgβ=3: mt̃1
=156 GeV, mt̃2

=516 GeV, mb̃1
=346 GeV, mb̃2

=358 GeV

tgβ=30: mt̃1
=195 GeV, mt̃2

=502 GeV, mb̃1
=315 GeV, mb̃2

=387 GeV



• QCD corrections to squark loops: Mühlleitner, S.

σ(pp → h/H + X) [pb]
√s = 14 TeV

tgβ = 3

NLO

LO

mt = 174 GeV

CTEQ6

Mh/H [GeV]

h H❍ ❍

80 100 200 300 500 700 1000
10

-2

10
-1

1

10

10 2

10 3

10 4

√s = 14 TeV

tgβ = 3

σ(pp → h/H + X) / σ∞

mt = 174.3 GeV

CTEQ6

Mh/H [GeV]

h H❍ ❍

80 100 200 300 500 700 1000
0.92

0.94

0.96

0.98

1

1.02

1.04

σ(pp → h/H + X) [pb]
√s = 14 TeV

tgβ = 30

NLO

LO

mt = 174 GeV

CTEQ6

Mh/H [GeV]

h H❍ ❍
80 100 200 300 500 700 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

√s = 14 TeV

tgβ = 30

σ(pp → h/H + X) / σ∞

mt = 174.3 GeV

CTEQ6

Mh/H [GeV]

h H❍ ❍
80 100 200 300 500 700 1000

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2



genuine SUSY–QCD corrections:

g

g

h/Ht̃ [̃b]

t [b]

g̃ + · · ·

Harlander, Steinhauser, Hofmann
Degrassi, Slavich

Anastasiou, Beerli, Daleo
Mühlleitner, Rzehak, S.

σLO(pp→ φ0) = σφ
0τφ

dLgg

dτφ

σ
h/H
0 =

GFα2
s

288
√

2π

∣
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∣
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∣
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σA
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QAA
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∣

∣

∣
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• numerical analysis: A
h/H
Q (τQ)→ A

h/H
Q (τQ)

[

1 + C
Q
SUSY

αs

π

]



• m2
Q/Q̃

→ m2
Q/Q̃

(1− iǫ)

• 5-dimensional Feynman integrals → endpoint subtractions:

∫ 1

0
dx

f(x)

x(1− x)
→

∫ 1

0
dx

{

f(x)

x(1− x)
− f(0)

x
− f(1)

1− x

}

⇒ isolation of singularities

• thresholds for MH > 2mQ → numerical instabilities → integration by

parts:

∫ 1

0
dz

f(z)

(a + bz)2
= − f(z)

b(a + bz)

∣

∣

∣

∣

∣

1

0

+
∫ 1

0
dz

f ′(z)
b(a + bz)

∫ 1

0
dz

f(z)

a + bz
=

f(z)

b
log(a + bz)

∣

∣

∣

∣

∣

1

0

−
∫ 1

0
dz

f ′(z)
b

log(a + bz)

⇒ thresholds in reduced powers of denominators or in arguments of

logs ⇒ stabilization

[more involved for quadratic polynomials]



• αs: MS scheme [5 flavours]

• mQ, mQ̃: on-shell

• At, Ab: MS

• At, Ab: anomalous SUSY-restoring counter terms

• θQ: anti-Hermitean:

δθt =
1

2
ℜe

Σ12(m
2
t̃1
) + Σ12(m

2
t̃2
)

m2
t̃2
−m2

t̃1

• bottom Yukawa: resummation of ∆b contributions



SUSY-QCD corrections:
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• 2009:

∆b approximation

real part

imaginary part

C 
 b

   SUSY  (gg → H)

small αeff

tgβ = 30

MH [GeV]

-40

-20

0

20

40

60

80

100

120

140

100 150 200 250 300 350 400 450 500

PRELIMINARY

∆ ∼ −5
αs

π
∼ −15% Mühlleitner, Rzehak, S.



τ-phobic scenario [scale = 1 TeV]

mt = 173.2 GeV

tgβ = 30

MQ̃ = 1.5 TeV

Mg̃ = 1.5 TeV

M2 = 200 GeV

Ab = At = 4.417 TeV [Xt = 2.9 MQ̃]

µ = 2 TeV

Mℓ̃3
= 500 GeV

mt̃1
= 1.318 TeV mt̃2

= 1.726 TeV

mb̃1
= 1.501 TeV mb̃2

= 1.565 TeV
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K (pp → H+X)

τ phobic

√s = 14 TeV
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III CONCLUSIONS

• gg → h/H: genuine SUSY–QCD corrections large

• sizeable corrections beyond ∆b approximation

⇒ sizeable differences to approximate calculations

• outlook: other scenarios

pseudoscalar A

application to HH @ NLO

[results soon. . . ]
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small αeff scenario [modified]

tgβ = 30

MQ̃ = 800 GeV

Mg̃ = 1000 GeV ←−
M2 = 500 GeV

Ab = At = −1.133 TeV

µ = 2 TeV

mt̃1
= 679 GeV mt̃2

= 935 GeV

mb̃1
= 601 GeV mb̃2

= 961 GeV



Leff = −λbbR

[

φ0
1 +

∆b

tgβ
φ0∗
2

]

bL + h.c. ⇒ λb =
mb

v1 (1 + ∆b)
=

m̂b

v1

• input squark mass matrix: m̂b(Q0) =
mb(Q0)
1+∆b

m̂t(Q0) = mt(Q0)

Mq̃ =









M̃2
q̃L

(Q0) + m̂2
q (Q0) + ∆11 m̂q(Q0)[Aq(Q0)− µrq] + ∆12

m̂q(Q0)[Aq(Q0)− µrq] + ∆21 M̃2
q̃R

(Q0) + m̂2
q (Q0) + ∆22









m2
q̃1/2

= m̂2
q (Q0) +

1

2

[

M̃2
q̃L

(Q0) + M̃2
q̃R

(Q0)

∓
√

[M̃2
q̃L

(Q0)− M̃2
q̃R

(Q0)]
2 + 4m̂2

q (Q0)[Āq(Q0)− µrq]
2
]

+ ∆m2
q̃1/2

q̃1 = q̃L cos θq + q̃R sin θq

q̃2 = −q̃L sin θq + q̃R cos θq

• tree-level like mixing angle θ̃q (mq̃i
pole masses):

sin 2θ̃q =
2m̂q(Q0)[Aq(Q0)− µrq]

m2
q̃1
−m2

q̃2

cos 2θ̃q =
M̃2

q̃L
(Q0)− M̃2

q̃R
(Q0)

m2
q̃1
−m2

q̃2



• SUSY–QCD corr. ∆ij significant → new diagonalization (no iterati-

on)

• θq in physical amplitudes: remove artificial sing. for mq̃1 ∼ mq̃2

→ δθq =
1

2

Σ12(mq̃1) + Σ12(mq̃2)

m2
q̃1
−m2

q̃2

• unique relation to tree-level like mixing angle θ̃q ⇒ consistent scheme

θq = θ̃q + ∆θ̃q ∆θ̃q = δθ̃q − δθq

δθ̃q =
tg 2θ̃q

2







δm̂q

m̂q(Q0)
+

δĀq

Āq(Q0)− µrq
−

δm2
q̃1
− δm2

q̃2

m2
q̃1
−m2

q̃2







• shift mass parameter: M2
q̃L/R

(Q0)→M2
q̃L/R

(Q0) + ∆M2
q̃L/R

M̃2
q̃L

(Q0) = M2
q̃L

(Q0) + Dq̃L
= m2

q̃1
cos2 θ̃q + m2

q̃2
sin2 θ̃q − m̂2

q (Q0)

M̃2
q̃R

(Q0) = M2
q̃R

(Q0) + Dq̃R
= m2

q̃1
sin2 θ̃q + m2

q̃2
cos2 θ̃q − m̂2

q (Q0)



δm̂q

m̂q(Q)
= −CF

αs

π
Γ(1 + ǫ)(4π)ǫ3

4

{

1

ǫ
+ log

µ̄2

Q2
+ δSUSY

}

+ ∆q

− CF
αs

4π

{

B1[m̂
2
q (Q);Mg̃, mq̃1] + B1[m̂

2
q (Q);Mg̃, mq̃2]

+2Mg̃(Āq − µrq)
B0[m̂

2
q (Q);Mg̃, mq̃1]−B0[m̂

2
q (Q);Mg̃, mq̃2]

m2
q̃1
−m2

q̃2







δĀq = CF
αs

π
Γ(1 + ǫ)(4π)ǫMg̃

{

1

ǫ
+ log

µ̄2

µ2
R

}



g
h,H
f̃1f̃1

= g
h,H
f̃Lf̃L

cos2 θf + g
h,H
f̃Rf̃R

sin2 θf + g
h,H
f̃Lf̃R

sin 2θf

g
h,H
f̃2f̃2

= g
h,H
f̃Lf̃L

sin2 θf + g
h,H
f̃Rf̃R

cos2 θf − g
h,H
f̃Lf̃R

sin 2θf

g
h,H
f̃1f̃2

= g
h,H
f̃2f̃1

=
1

2
(g

h,H
f̃Rf̃R

− g
h,H
f̃Lf̃L

) sin 2θf + g
h,H
f̃Lf̃R

cos 2θf

gA
f̃1f̃1

= gA
f̃2f̃2

= 0

gA
f̃1f̃2

= −gA
f̃2f̃1

= gA
f̃Lf̃R

gΦ
q̃Lq̃L

(µR) = m̂2
q (µR)gΦ

1 + M2
Z(I3q − eq sin2 θW )gΦ

2

gΦ
q̃Rq̃R

(µR) = m̂2
q (µR)gΦ

1 + M2
Zeq sin2 θWgΦ

2

gΦ
q̃Lq̃R

(µR) = −m̂q(µR)

2

[

µgΦ
3 − Āq(µR)gΦ

4

]



m̂q(µR) = m̂q(mq)
c[αs(µR)/π]

c[αs(mq)/π]

c(x) =

(

23

6
x

)

12
23
[

1 +
3731

3174
x

]

for q = b (NF = 5)

c(x) =

(

7

2
x

)

4
7
[

1 +
137

98
x

]

for q = t (NF = 6)

Āq(µR) = Āq(Q0) + M3(Q0)

{

−16

9

[

αs,SUSY (µR)

αs,SUSY (Q0)
− 1

] [

1 +
1

6

αs,SUSY (Q0)

π

]

−16

27

αs,SUSY (Q0)

π





α2
s,SUSY (µR)

α2
s,SUSY (Q0)

− 1











αs,SUSY (µ) =
12π

9 log(µ2/Λ2
SUSY )

{

1− 14

9

log log(µ2/Λ2
SUSY )

log(µ2/Λ2
SUSY )

}



αs,SUSY (Q0) = αs(Q0)







1 +
αs(Q0)

π





1

6
log

Q2
0

m2
t

+
1

2
log

Q2
0

M2
g̃

+
1

24

∑

q̃i

log
Q2

0

m2
q̃i











M3(Q0) = Mg̃







1− αs(Mg̃)

π



CA +
3

4
CA log

Q2
0

M2
g̃

+
1

4

∑

q,i

(

B1(M
2
g̃ ;mq, mq̃i

) +
Γ(1 + ǫ)(4π)ǫ

2ǫ
+

1

2
log

µ̄2

Q2
0

−(−1)imq

Mg̃
sin 2θqB0(M

2
g̃ ;mq, mq̃i

)

)]}


