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I ZINTRODUCTION

MSSM

ESB
e 2 Higgs doubletts — 5 Higgs bosons: h, H, A, H*

e LO: 2 input parameters: My,tgps = %

Haber
Carena,. ..
mg mt Heinemeyer,. . .
e radiative corrections o« mj log —52 — | M, < 135 GeV iy
m2
e Yukawa couplings: tg3T = g%l ng gvl

e LHC: g9 — ¢ dominant for tg8 < 10
gg — ¢bb dominant for tg3 & 10
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e large SUSY—QCD corrections to ¢° — bb

b
b t 5 Hall,. ..
_____ Y o as MgHtd Carena,. . .
h < 9+ X 2 Nierste,. . .
b b Guasch,. ..
_ etc.
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SUSY-QCD Corrections to bb¢° A S 1%)]

- AN , .
Lopf = —NbR ¢9+é¢8* by, + h.c. valid to all orders in A,
_ GO _ A
= —myb |1+ i | b— mb/vbg(? 1—-— b )p
v 14+ A tga tgg
tga A Ab .
—I—gH<1—|—A —>H—g (1——>w5A] b
b "tgs3 b tg23
A, = AbQCD(l) 4 Azlw(l)
cp) _ 2 as(ug) . > o .0
Ab — § - Mg /L tgﬁ I(m'gl,m'EQ,Mg)
2
ew(1l) _ Af(pR) > 2 2
b
ablog < 4+ belog = 4 calog <
I(CL, b? C) — b S 4

(@ —=0)(b—c)(c—a)

= resummed Yukawa couplings Carena, Garcia, Nierste, Wagner
P 9 Guasch, Hafliger, S.



I1 HIGGS PRODUCTION

Gluon fusion: pp — g9 — h/H/A

g “00000)

t.b,I,bs > == PO .
Georgi, Glashow, Machacek, Nanopoulos

g QQQQQJ

e third generation dominant

e NLO QCD corrections: ~ 10...100% S., Djouadi, Graudenz, Zerwas
Dawson, Kauffman

. . 0 Aglietti,. . .

e clw. corrections: ~ 5% Degrassi, Malton
Actis, Passarino, Sturm, Uccirati

e NNNL D for —300° Harlander, Kilgore
O QC e > M¢ = —I_ 20 30% Anastasiou, Melnikov

[mass effects small] Ravindran, Smith, van Neerven

Marzani, Ball, Del Duca, Forte, Vicini
Harlander, Ozeren
Pak, Rogal, Steinhauser



e N3LO for m; > M, = scale stabilization Moch, Vogt
Ravindran

de Florian, Mazzitelli, Moch, Vogt

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

Ball, Bonvini, Forte, Marzani, Ridolfi

Anastasiou, Duhr, Dulat, Herzog, Mistlberger

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger

e N3LL soft gluon resummation [m; > Myl: < 5%
Catani, de Florian, Grazzini, Nason
Ravindran
Ahrens, Becher, Neubert, Yang
Ball, Bonvini, Forte, Marzani, Ridolfi

Schmidt, S.
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e QCD corrections to squark loops: Muhlleitner, S.
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genuine SUSY—-QCD corrections:

g 0000\
N
: ay
~
tpraly >------ h/H +
|
|
» Harlander, Steinhauser, Hofmann
9 QQQ0Q/)y Degrassi, Slavich
Anastasiou, Beerli, Daleo
Miuhlleitner, Rzehak, S.
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e numerical analysis: AZ/H(TQ) - AZ)/H(TQ) [1 + CgUSY%]
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ma — Mgpl —ie)

e 5-dimensional Feynman integrals — endpoint subtractions:
/1d f(z) \ /1 f(z) f(0)  f(1)
T dx — —
o x2(1—=x) 0 x(1l —x) X 1—=x
= isolation of singularities

e thresholds for Mgy > QmQ — numerical instabilities — integration by
parts:

N O O L)
/ dz(a—l—bz)2  bla+b2) O+/O dzb(a—l—bz)
L () _ f(» 1 f(2)
/ de = 5 —/Odz 2109 (a + b2)

= thresholds in reduced powers of denominators or in arguments of
logs = stabilization
[more involved for quadratic polynomials]



e as. MS scheme [5 flavours]

® MQ, MG on-shell

o Ay, Apy: MS

e Ay, Ap: anomalous SUSY-restoring counter terms
e 0g: anti-Hermitean:

1 Ti2(mZ) + Z1o(m2)
00y = — Re 5 5
2 _

£

m

e bottom Yukawa: resummation of A, contributions



SUSY-QCD corrections:
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SUSY-QCD corrections:
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SUSY-QCD corrections:
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SUSY-QCD corrections:
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T-phobic scenario
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PRELIMINARY
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IIT CONCLUSTONS

e gg — h/H: genuine SUSY—-QCD corrections large

e Sizeable corrections beyond A approximation
= Sizeable differences to approximate calculations

e OuUtlooK: other scenarios
pseudoscalar A
application to HH © NLO
[results soon. . .]
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small a. ¢y scenario [modified]
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7 A m m

Lopr = —Npbg |69 + —263%| by, + h.c. Ap = b — M

eff bOR ¢1+tgﬁ¢2 ;. +hec = = AR T o
e input squark mass matrix: m;(Qq) = %%'b) mi(Qo) = m(Qp)

Mz (Qo) + g (Qo) + A11 1q(Q0)[Ag(Qo) — prql + A1 |
Mg =
| mq(Q0)[Aq(Qo) — prgl + Hoi M(;QR(QO) + m2(Qo) + Ao
1 - ~

mg, , = mg(Qo)+ - [MZ (Qo) + Mz, (Qo)

/172, (Q0) — M12,(Q0)12 + 4m2(Q0) [ A¢(Qo) — ural?| + Am, |

q1 qr, Cosbq + qrSin 04
go = —qr,Sinfq+ qrCcosby,
e tree-level like mixing angle §q (qu. pole masses):

21m4(Q0) [Ag(Qo) — prq] Mz (Qo) — Mz (Qo)

cos 20, =
m2 — m?2 e m2 — m?2

q1 qo q1 qo




e SUSY—QCD corr. A;; significant — new diagonalization (no iterati-
on)

e 0, in physical amplitudes: remove artificial sing. for Mg, ~ Mg,
. 50, — L >12(mg,) + X12(mg,)
4 m2 — m?2
q1 q2

e Unique relation to tree-level like mixing angle §q = consistent scheme

_ tg 20, 8111 §Aq 5"”(';1 5"”('1‘2
60, = ~ T = 2 2
2 mq(Qo) Aq(@o) — HTq mq'l - mfjg
e shift mass parameter: M2 (Qo) — Mz (Qo) + A

qL/R

Mz (Qo) = M§L(Qo)+DqL m2, cos? 0, +mZ sin?8; — in2(Qo)
M(%R(Qo) M(jQR(QO)—i—DqR 2 , Sin Gq—l—m Cos? Oy — g(QO)

qL/R
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5mq

mq(Q)

s 3(1 02
= —Cror(l+4e4mes {— + log M—Q + 5SUSY} T Ay
s 4 | € Q
— Cpo {Bilmg(Q): Mg, mg] + B[ (Q); My, mg)

Bolm2(Q); Mg, mz,1 — Bolm2(Q); Mz, mz] }

+2M= (A, —
g( q lurq> mg _mg
q1 q2

=2
SA, = CF%I_(l—I—e)(Mr)GMg{l—I—IogM—Q}



hH hH hH . hH .

91 f foLC0529 +9f’f S'”29f+9f2f35'”29f
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= — 20 - 26
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A _
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Ii T IR T gf~L fr

9 = (up) = Mm2(uR)gy + M3Z(I34 — eqsin®Oyy)gS
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i = it
o(z) = (? x)% [1 n z‘;’i x] for g=b (Np=5)
o(z) = (gx)% ll—l—%x] for g=t (Np=6)
16

Ag(pr) = Aq(Qo) + M3(Qo) {—
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as srsy (Qo) = as(Qo) {1

M3(Qo) = Mg{l—
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