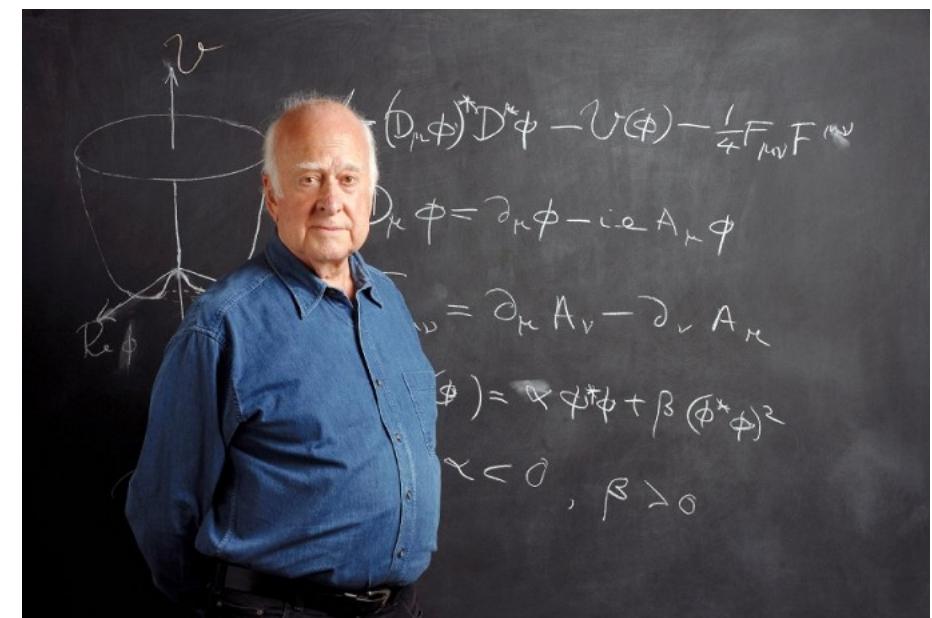


Search for charged Higgs Bosons with the ATLAS detector

*M. Pilar Casado (UAB, IFAE & BIST - Barcelona),
on behalf of the ATLAS collaboration*


*SUSY17 Conference,
Mumbai (India), 11-15 Dec., 2017*

Motivation

- After the discovery of the 125 GeV Higgs resonance the SM is complete.
- As many things remain unexplained in the SM, BSM theories are very plausible, as SUSY.
- An **extended Higgs sector** is very common in most BSM theories.
- **2HDM (Minimal extension giving rise to charged scalars):** Two complex scalar doublets with 5 Higgs bosons:
 - 2 CP-even Higgs bosons (h, H), one of which is the discovered 125 GeV resonance
 - 1 CP-odd pseudoscalar (A)
 - Two charged Higgs bosons (H^\pm)

$\tan\beta$ is the ratio of the vacuum expectation values (vev) of the two doublets and α is the mixing angle between the two CP-even Higgs bosons.

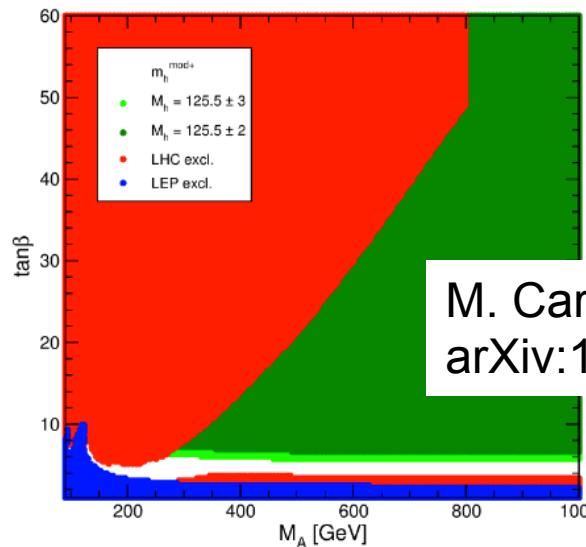
MSSM is a special case of 2HDM: “type II” with fixed mixing between h and H .

Motivation

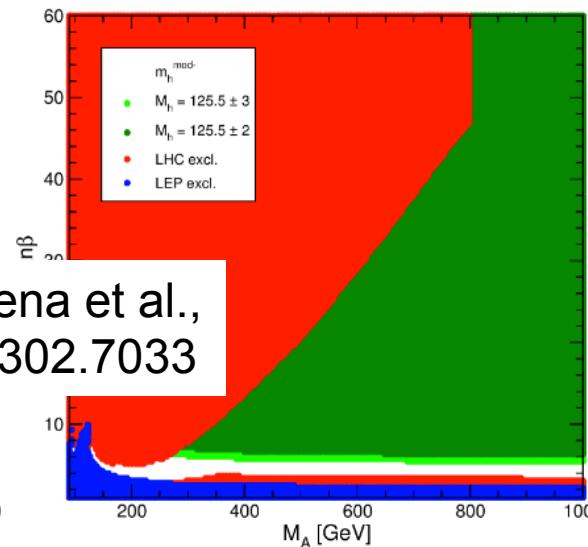
- More complex extensions: Add Higgs triplet to SM

10 Higgs bosons,

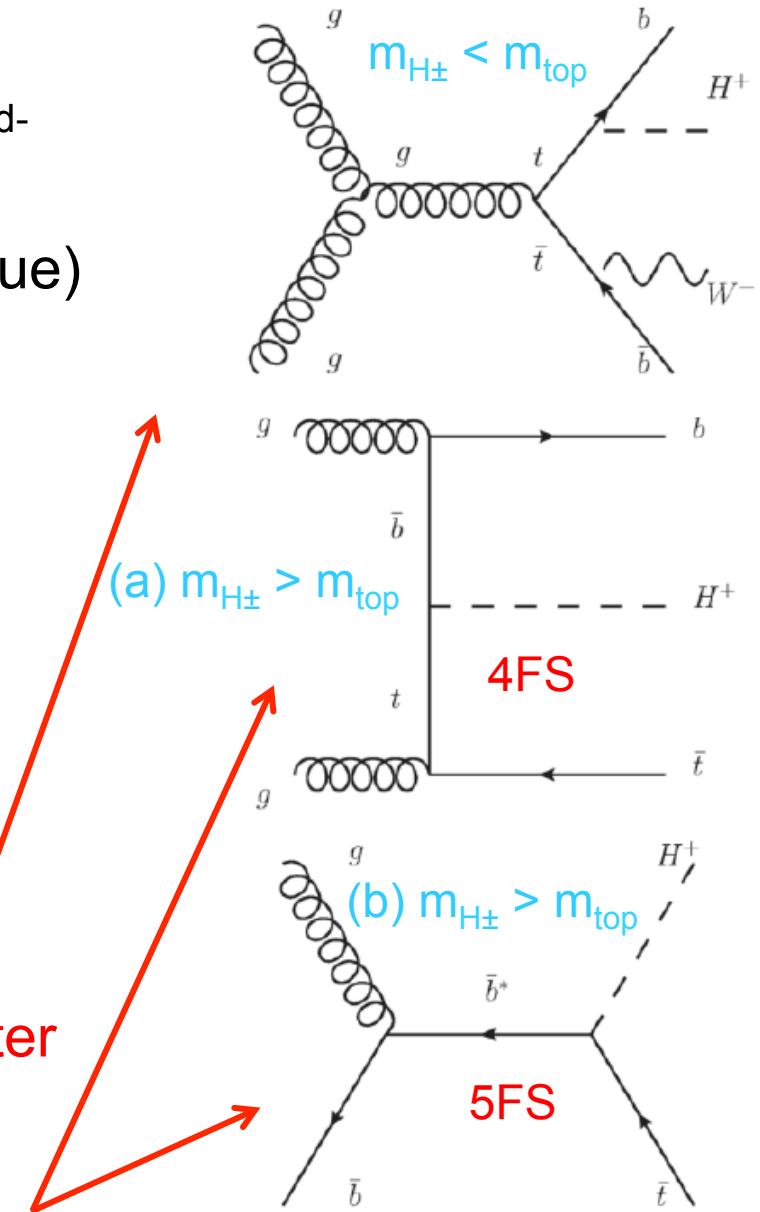
4 charged $H^\pm, H^{\pm\pm}$ (Doubly charged Higgs bosons)


Other extensions with $H^{\pm\pm}$:

- left-right symmetric models,
- little Higgs model,
- type-II see-saw models,
- Georgi-Machacek model.
- Scalar singlet dark matter,
- Zee-Babu neutrino mass model.

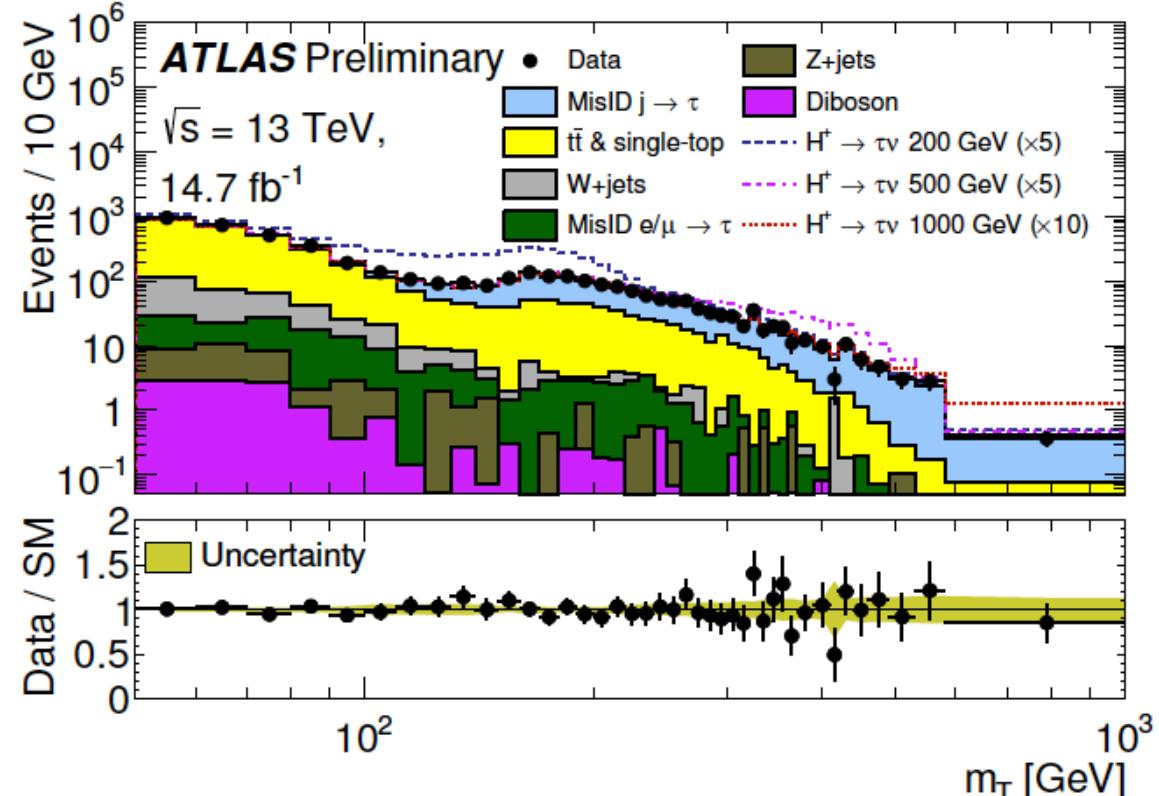


ATLAS search for H^\pm


- The m_A - $\tan\beta$ plane in the $m_h^{\text{mod}+}$ (left) and $m_h^{\text{mod}-}$ (right) scenarios. The colors show exclusion regions from LEP (blue) and the LHC (red), and the favoured region $M_h = 125.5 \pm 2(3)$ GeV (green).

M. Carena et al.,
arXiv:1302.7033

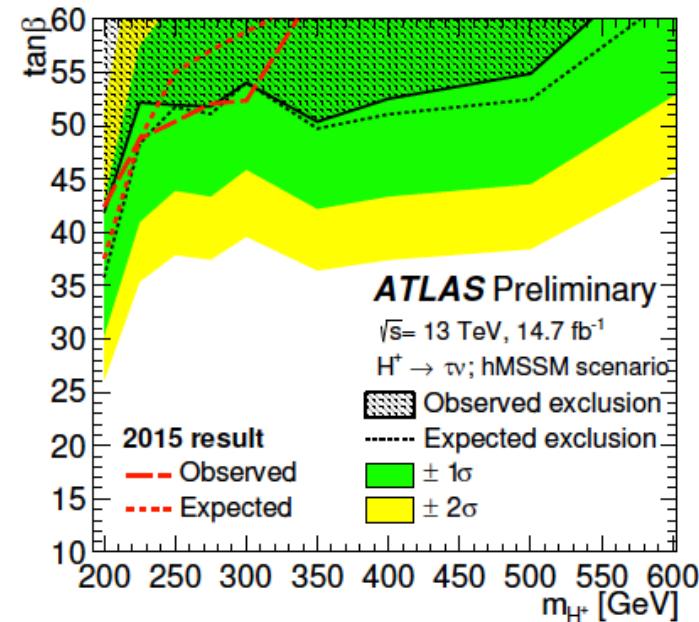
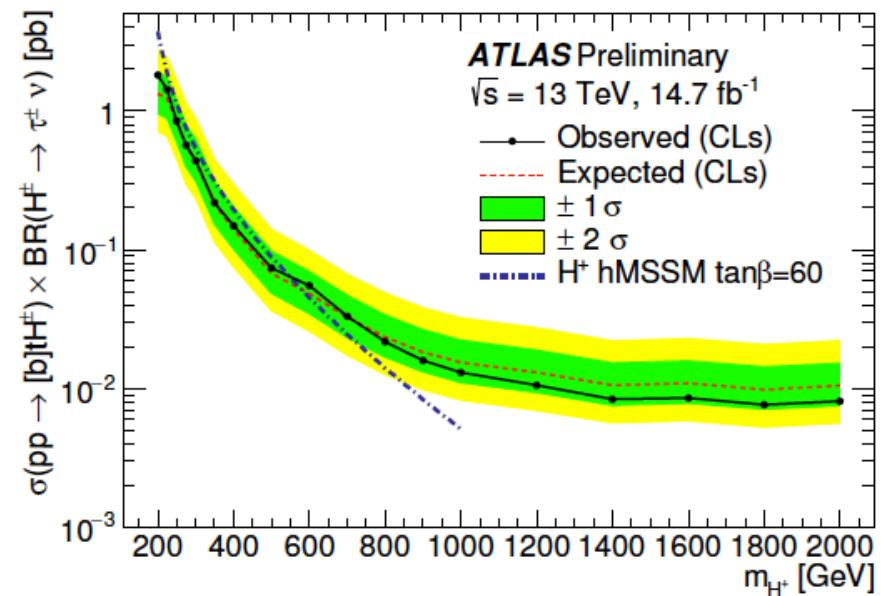
- The decay $H^\pm \rightarrow \tau \nu$ is relevant in a large parameter range, specially for low m_{H^\pm} (below m_{top})
- For m_{H^\pm} above m_{top} (searches presented here) $H^\pm \rightarrow tb$ is the predominant decay


Search for $H^\pm \rightarrow \tau\nu$

- Strategy:
 - “tau+jets” channel: one hadronic τ and jets from the hadronic top.
 - $200 \leq m_{H^\pm} \leq 2000 \text{ GeV}$
 - Discriminating variable

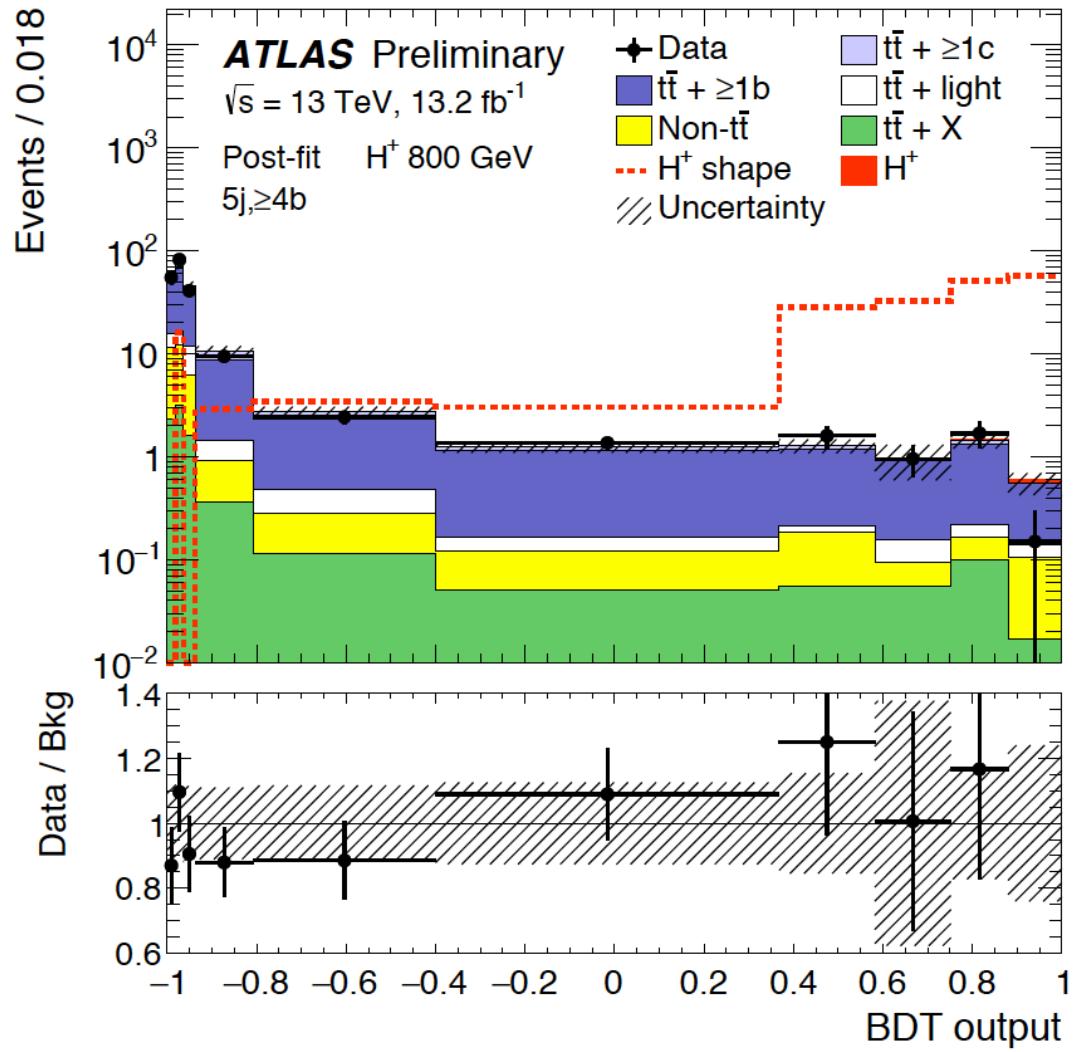
$$m_T = \sqrt{2p_T^\tau E_T^{\text{miss}} (1 - \cos \Delta\phi_{\tau, E_T^{\text{miss}}})}$$

- Signal selection:
 - E_T^{miss} trigger
 - 1 hadronic τ ($p_T > 40 \text{ GeV}$)
 - ≥ 3 jets ($p_T > 25 \text{ GeV}$),
of which ≥ 1 b-tagged (70% eff).
 - Veto e, μ
 - $E_T^{\text{miss}} > 150 \text{ GeV}$

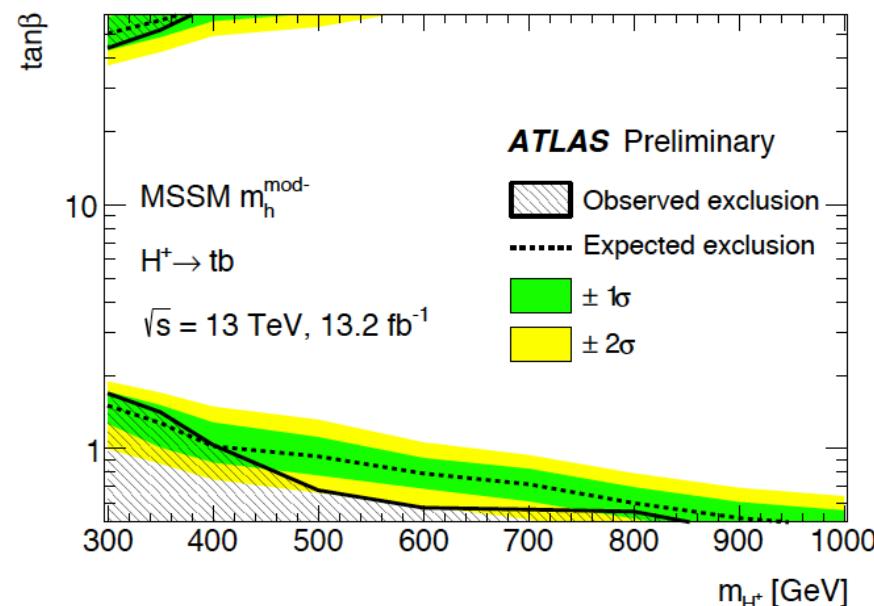
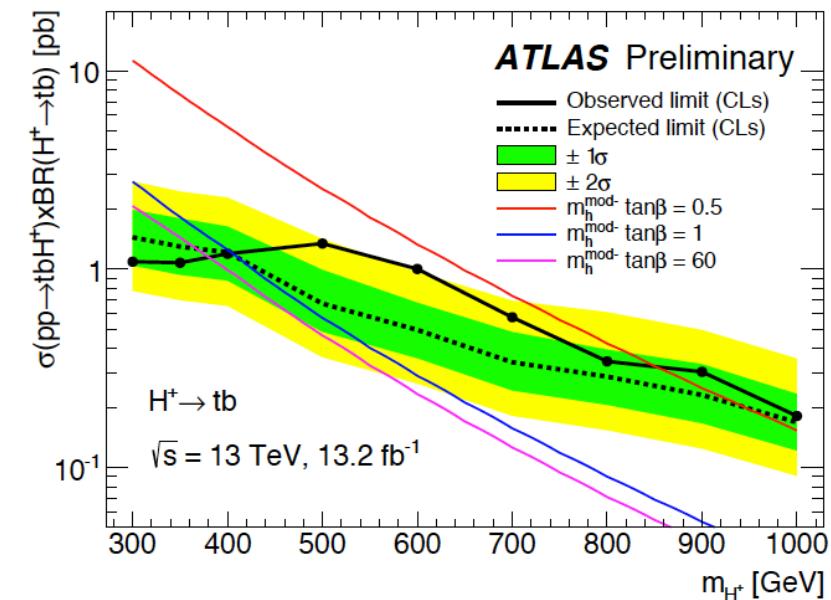


- Backgrounds:
 - True τ :
 - ttbar, W+jets from simulation with normalization validated in CR from data,
 - Z+jets, di-boson from simulation.
 - Fake τ 's:
 - Mis-ID jets, from data using “fake factor” method,
 - Mis-ID e, μ , shape from simulation, normalization from data.

Search for $H^\pm \rightarrow \tau\nu$

14.7 fb^{-1} @ 13 TeV
ATLAS-CONF-2016-088

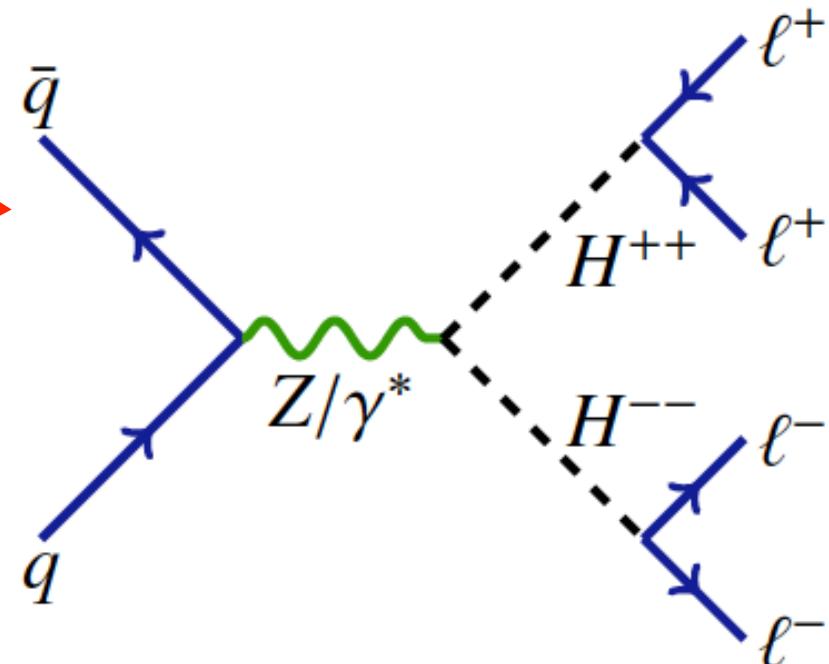

- Systematic uncertainties:
 - Fake factors and τ mis-ID (specially at high m_{H^\pm})
 - ttbar modelling (specially at low m_{H^\pm})
 - reconstruction of jets, τ , luminosity.
- Profile likelihood fit to m_T .
- No deviation from expected background.
- Upper CLs limits on the cross-section (model-independent) on top.
The cross-section times Branching fraction limit ranges from 2.0 to 0.008 pb.
- Interpretation in hMSSM (Djouadi et al, arXiv: 1502.05653) on bottom.
Values of $\tan\beta$ in the range 42-60 are excluded for $m_{H^\pm} = 200$ GeV.
Masses of H^\pm in the range from 200 to 540 GeV is excluded at $\tan\beta=60$.

Search for $H^\pm \rightarrow tb$



- Strategy:
 - “l+jets” channel: one lepton and jets from the hadronic top.
 - $300 \leq m_{H^\pm} \leq 1000 \text{ GeV}$
 - Fitted variable: BDT in Signal Regions (SR), H_T^{had} (scalar sum of p_T of all jets) in Control Regions (CR).
- Signal selection:
 - 1 e or μ ($p_T > 25 \text{ GeV}$)
 - ≥ 4 jets ($p_T > 25 \text{ GeV}$), of which ≥ 2 b-tagged (70% eff).
- Main background: $t\bar{t} + \geq 1$ b.
- Based on jet and b-jet multiplicity, various SR and CR.

	2b	3b	≥ 4 b
4j	CR	CR	
5j	CR	SR	SR
≥ 6 j	CR	SR	SR

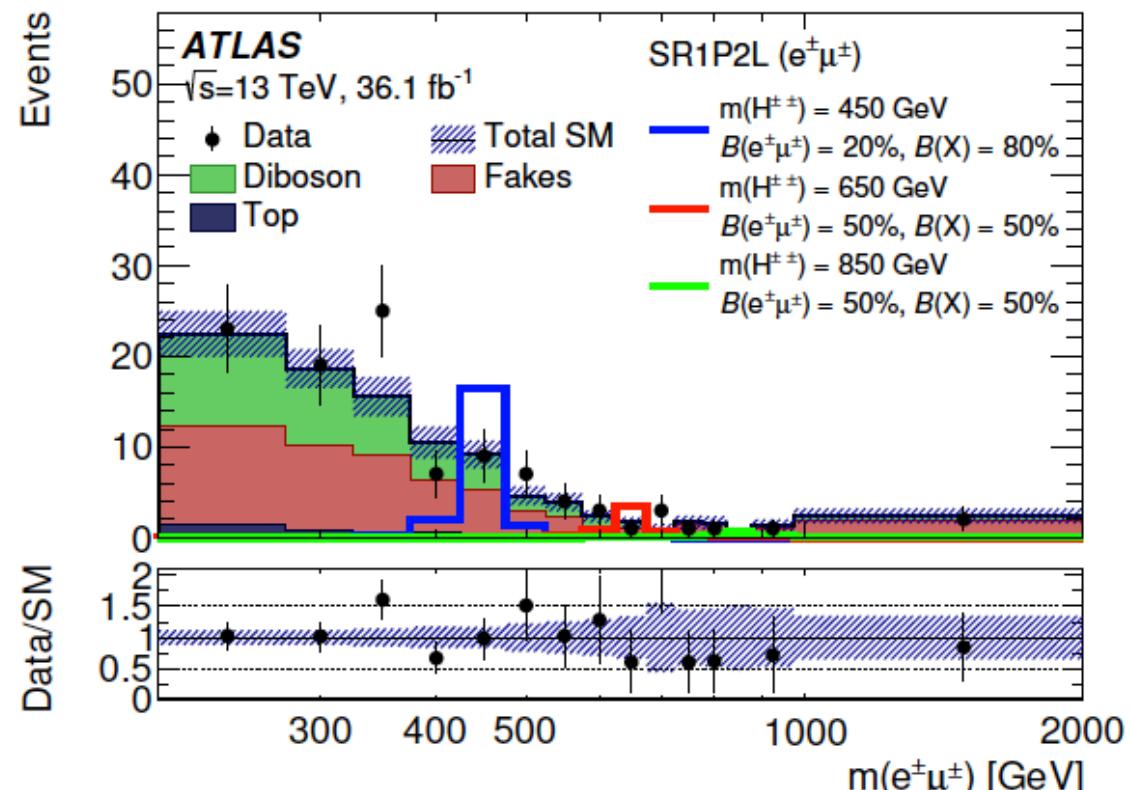
Search for $H^\pm \rightarrow tb$


- Simultaneous profile likelihood fit in SR (BDT output) and CR (H_T^{had}).
 $\text{ttbar} \geq 1\text{c}$, $\text{ttbar} \geq 1\text{b}$ norm free in fit.
- Major systematic uncertainties:
 - $\text{ttbar+heavy flavour modelling}$,
 - jet flavour tagging,
 - jet energy scale and resolution.
- No significant excess found.
- CLs limits:
 - Model-independent as a function of m_{H^\pm} (top-right).
 - Interpretation in MSSM m_h^{mod} on bottom-right.
 - In this scenario the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the M_H - $\tan\beta$ plane.

Search for $H^{\pm\pm} \rightarrow l^+ l^+ l^- l^-$

- Doubly charged Higgs bosons $H^{\pm\pm}$ can arise in a large variety of BSM theories.
- Feynman diagram for $pp \rightarrow H^{++} H^- \rightarrow l^+ l^+ l^- l^-$ production where $l^\pm l^\pm = e^\pm e^\pm, e^\pm \mu^\pm$ or $\mu^\pm \mu^\pm$.
- $H^{\pm\pm} \rightarrow l^\pm l^\pm, H^{\pm\pm} \rightarrow \tau^\pm \tau^\pm$ or $H^{\pm\pm} \rightarrow W^\pm W^\pm$, depending on $m_{H^{\pm\pm}}$ and vacuum expectation value (vev) of the neutral Higgs triplet.
At low $m_{H^{\pm\pm}}$ and vev $H^{\pm\pm} \rightarrow l^\pm l^\pm$ dominates.
- Masses studied: $250 \leq m_{H^{\pm\pm}} \leq 1300$ GeV

36.1 fb^{-1} @ 13 TeV
CERN-EP-2017-198,
arXiv: 1710.09748v1

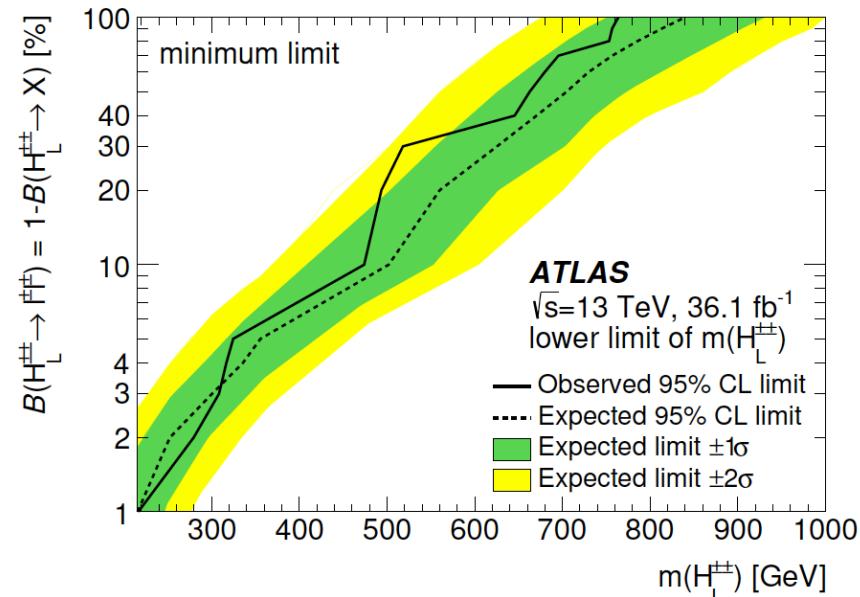
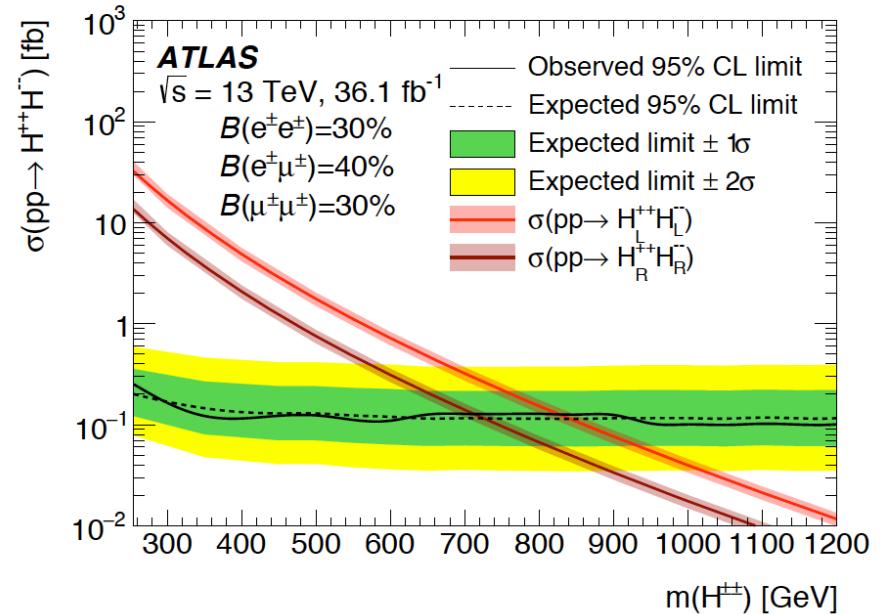

Drell-Yan process in this analysis

arXiv: 1710.09748v1
submitted to EPJC 26 Oct

H^{±±} → l⁺l⁺l⁻l⁻ analysis

- Backgrounds:
 - $Z+V$, $t\bar{t}+V$ ($V=Z,W$) produce prompt leptons. Estimated with simulation.
 - Z , $t\bar{t}$, WW ,... produce prompt leptons plus charged mis-ID. Estimated with simulation, data-driven correction factors.
 - “Fakes”: non-prompt or mis-reconstructed leptons (multijets,...). Estimated with data, “fake factor” method.
- Selection:
 - 2, 3 or 4 leptons (e or μ),
 - b -jet veto, Z veto,
 - ΔR and p_T of lepton pairs.
- Signal regions:
 - 1 same-sign pair,
 - 1 same-sign pair 3 leptons,
 - 2 same-sign pairs.

36,1 fb^{-1} @ 13 TeV
CERN-EP-2017-198,
arXiv: 1710.09748v1

- Control regions:
 - opposite-charge control region,
 - diboson control region,
 - diboson in four-lepton regions.

$H^{\pm\pm} \rightarrow l^+ l^+ l^- l^-$ Results

- Uncertainties:
 - Fake factor method.
 - Statistical uncertainty.
 - Theory description, ...
- Maximum-likelihood fit to $m(l^\pm l^\pm)$ (2 or 3 l) or $M=0.5 \times (m^{++} + m^-)$ (4 l).
- No significant excess found.
- Set 95% upper cross-section CLs limits.
- Top-right: Upper limit on cross-section for $B(e^\pm e^\pm) = 30\%$, $B(e^\pm \mu^\pm) = 40\%$, $B(\mu^\pm \mu^\pm) = 30\%$.
- Bottom-right: observed minimum limit on $m_{H^{\pm\pm}}$ with only coupling to left-handed leptons is 760 for $B(H^{\pm\pm} \rightarrow l^\pm l^\pm) = 100\%$

ATLAS-CONF-2017-053,
arXiv: 1710.09748v1

Conclusions

- No evidence for charged Higgs Boson yet.
- Big portion of parameter space still to be covered.
 - Control better systematics,
 - More statistics will help.
- For the coming months expect public results with Run2 data on both $H^+ \rightarrow \tau\nu$, $H^+ \rightarrow tb$, $H^+ \rightarrow W^+Z$ and $H^{\pm\pm} \rightarrow W^\pm W^\pm$.
 - New search channels,
 - Extensive use of MVA,
 - New mass search regime,
 - Factor 2 more statistics.

Back-up

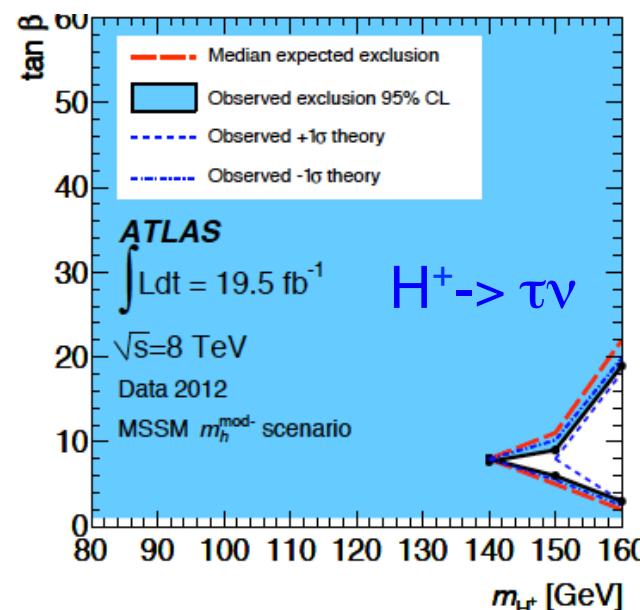
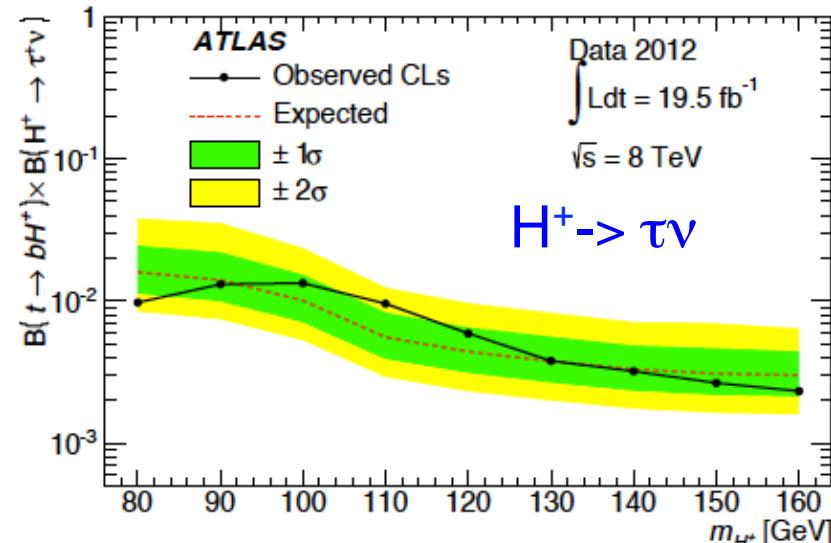
Low m_{H^\pm} search (e.g. $H^+ \rightarrow \tau\nu$)

20 fb^{-1} @ 8 TeV

JHEP03 (2015) 088, JHEP03(2016) 127, Phys. Rev. Lett. 114, 231801 (2015)

- Strategy:

- “tau+jets” channel: one hadronic τ , b-jets and light jets from the W decay
- $80 \leq m_{H^+} \leq 160$ GeV,
- $200 \leq m_{H^+} \leq 1000$ GeV
- Discriminating variable



$$m_T = \sqrt{2p_T^\tau E_T^{\text{miss}} (1 - \cos \Delta\phi_{\tau, E_T^{\text{miss}}})}$$

- Signal selection:

- $\tau + E_T^{\text{miss}}$ trigger
- 1 hadronic τ ($p_T > 40$ GeV)
- ≥ 4 jets ($p_T > 25$ GeV),
of which ≥ 1 b-tagged (70% eff).
- Veto e, μ
- $E_T^{\text{miss}} > 65$ GeV

- Top-right: model independent limit on $B(t \rightarrow bH^+) \times B(H^+ \rightarrow \tau\nu)$ as function of m_{H^+} for the low-mass search.

Bottom-right: exclusion limits with m_h^{max} scenario.

BSM theories with H^+ bosons

- Two Higgs doublets models (2HDM)
 - A.G. Akeroyd et al., *Prospects for charged Higgs searches at the LHC*, (2016), arXiv: 1607.01320 [hep-ph]
 - J.F. Gunion and H.E. Haber, *The CP conserving two Higgs doublet model: The Approach to the decoupling limit*, Phys. Rev. **D67** (2003) 075019, arXiv:hep-ph/0207010 [hep-ph]
 - G.C. Branco et al., *Theory and phenomenology of two-Higgs doublet models*, Phys. Rev. **516** (2012), arXiv: 1106.0034 [hep-ph]
- Models containing Higgs triplets
 - T.P. Cheng and L.F. Li, *Neutrino Masses, Mixings and Oscillations in $SU(2) \times U(1)$ Models of Electroweak Interactions*, Phys. Rev. **D22** (1980) 2860
 - J. Schechter and J.W.F. Valle, *Neutrino Masses in $SU(2) \times U(1)$ Theories*, Phys. Rev. **D22** (1980) 2227
 - G. Lazarides, Q. Shafi and C. Wetterich, *Proton Lifetime and Fermion masses in an $SO(10)$ Model*, Nucl. Phys. **B181** (1981) 287
 - R. N. Mohapatra and G. Senjanovic, *Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation*, Phys. Rev. **D23** (1981) 165
 - M. Magg and C. Wetterich, *Neutrino Mass Problem with Spontaneous Parity Violation*, Phys. Lett. **B94** (1980) 61

BSM theories with $H^{\pm\pm}$ bosons (1/3)

- Left-right symmetric (LRS) models
 - J.C. Pati and A. Salam, *Lepton Number as the Fourth Color*, Phys. Rev. **D10** (1974) 275. Erratum: Phys. Rev. **D11** (1975) 703
 - R.N. Mohapatra and J.C. Pati, *Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation*, Phys. Rev. **D11** (1975) 566
 - G. Senjanovic and R.N. Mohapatra, *Exact Left-Right Symmetry and Spontaneous Violation of Parity*, Phys. Rev. **D12** (1975) 1502
 - P.S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, *Displaced photon signal from a possible light scalar in minimal left-right seesaw model*, Phys. Rev. **D95** (2017) 115001, arXiv: 1612.09587 [hep-ph]
 - D. Borah and A. Dasgupta, *Observable lepton number violation with predominantly Dirac nature of active neutrinos*, JHEP **01** (2017) 072, arXiv: 1609.04236 [hep-ph]
- Higgs triplet models
 - J.E. Cieza Montalvo, N.V. Cortez, J.Sa Borges and M.D. Tonasse, *Searching for doubly charged Higgs bosons at the LHC in a 3-3-1 model*, Nucl. Phys. **B756** (2006) 1. Erratum: Nucl. Phys. **B796** (2008) 422, arXiv: hep-ph/0606243
 - J.F. Gunion, R. Vega and J. Wudka, *Higgs triplets in the standard model*, Phys. Rev. **D42** (1990) 1673
- Little Higgs model
 - N. Arkani-Hamed et al., *The Minimal Moose for a Little Higgs*, JHEP **08** (2002) 021, arXiv: hep-ph/0206020

BSM theories with $H^{\pm\pm}$ bosons (2/3)

- Type-II see-saw models
 - M. Muhlleitner and M. Spira, *Note on doubley charged Higgs pair production at hadron colliders*, Phys. Rev. **D68** (2003) 117701, arXiv: hep-ph/0305288
 - A.G. Akeroyd and M. Aoki, *Single and pair production of doubley charged Higgs bosons at hadron colliders*, Phys. Rev. **D72** (2005) 035011, arXiv: hep-ph/0506176
 - A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, *Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC*, Nucl. Phys. **B787** (2007) 198, arXiv: 0705.1495 [hep-ph]
 - P. Fileviez Perez, T. Han, G.Y. Huan. T. Li and K. Wang, *Testing a neutrino mass generation mechanism at the Large Hadron Collider*, Phys. Rev. **D78** (2008) 071301, arXiv: 0803.3450 [hep-ph]
 - W. Chao, Z.G. Si, Z. Z. Xing and S. Zhou, *Correlative signatures of heavy Majorana neutrinos and doubly-charged Higgs bosons at the Large Hadron Collider*, Phys. Lett. **B666** (2008) 451, arXiv: 0804.1265 [hep-ph]
- Georgi-Machacek model
 - H. Georgi and M. Machacek, *Double Charged Higgs Bosons*, Nucl. Phys. **B262** (1985) 463
- Scalar singlet dark matter
 - S. Bhattacharya, S. Jana and S. Nandi, *Neutrino masses and scalar singlet dark matter*, Phys. Rev. **D95** (2017) 055003, arXiv: 1609.03274 [hep-ps]

BSM theories with $H^{\pm\pm}$ bosons (3/3)

- Zee-Babu neutrino mass model (16-18)
 - A. Zee, *Quantum Numbers of Majorana Neutrino Masses*, Nucl. Phys. **B264** (1986) 99
 - K.S. Babu, *Model of ``Calculable'' Majorana Neutrino Masses*. Phys. Lett. **B203** (1988) 132
 - M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, *Prospects for the Zee-Babu Model at the CERN LHC and low energy experiments*, Phys. Rev. **D77** (2008) 093013, arXiv: 0711.0483 [hep-ph]

Common parameters of 2HDM

- Four Higgs masses (m_H , m_h , m_A , m_{H^\pm})
– m_H or $m_h = 125$ GeV
- Ratio of the vacuum expectation values of the two doubles, $\tan\beta = v_2/v_1$.
- Mixing angle between H and h , α .

2HDM Type	Doublet coupled to up-type quarks	Doublet coupled to down-type quarks	Doublet coupled to leptons
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2