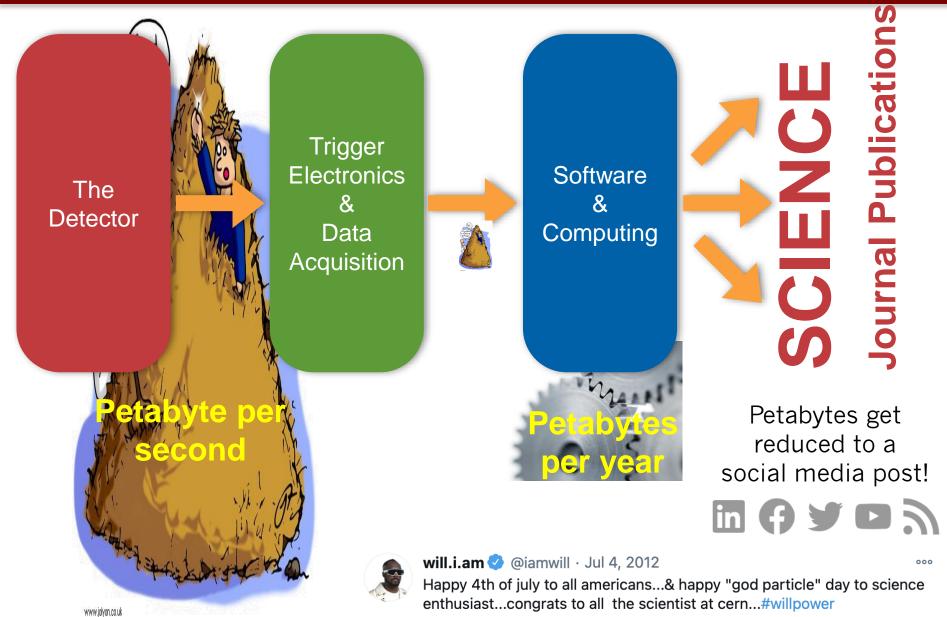


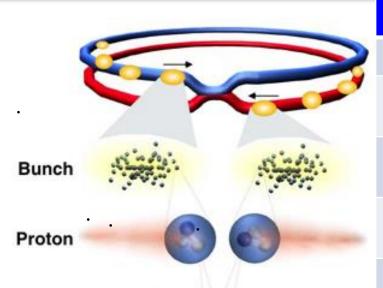
Trigger Electronics & Data Acquisition Focus: Large Hadron Collider Experiments

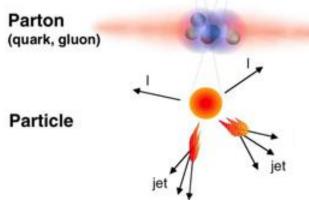
Sridhara Dasu

Original slides & graphics "stolen" from: Wesley Smith, Sergio Cittolin, Tom Gorski, Ales Svetek, Maria Cepeda, Sascha Savin, Varun Sharma, Piyush Kumar, Pallabi Das, Isobel Ojalvo, Kevin Stenson, Phil Harris, ...


Trigger on interesting events quickly using partial data

Store complete data for detailed processing offline


The Scientific Process



Proton-Proton Collisions at the LHC

	Run-2	Run-1
Beam energy	6.5 TeV	4.0 TeV
Bunches/ beam	2556	1380
Protons/ bunch	2.5x10 ¹¹	2.2x10 ¹¹
N pp Collisions Created	~10 ¹⁶	3.5×10^{14}
N Higgs Events	~104	~few 10 ²

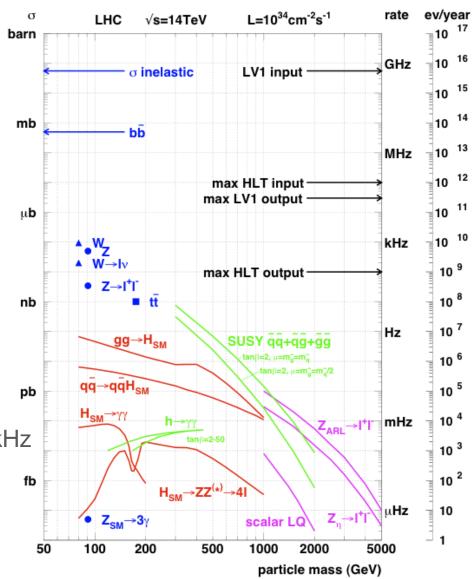


Fetch me my needle buried in those hay stacks -And, do it As Soon As Possible

1 event in 10 000 000 000 000 !

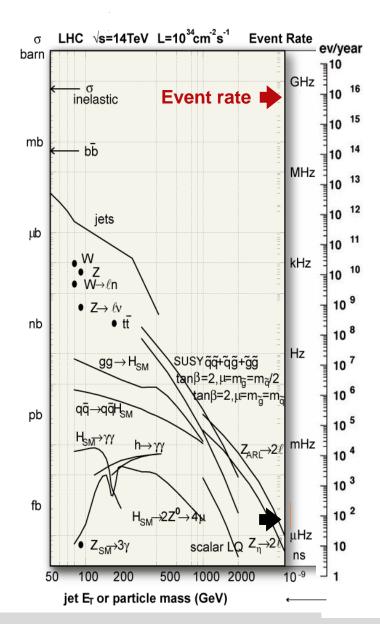
CMS, an LHC Detector

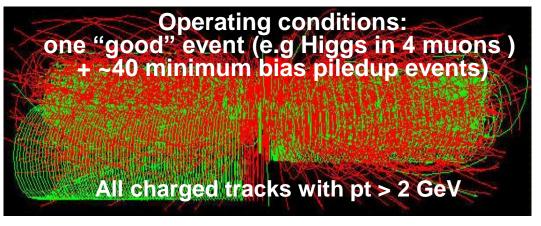
LHC Physics & Event Rates

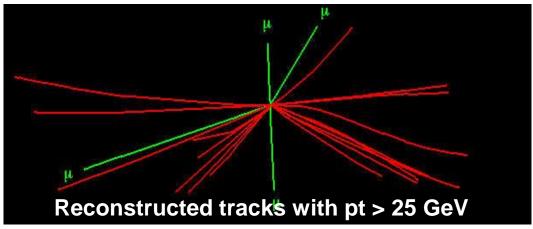


$L = 2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

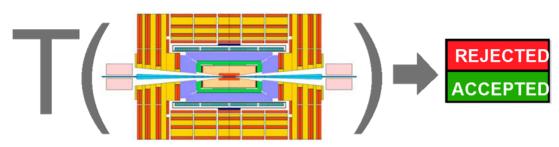
- 50 pp events/25 ns crossing
 - ~ 1 GHz input rate
 - "Good" events contain50 background overlap
- 1 kHz W events
- 10 Hz top events
- < 10⁴ detectable Higgs/year


Can store ~ 1000 Hz events Select in stages


- Level-1 Triggers
 - 1 GHz (pp-interactions) to 100 kHz
- High Level Triggers
 - 100 kHz to 1000 Hz



Collisions (p-p) at LHC


Event size: ~ 1 M bytes
Event Rate: ~ 32 M Hz

Trigger Task – Quick Complex Decision

 Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

- Detector data not (all) promptly available
- Selection function highly complex
- ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

(HL) LHC Physics – Trigger Challenge

Electroweak Symmetry Breaking Scale

Low $\cong 30 \text{ GeV}$ $\text{Low P}_{T} \gamma, e, \mu$

- Higgs (125 GeV) studies and higgs sector characterization
- Quark, lepton Yukawa couplings to higgs
 — Low P_T B, τ jets

New physics at TeV scale to stabilize higgs sector

- Spectroscopy of new EWK produced resonances (SUSY or otherwise)

 Multiple low P_T objects

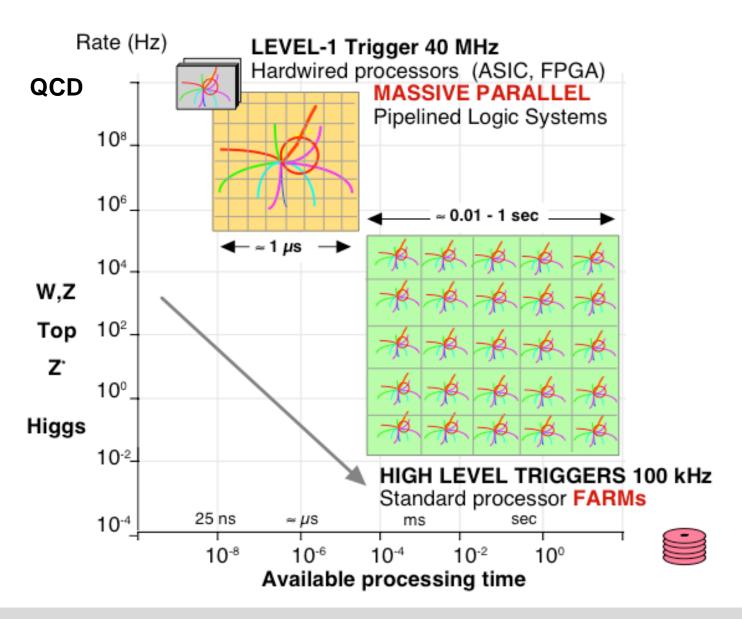
Multi-TeV scale physics (loop effects)

- Indirect effects on flavor physics (mixing, FCNC, etc.)
 - B_s mixing and rare B decays

~ Dedicated triggers (CMS) or experiment (LHCB)

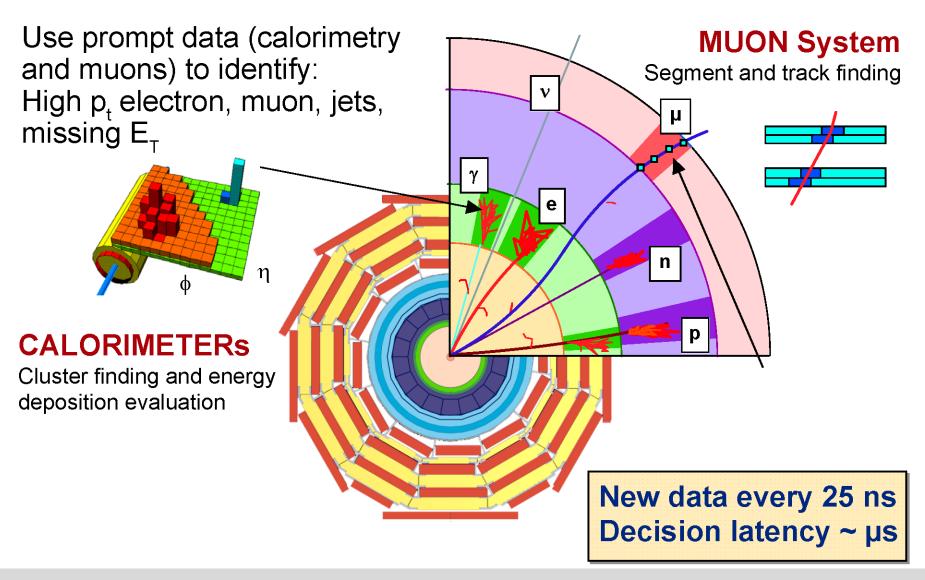
- Lepton flavor violation
 - Rare Z and higgs decays

Planck scale physics

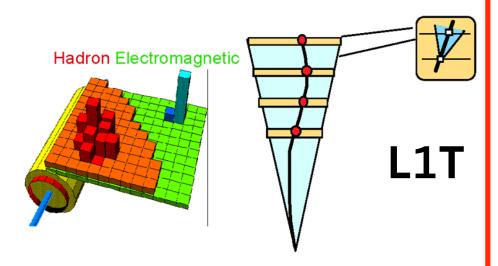

- Large extra dimensions to bring it closer to experiment
- New heavy bosons
- Blackhole production

High P_T leptons and photons

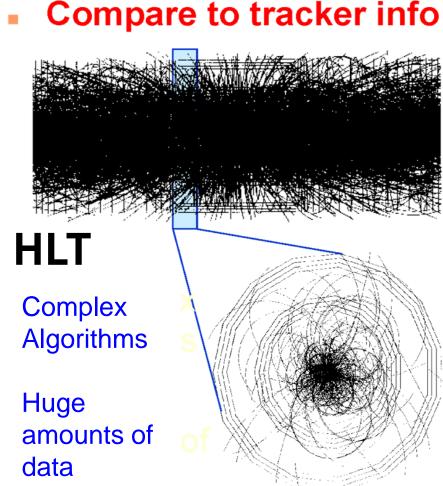
Multi particle and jet events


LHC Data Processing to Trigger

Level 1 Trigger Data

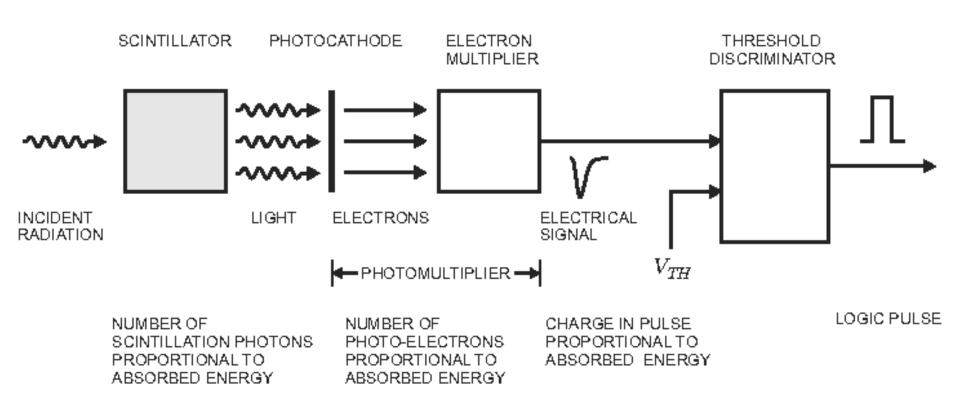

L1 @ LHC: Only Calorimeter & Muon - wusconsin

HLT@LHC: Key additional feature - Tracker

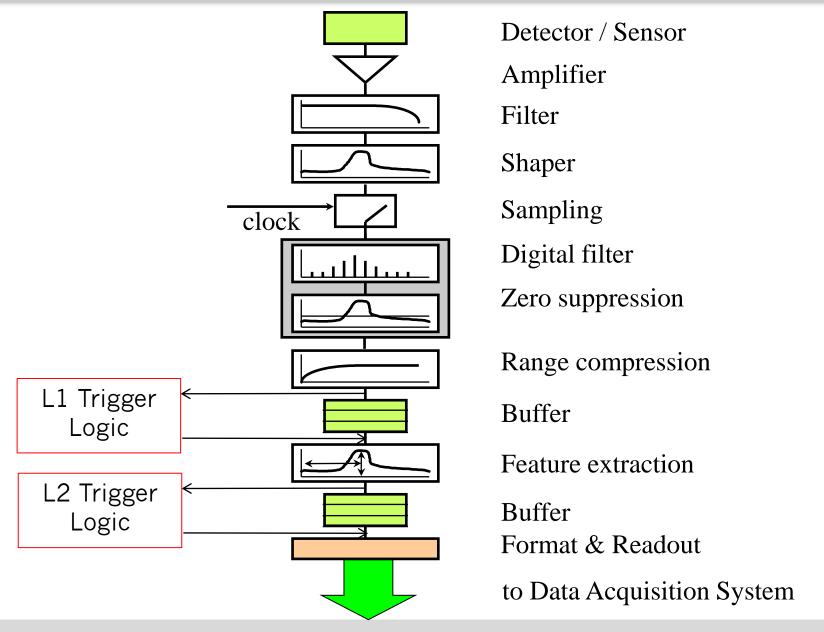

New tracker and level-1 track trigger envisioned for HL-LHC

Pattern recognition much faster/easier

Simple Algorithms


Reduced amounts of data

Example: Scintillator Signal


Photomultiplier serves as the amplifier Measure if pulse height is over a threshold

from H. Spieler "Analog and Digital Electronics for Detectors"

Many Steps of Processing Before Readout!

Filtering & Shaping

Purpose is to adjust signal for the measurement desired


- Broaden a sharp pulse to reduce input bandwidth & noise
 - Make it too broad and pulses from different times mix
- Analyze a wide pulse to extract the impulse time and integral ⇒

Example: Signals from scintillator every 25 ns

- Need to sum energy deposited over 150 ns
- Need to put energy in correct 25 ns time bin
- Apply digital filtering & peak finding
 - Will return to this example later In the trigger path, digital filtering followed by a peak finder is applied to energy sums (L1 Filter)

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

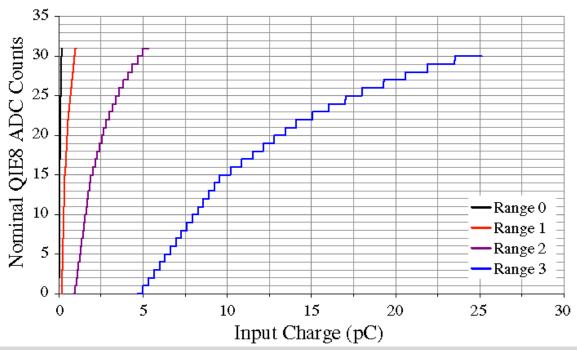
Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

Sampling & Digitization

Signal can be stored in analog form or digitized at regular intervals (sampled)

- Analog readout: store charge in analog buffers (e.g. capacitors) and transmit stored charge off detector for digitization
- Digital readout with analog buffer: store charge in analog buffers, digitize buffer contents and transmit digital results off detector
- Digital readout with digital buffer: digitize the sampled signal directly, store digitally and transmit digital results off detector
- Zero suppression can be applied to not transmit data containing zeros
 - Creates additional overhead to track suppressed data

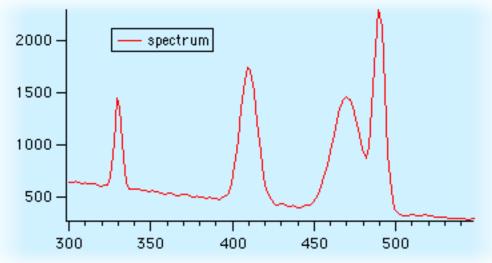
Signal can be discriminated against a threshold

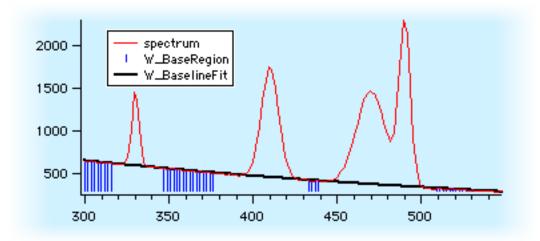

 Binary readout: all that is stored is whether pulse height was over threshold

Range Compression

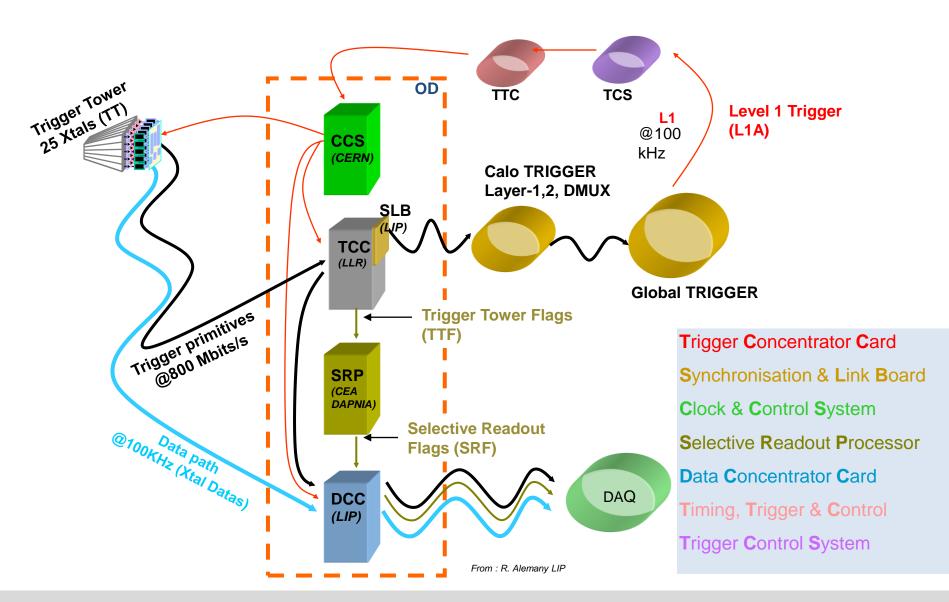
Rather than have a linear conversion from energy to bits, vary the number of bits per energy to match your detector resolution and use bits in the most economical manner.

- Have different ranges with different nos. of bits per pulse height
- Use nonlinear functions to match resolution


Baseline Subtraction

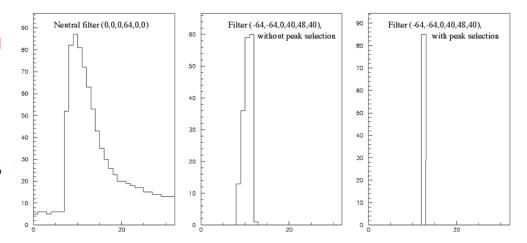


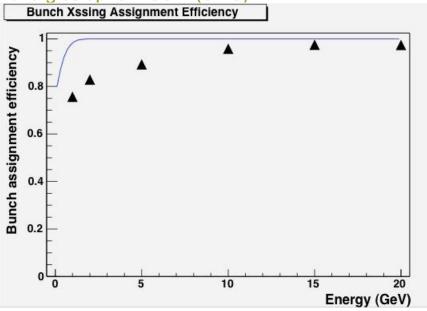
Wish to measure the integral of an individual pulse on top of another signal

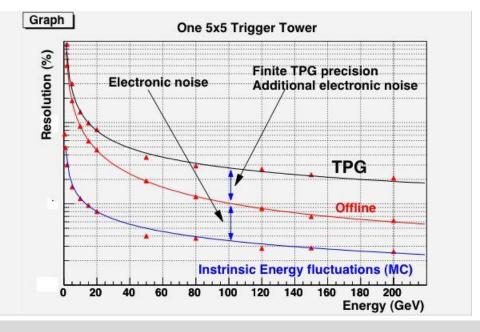

• Fit slope in regions away from

Subtract integral under fitte

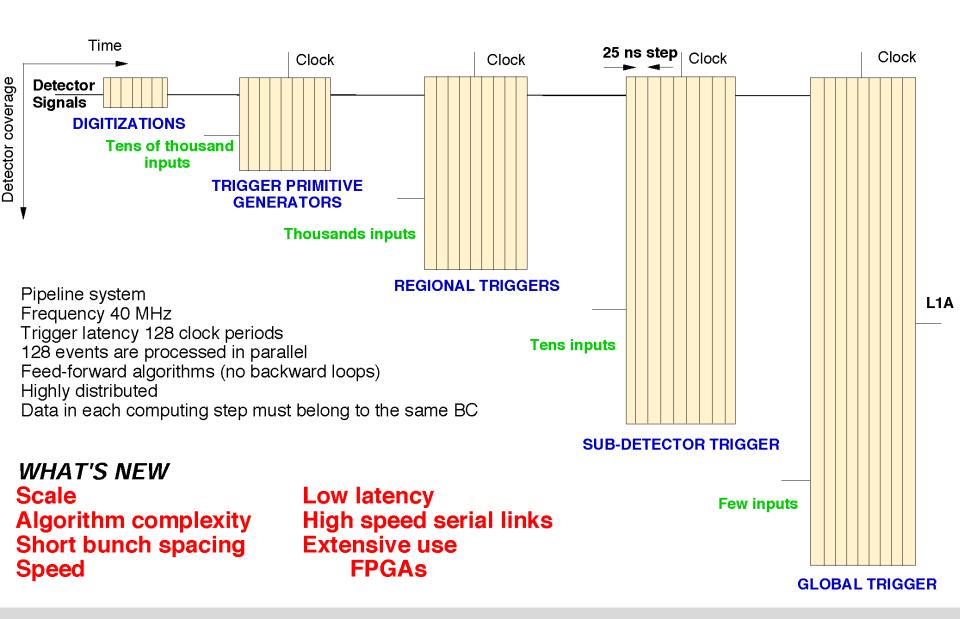
EM Calorimeter Trigger/DAQ Processing wisconsin

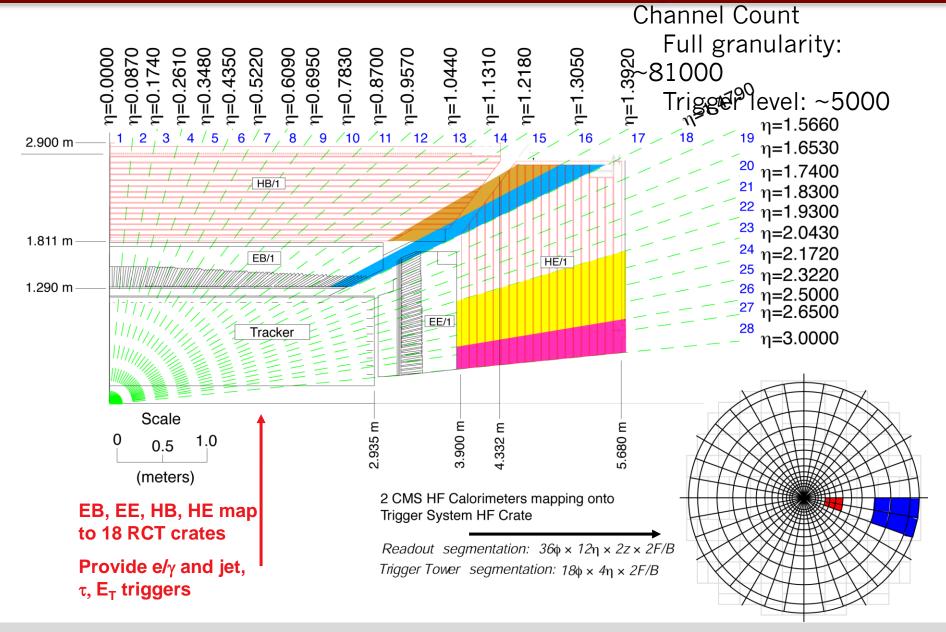

ECAL Trigger Primitives


In the trigger path, digital filtering followed by a peak finder is applied to energy sums (L1 Filter)


Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)


Test beam results (45 MeV per xtal):


Level 1 Trigger Organization

CMS Calorimeter Geometry

Channels – Channels - Channels

Calorimeter Trigger Input from ECAL and HCAL (Phase-

4) ometry	η-divisions	φ- divisions	Bits/E,H- tower ET, feature	Bandwidth (Gbps)	Fiber Count 4.8 – 6.4 Gbps
Barrel +/-	17+17	72	8+1+8+6	2252	324 + 306
Endcap +/-	11+11	72	8+1+8+6	1457	198 + 198
Total	56	72	23	3609	1026

18 cards, 1 FPGA/card, ~56 4.8-6.4-Gbps inputs per card

Barrel Calorimeter Trigger Input ECAL & HCAL (Phase-2)

			_		
Geometry	η-divisions	φ- divisions	Bits/E- crystal Bits/H-tower	Bandwidth (Gbps)	Fiber Count 16 Gbps
ECAL Crystals	17x5	72x5	10	208080	3060
HCAL Towers 24	16 ards, 1 FF	72 PGA/card	8+6 I, 106 25-G	645 bps input	144 s per card
Total	-	-	-	208745	3204

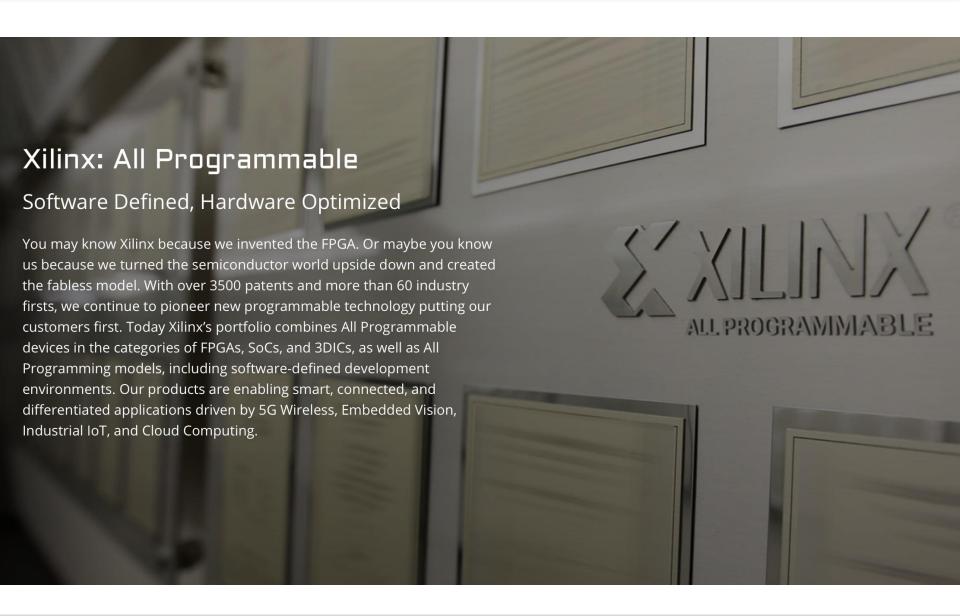
Technologies of Choice → LHC Schedules

FPGA & Telecom technology advances (VME $\rightarrow \mu$ TCA \rightarrow ATCA)

- Ubiquitous >10 Gbps links
- FPGAs with O(100) rx/tx links with built in serdes
 - Xilinx Kintex / Virtex-7 → Ultrascale platforms
 - Gigantic cores
 - DSP units, BRAM and Embedded processors (ZYNQ)
- Fiber optic components
 - Avago mini-pods at 10 Gbps → Samtec Firefly 25 Gbps capable units

LHC long shutdown 1: 2013-2014 (Phase-1 Upgrades)

- Virtex-7 family cards
 - In CMS: CTP7 (Wisconsin), MP7 (Imperial), MTF7 (Florida)
- 10 Gbps optics


LHC long shutdown 3: 2026-2027 (Phase-2 Upgrades)

- Ultrascale family
 - In CMS: APx (Wisconsin), Serenity (Imperial), X2O (UCLA), Apollo (Cornell)
- 25 Gbps optics

Similar capability boards in ATLAS as well

Xilinx Field Programmable Gate Arrays www.sconsin

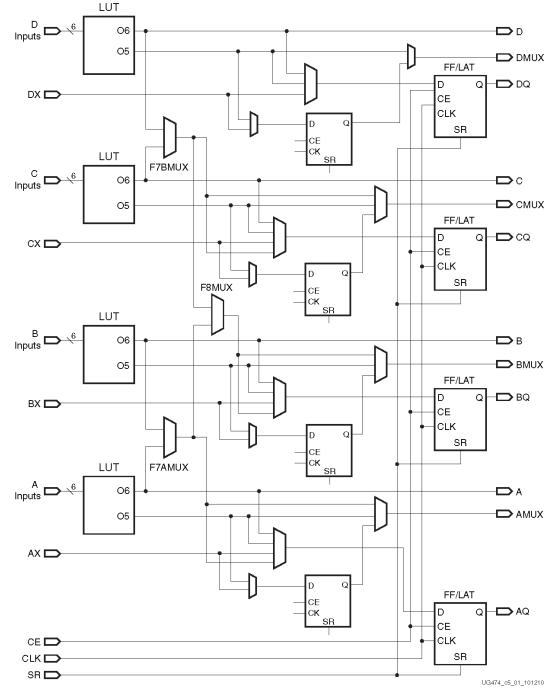
FPGA Slice

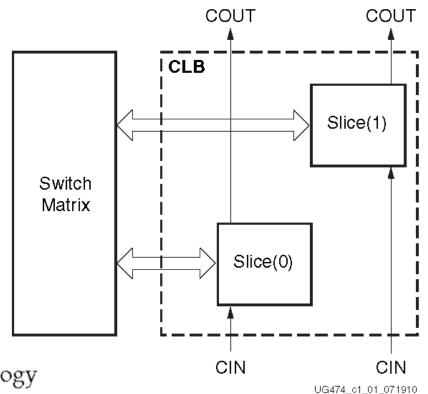
Array of well-defined logic cells, driven by LUTs

Software configured connections

Cleverly organized
Preconfigured digital
logic elements

Arranged in a rectangular grid for efficient parallel processing




Figure 5-1: Simplified 7 Series FPGA Slice

Configurable Logic Block

Firmware developer uses programming languages to define "connections"

Firmware tools create the "bit file" which defines the switch matrix / LUTs

- Real 6-input look-up table (LUT) technology
- Dual LUT5 (5-input LUT) option

Figure 1-1: Arrangement of Slices within the CLB

- Distributed Memory and Shift Register Logic capability
- Dedicated high-speed carry logic for arithmetic functions
- Wide multiplexers for efficient utilization

CLBs are the main logic resources for implementing sequential as well as combinatorial circuits. Each CLB element is connected to a switch matrix for access to the general routing

Abundant Logic Resources in Virtex-7 Family

Table 1-4: Virtex-7 FPGA CLB Resources

Device	Slices ⁽¹⁾	SLICEL	SLICEM	6-input LUTs	Distributed RAM (Kb)	Shift Register (Kb)	Flip-Flops
7 V585T	91,050	63,300	27,7 50	364,200	6,938	3,469	728,400
7V2000T	305,400	219,200	86,200	1,221,600	21,550	10 <i>,</i> 77 5	2,443,200
7VX330T	51,000	33,450	17,550	204,000	4,388	2,194	408,000
7VX415T	64,400	38,300	26,100	257,600	6,525	3,263	515,200
7VX485T	7 5,900	43,200	32,700	303,600	8,175	4,088	607,200
7VX550T	86,600 ⁽²⁾	51,700	34,900	346,400	8,725	4,363	692,800
7VX690T	108,300	64,750	43,550	433,200	10,888	5,444	866,400
7VX980T	153,000	97,650	55,350	612,000	13,838	6,919	1,224,000
7VX1140T	178,000	107,200	70,800	712,000	17,700	8,850	1,424,000
7VH580T	90,700	55,300	35,400	362,800	8,850	4,425	725,600
7 VH8 7 0T	136,900	83,7 50	53,150	547,600	13,275	6,638	1,095,200

Scaling: Modular Blocks of Resources

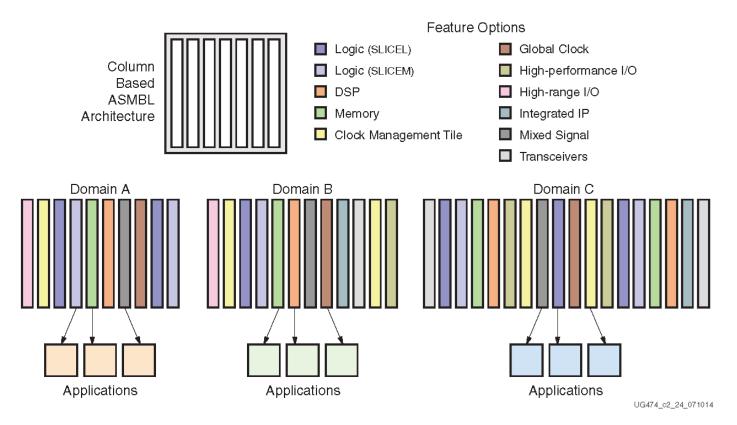


Figure 2-1: ASMBL Architecture

The ASMBL architecture breaks through traditional design barriers by:

- Eliminating geometric layout constraints such as dependencies between I/O count and array size.
- Enhancing on-chip power and ground distribution by allowing power and ground to be placed anywhere on the chip.
- Allowing disparate integrated IP blocks to be scaled independent of each other and surrounding resources.

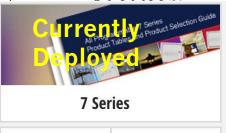
Xilinx FPGAs - Phase-1 Choice: V7 690T

Xilinx Multi-Node Product Portfolio Offering

45nm

28nm

20nm



Spartan-7	Spartan-6
Artix-7	Zynq-7000

Spartan-7	Artix-7
Kintex-7	Virtex-7

Kintex UltraScale	Virtex UltraScale
Militex Old ascale	VII LEX OILI a Scale

Kintex UltraScale+	Virtex UltraScale+

	Spartan-7	Artix-7	Kintex-7	Virtex-7
Max Logic Cells (K)	102	215	478	1,955
Max Memory (Mb)	4.2	13	34	68
Max DSP Slices	160	740	1,920	3,600
Max Transceiver Speed (Gb/s)		6.6	12.5	28.05
Max I/O Pins	400	500	500	1,200

Key element - Multi-gigabit Opto-electronics

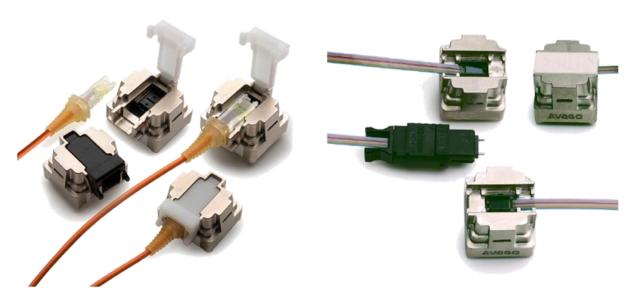


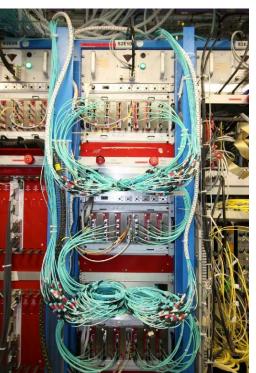
Figure 1. MiniPOD™ Transmitter and Receiver Modules with a) Round Cable and b) Flat Cable: shown with and without dust covers (White = Tx, Black = Rx).

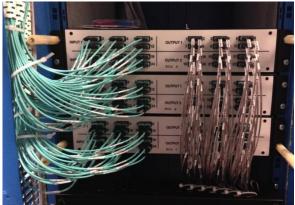
Figure 2. MiniPOD™ Transmitter and Receiver flat ribbon cable modules in a tiled arrangement example.

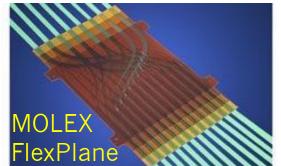
Key Product Parameters

The Avago Technologies MiniPOD™ modules operate at 850 nm and are compliant to the Multi-mode Fiber optical specs in clause 86 and relevant electrical specs in annex 86A of the IEEE 802.3ba specifications.

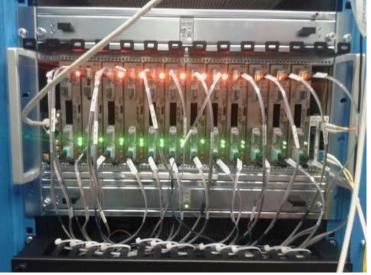
Parameter	Value	Units	Notes
Data rate per lane	10.3125	Gbps	As per 802.3ba: 100GBASE-SR10 and nPPI specifications
Number of operational lanes	12		100GbE operation utilizes the middle ten lanes (Rx and Tx) of the 12 physically defined lanes
Link Length	100 150	m m	OM3, 2000 MHzMHz•km 50 μm MMF OM4, 4700 MHz•km 50 μm MMF

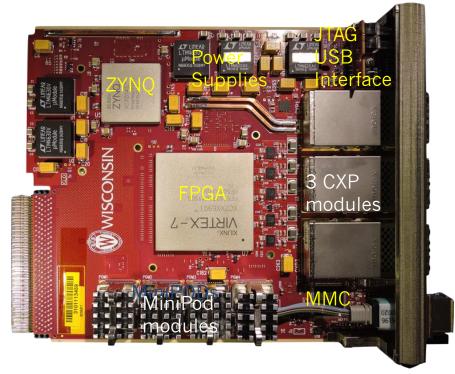

CMS Calorimeter Trigger Run-2

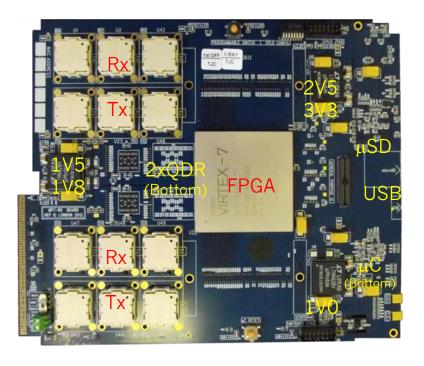



- Installed and commissioned in 2015, fully operational in 2016
 - Connections to CTP7 from Layer-1 patch panels completed in 2015
 - Connections from Layer-1 to Layer-2 via compact patch panel
 - 3 "pizza box" sized patch panels instead of full 56U rack with LC connectors
 - Layer 2 to demux to new μGT connected

Layer-1 CTP7


Layer-1 to Layer-2 Patch Panel





Level-1 Calorimeter Trigger Electronics wusconsing

Calorimeter Trigger Processor(CTP7 – left), and Master Processor (MP7 - right)

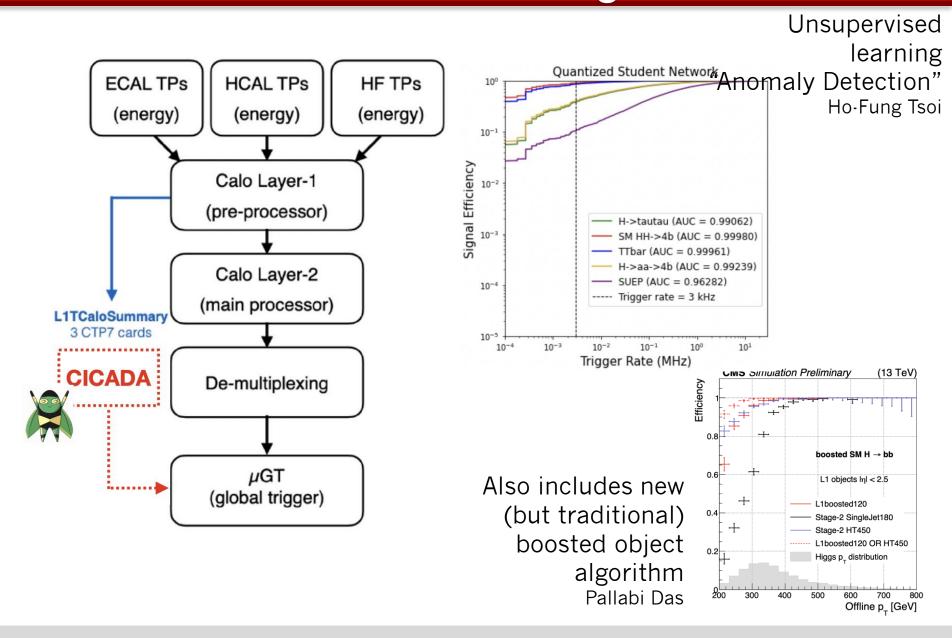
- CTP7 (Layer-1) μTCA Single Virtex 7 FPGA, 67 optical inputs, 48 outputs, 12 RX/TX backplane
 - Virtex 7 allows 10 Gb/s link speed on 3 CXP(36 TX & 36 RX) and 4 MiniPODs (31 RX & 12 TX)
 - ZYNQ processor running Xilinx PetaLinux for service tasks, including virtual JTAG cable
- MP7 (Layer-2) μTCA Single Virtex 7 FPGA, up to 72 input & output links
 - Virtex 7 has 72 input and output links at 10 Gb/s
 - Dual 72 or 144MB QDR RAM clocked at 500 MHz

L1 Trigger Summary from Run-2,3

45 CMS (13 TeV) We capture the physics of Rate [kHz] L1_SingleLooselsoEG28er2p5 interest within 100 kHz L1 DoublelsoTau32er2p1 bandwidth, while discarding L1 SingleMu22 majority of 32 kHz of collisions 35 L1 DoubleEG 25_12 er2p5 L1 DoubleMu 15 7 30 25 Jets + Energy sums1% 20 Energy sums 2.6% μ + Jets or Energy sums 3.2%15 $\mu + e/\gamma$ 3.3%10 e/γ + Jets or Energy sums 4.6% $\tau + \mu$ or e/γ or Jets or Energy sums 5.3%Multi e/γ 6.4%10 20 30 40 50 60 Pileup Single μ 9.8%Single or Multi Jets 11.5%

Single or Multi au

Multi μ


Single e/γ

12.7%

14.8%


24.8%

CICADA – Machine Learning in L1T WWISCONSIN

LHC Now - HL-LHC in the Future WINISCONSIN-MADISON

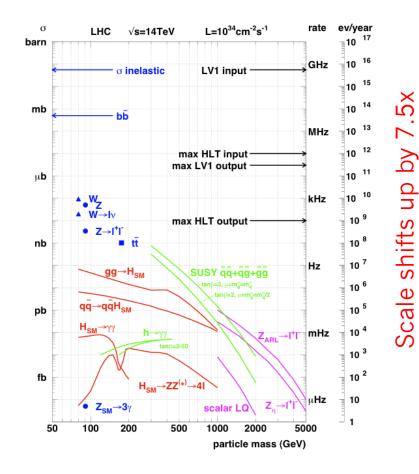
CMS will be on path to exabytes of data acquired in the HL-LHC era

HLLHC Parameters

Parameter	Nominal LHC	HL-LHC	HL-LHC	HL-LHC
	Design	25 ns	25 ns	
	Report	standard	BCMS	8b4e
Beam energy in collision [TeV]	7	7	7	7
$N_b[10^{11}]$	1.15	2.2	2.2	2.3
Number of bunches per beam	2808	2748	2604	1968
Beam current [A]	0.58	1.09	1.03	0.82
Minimum β^* [m]	0.55	0.2	0.2	0.2
$\epsilon_n [\mu m]$	3.75	2.50	2.50	2.20
ϵ_L [eVs]	2.50	2.50	2.50	2.50
Peak luminosity with crab cavities	(1.18)	12.6	11.9	11.6
$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	Operating at 2x now			
Levelled luminosity for	-	5.32	5.02	5.03
$\mu = 140[10^{34} \text{cm}^{-2} \text{s}^{-1}]$		Expect Opera	iting at 7.5x u	Itimately
(inelastic) collisions/crossing μ	27	140	140	140
(with levelling and crab cavities)				
Maximum line density of pileup	0.21	1.3	1.3	1.3
events during fill [events/mm]				

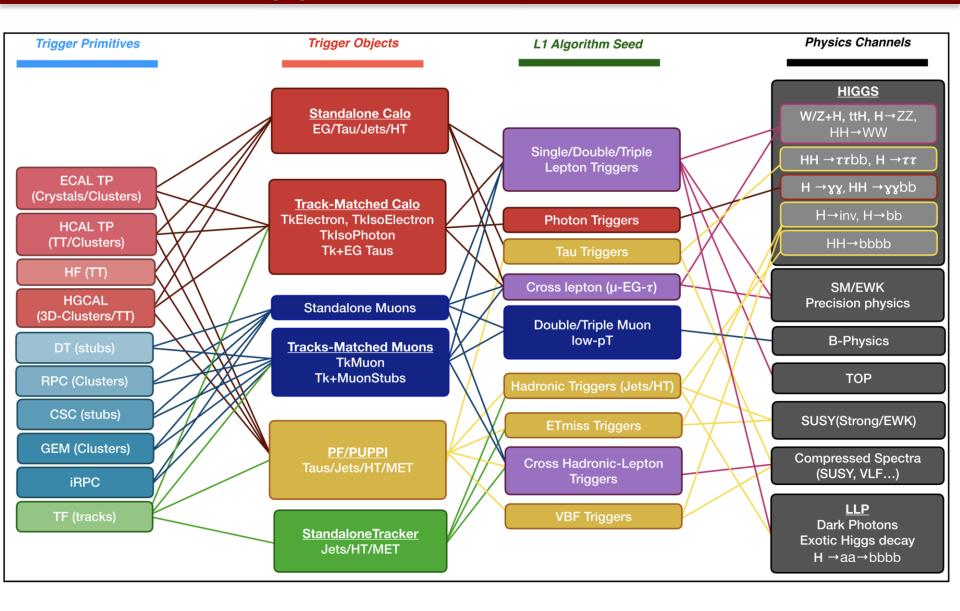
WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

HLLHC Physics & Event Rates

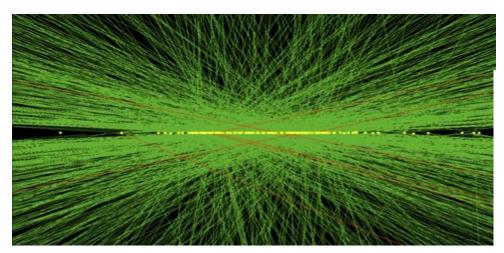

At $L = 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

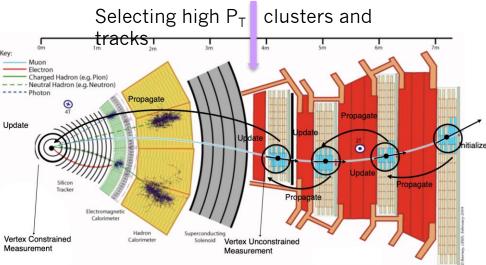
- 200 events per beam crossing (BX)
 - ~ 7.5 GHz pp collision rate
 - "Interesting" events contain200 pileup events
- EWK rate: 7.5 kHz W & Z
- Top rate: 75 Hz
- Higgs: 1 Hz, H₄₁: 10⁻⁴ Hz

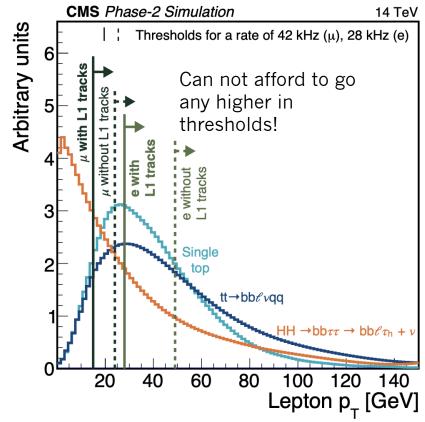
Select in stages


- Level-1 Triggers
 - 7.5 GHz (32 MHz BX) to 750 kHz
- High Level Triggers
 - 750 kHz to ~10 kHz

Event store: ~10 kHz events


Triggers -> Physics





Collisions (p-p) at HLLHC

Requirements (my slide from Feb 2004) WISCONSIN

Calorimeter Trigger for Super LHC

Electrons, Photons, τ -jets, Jets, Missing E_T

- Current Algorithms
- What can be improved?

Bottom line

 Must hold the thresholds low to study electro-weak symmetry breaking physics

Only option is to further reduce the backgrounds

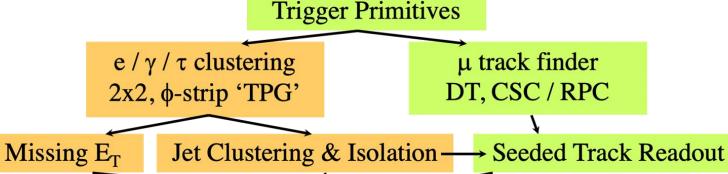
- Electrons/photons/τ-jets
 - Dominated by tails of jet fragmentation to π^0 Track trigger!
 - Use of tracking in level-1
 - Pixel only or pixel + outer tracker layers?
 Crystal readout !!
 - Mandates higher granularity calorimeter trigger output
- Jets and missing E_T
 - These are real Only minor improvement in resolution likely
 - Topology with vertex identification to reject pileup
 - Pixel tracker provides vertex?

S. Dasu, University of Wisconsin February 2004 - 1

Planning ahead

(my slide from July 2005)

Algorithm Stages

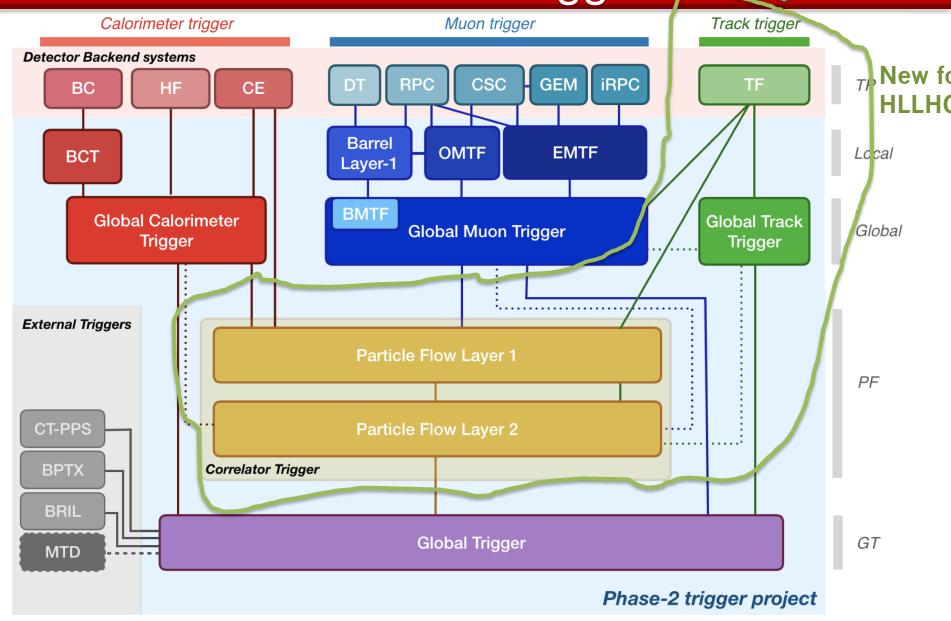


Current:

 $\mathsf{TPG} \Rightarrow \mathsf{RCT} \Rightarrow \mathsf{GCT} \Rightarrow \mathsf{GT}$

Proposed:

TPG ⇒ **Clustering** ⇒ **Correlator** ⇒ **Selector**

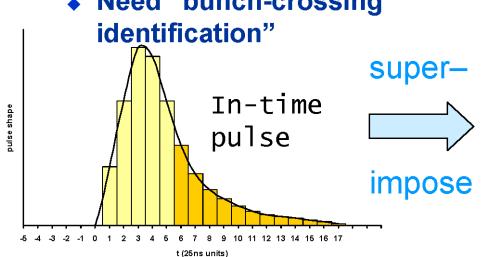

Regional Correlation, Selection, Sorting

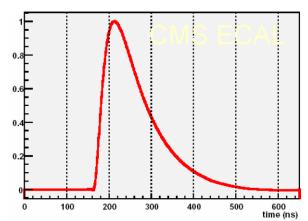
Global Trigger, Event Selection Manager

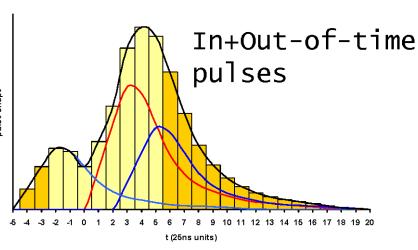
S. Dasu, University of Wisconsin

July 2005 - 5

CMS HLLHC Level-1 Trigger 2020 WISCONSIN UNIVERSITY OF WISCONSIN

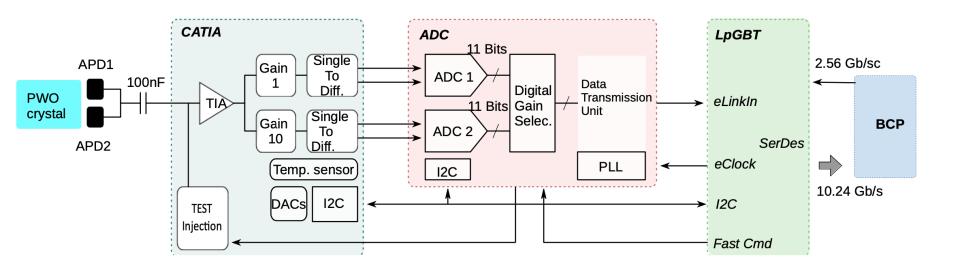



Challenges: Pile-up



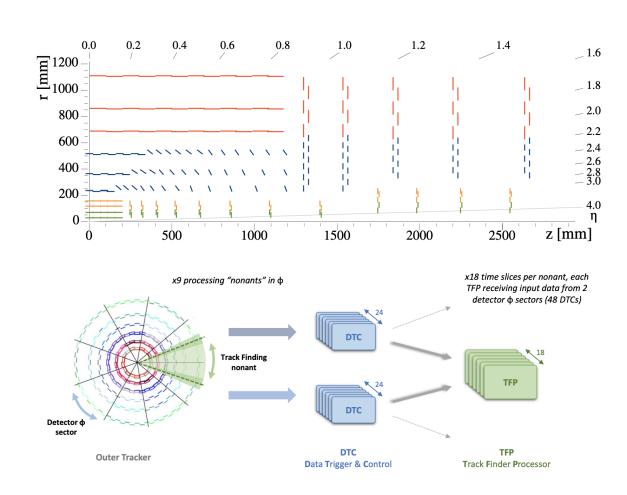
- "In-time" pile-up: particles from the same crossing but from a different pp interaction
- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings

Need "bunch-crossing



@HLLHC: Redoing frontend electronics for faster

Getting the crystal data out (New for HLLHC)



There are 61200 crystals to be processed – packing 25 crystals per link out of BCP you still have 2448 links at 16 Gbps to contend in the calorimeter trigger path!

Getting the tracks out (New for HLLHC)

Outer tracker double layers allow track stub readout

Tracklets formed in TFP consistent with >2GeV P_T propagated in-out, matched to form track candidates

Tracklets are then fit to make a track

Bits and Pieces from Everywhere

Detector	Object	N bits/object	N objects	N bits/BX	Required BW (Gb/s)
TRK	Track	96	1665	159 840	6394
EB	Crystal	16	61 200	979 200	39 168
EB	Clusters	40	50	2 000	80
HB	Tower	16	2 304	36 864	1 475
HF	Tower	10	1 440	13 824	553
HGCAL	Cluster	250	416	104 000	4 160
HGCAL	Tower	16	2 600	41 600	1 664
MB DT+RPC (SP)	Stub	64	1 720	110 080	4 400
ME CSC	Stub	32	1 080	34 560	1 382
ME RPC	Cluster	16	2 304	36 864	1 475
ME iRPC	Cluster	24	288	6912	276
ME GEM	Cluster	14	2 304	32 256	1 290
ME0 GEM	Stub	24	288	6912	276
Total	-	-	-	-	62 593

Many Multi-gigabit Optical Links wisconsin

Detector	TMUX period	Output links	Link speed (Gb/s)	Latency (µs)
Track Finder	18	$9 \times 2 \times 18 = 324$	25	5
ECAL	1	3060	16	1.5
HCAL	1	144	6.4	1.5
HF	1	36	6.4	1.5
HGCAL	18	$2\times3\times4\times18=432$	16	5
DT+RPC to BMTF	18	$60 \times 18 = 1080$	25	
DT+RPC to OMTF	1	72 (+18)	25	
RPC(endcap) to OMTF	1	42 (+6)	25	
RPC(endcap) to EMTF	1	48 (+12)	25	
CSC to OMTF	1	360 (+30)	3.2	1.75
CSC to EMTF	1	480 (+108)	3.2	1.75
iRPC	1	24 (+12)	16	
GEM (GE1/1)	1	96 (+12)	9.6	1.0
GEM (GE2/1)	1	36 (+12)	25	1.0
ME0	1	24 (+12)	25	

HL-LHC L1 Trigger Challenge

Xilinx – Ultrascale+ Processors

Product Tables and Product Selection Guides

Kintex UltraScale+	Virtex UltraScale+
1,143	3,780
70.5	65,913
3,528	12,288
32.75	32.75
572	832

Multi-gigabit-per-second serial links wusconsin

		Туре	Max Performance ¹	Max Transceivers	Peak Bandwidth	
	Virtex UltraScale+	GTY	32.75	128	8,384 Gb/s	111 1110
	Kintex UltraScale+	GTH/GTY	16.3/32.75	44/32	3,268 Gb/s	HL-LHC 25 Gbps
	Virtex UltraScale	GTH/GTY	16.3/30.5	60/60	5,616 Gb/s	25 0005
LHC	Kintex UltraScale	GTH	16.3	64	2,086 Gb/s	
	Virtex-7	GTX/GTH/GTZ	12.5/13.1/28.05	56/96/16 ³	2,784 Gb/s	
10 Gbps	Kintex-7	GTX	12.5	32	800 Gb/s	
	Artix-7	GTP	6.6	16	211 Gb/s	
	Zynq UltraScale+	GTR/GTH/GTY	6.0/16.3/32.75	4/44/28	3,268 Gb/s	
	Zynq-7000	GTX	12.5	16	400 Gb/s	
	Spartan-6	GTP	3.2	8	51 Gb/s	

Key element - Multi-gigabit

Opto-electronics

DO NOT SCALE FROM THIS PRINT

🔀 ESD SENSITIVE

TABLE 1: ASSEMBLY LENGTH LIMITS						
FIBER TYPE HEAT SINK MIN LENGTH (cm) MAX LENGTH (cm						
-4	ANY	16	999			
-5	-1,-2,-4,-5	12	100			
-5	-3	12	48			
6	-1,-2,-4,-5	9	100			
-6	-3	0	10			

TABLE 2: LENGTH TOLERANCE					
ASSEMBLY LENGTH (cm) TOLERANCE (cm)					
009-016	±0.16				
017-999 ±1%					

* ROUNDED UP TO 2 DECIMAL PLACES

ECUO-B04-XX-XXX-0-X-1-X-XX

DATA RATE

-14: 14 Gbps -25: 25.7 Gbps -28: 28.1 Gbps

ASSEMBLY LENGTH

-XXX: LENGTH (cm) SEE TABLES 1, 2

FIBER TYPE

-4: AQUA LOOSE TUBE WITH BOOT

-5: BLACK JACKETED RIBBON WITH BOOT

-07: MXC® INTERNAL PLUG -0E: MPO PLUS® BAYONET MALE

-6: BLACK JACKETED RIBBON

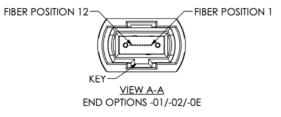
END OPTION

-01: MTP® MALE

-02: MTP® FEMALE

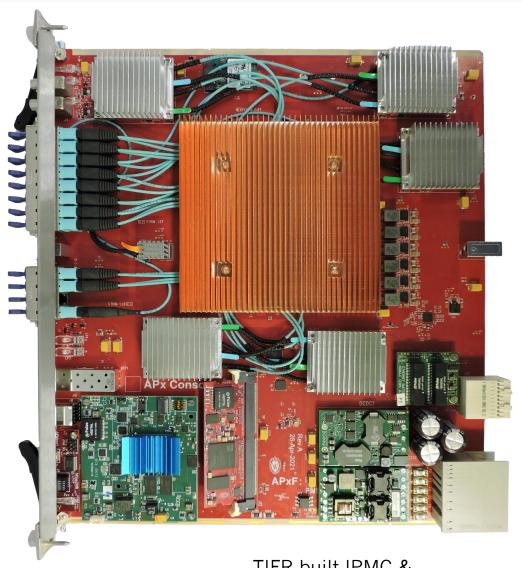
HEAT SINK -1: FLAT

-2: PIN FIN


-3: FLAT WITH GROOVE (SEE NOTE 2)

-4: PCIe® PIN FIN (-14 DATA RATE ONLY)

-5: 1.75 cm TALL PÌN FIN (-25 & -28 DATÁ RATES ONLY)



Advanced Processor Prototype for HL-LHC

Wisconsin APxF Board
Xilinx VU13P or VU9P FPGA
ZYNQ-IPMC
(ATCA IPMI controller)
ELM (ZYNQ-based
embedded Linux endpoint)
ESM (GbE switch)
High efficiency heatsinks

25G Samtec Firefly positions loaded – 10x12 + 1x4 (124 25 Gbps links)

Front-panel inputs

TIFR built IPMC & ESM mezzanines

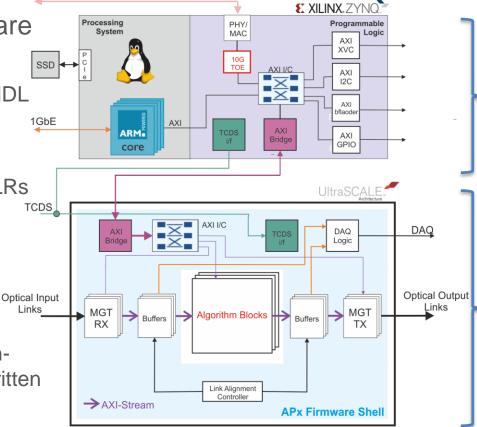
APx – Firmware/Software

10GbE

A new paradigm for firmware development

 Core firmware written in VHDL by engineers

Gigabit link support


 Data exchange between SLRs within chip

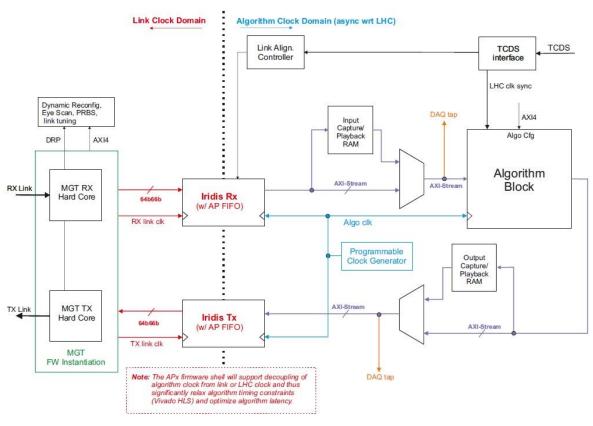
Test buffers

Clock and control

Physics

 Algorithmic firmware in highlevel languages like C++ written by physicists

ELM:


Control endpoint, providing complet board overhead functionality

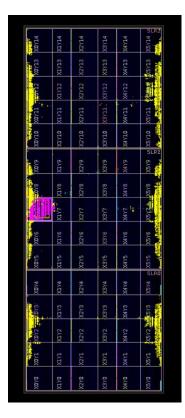
Processing FPGA:

- I/C
- data processor
- DAQ

APx Firmware Shell

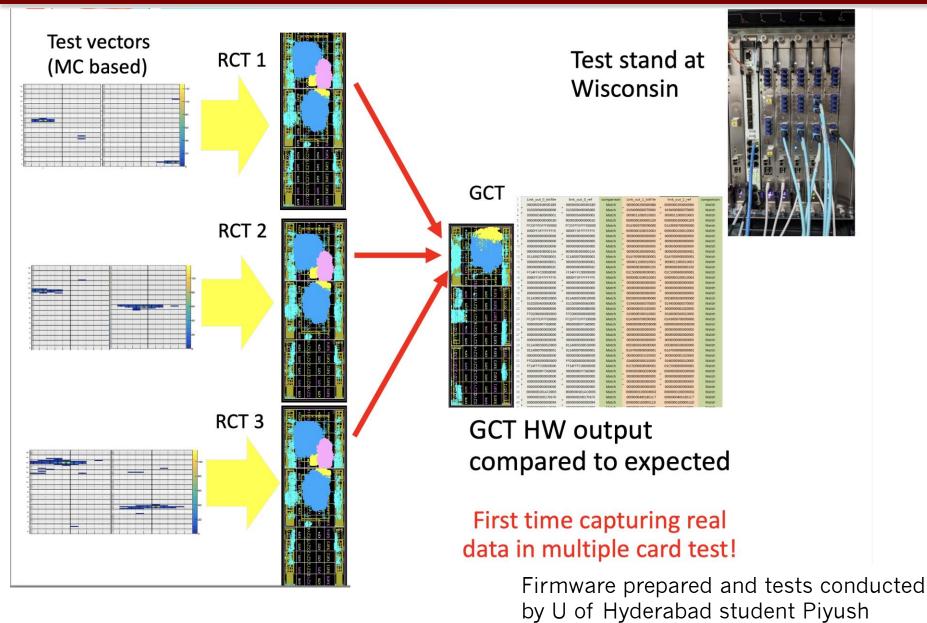
2/14/23

ICFA Instrumentation School, TIFR, Mumbai

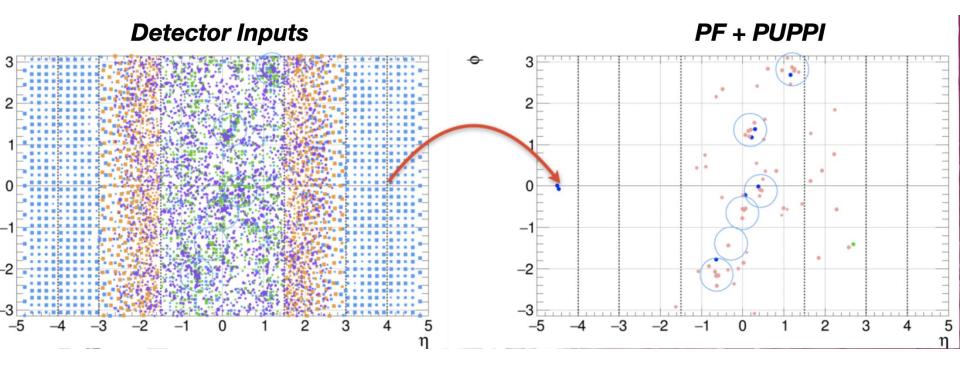

APx-FS Resource Utilization

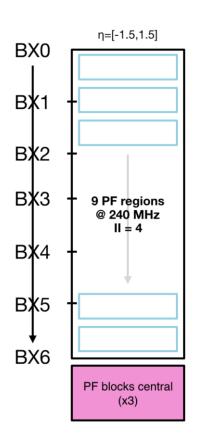
ilization	VU9P build	Post-Synthesis	Post-Implementation
			Graph Table
Resource	Utilization	Available	Utilization %
LUT	33309	1182240	2.82
LUTRAM	963	591840	0.16
FF	51563	2364480	2.18
BRAM	7	2160	0.32
10	9	416	2.16
GT	102	104	98.08
BUFG	236	1800	13.11
MMCM	3	30	10.00

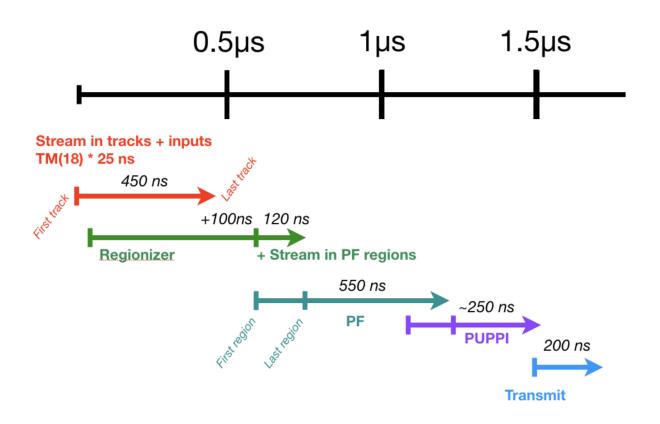
100x 25G GTY links w/ support infra


Central AXI infra with MGT-based Chip2chip core

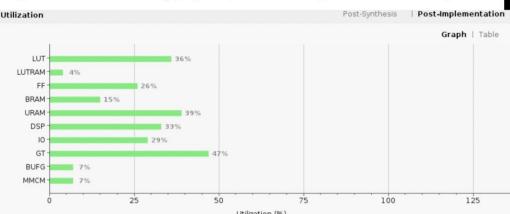
APd1 VU9P FPGA floorplan


Calorimeter Firmware Tests


Particle Flow Reconstruction on FPGAs www.sconsin

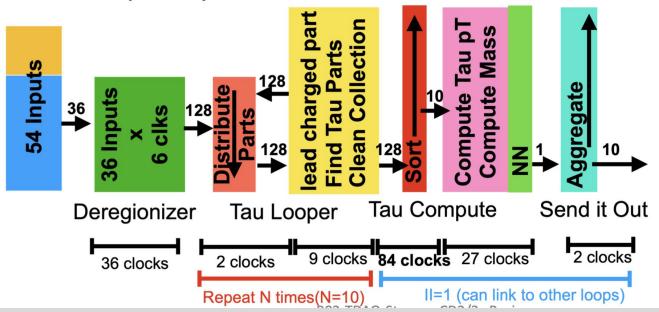


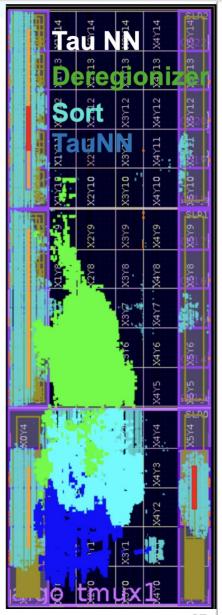
Particle Flow Implementation



Particle Flow — Correlator Layer 1

- Five firmware pieces in main algorithm:
 - Common APx infrastructure
 - Regionizer
 - Particle Flow (PF)
 - PileUp Per Particle Identification (PUPPI)
 - **Output sorting**
- Meets timing with <50% resource use for VU9P-2 (plan to use VU13P-2).
- Latency of 1.1 μ s is sufficient to meet the requirements
- Simulation and emulation match in single board tests.
- The most challenging firmware project we have, and it works!
- Additional algorithm to do e/γ preprocessing tested; not yet integrated Utilization





PUPPI

Particle Flow — Correlator Layer 2 τh wisconsin

- τ reconstruction with neural net:
 - One of the first CL2 algorithms
 - Now uses redesigned firmware incorporating deregionizer code and seeded cone jet reconstruction before τ_h identification.
 - Meets timing
 - Latency of 1.0 μ s is sufficient to meet requirements
 - Emulation matches and is in CMSSW with multi-vertex PUPPI capability.

Anatomy of Example Algorithm

Bitonic sort

- Parallel algorithm for sorting
- compare elements in a predefined sequence and the sequence of comparison doesn't depend on data
- suitable for implementation in hardware
- N-input bitonic sorting unit has log₂(N) × (log₂(N) + 1)/2 CAE stages
- the total number of CAE blocks in an N-input bitonic sorting unit is N× log₂(N)×(log₂(N) + 1)/4
- For 32 input bitonic sorting unit require 15 CAE stages and 240 CAE block.

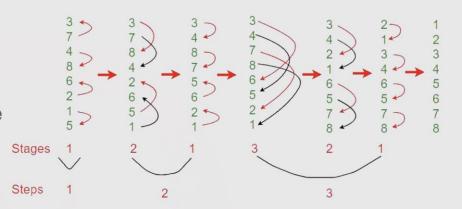


Fig 1: Bitonic sorting

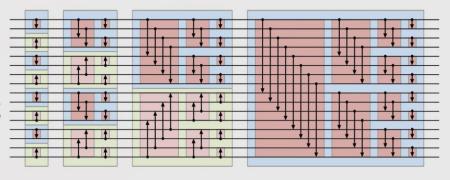
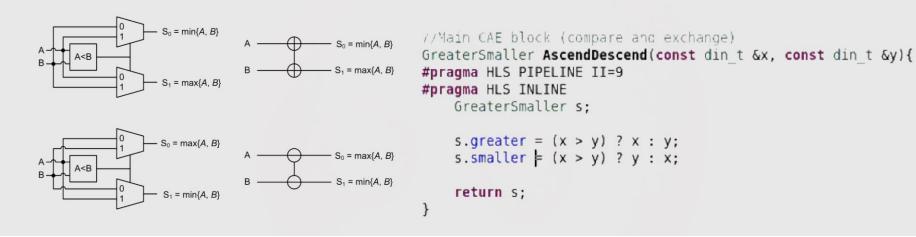



Fig 2: Bitonic sorting and sorting network of 16 IO

Use of C++ & High Level Synthesis WINSCONSIN

Compare & Exchange block (CAE)

https://github.com/piyushkumarhcu/Bitonic-Sort-32IO

Timing & Latency

HLS Implementation

- This algorithm is implemented in Vivado-HLS for 32 IO
- Synthesized for Virtex UltraScale+ FPGA (xcvu9pflgc2104-1-e)
- Target clock frequency is 360 MHz
- Latency of 9 clock cycle
- https://github.com/piyushkumarhcu/Bitonic-Sort-32IO

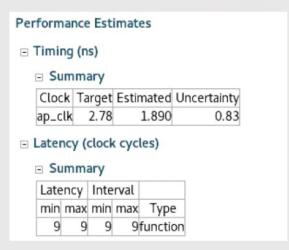


Fig 4: Timing information

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	20164	-
FIFO	-	-	-	-	-
Instance	-	-	- 1	-	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	65	-
Register	-	-	9307	-	-
Total	0	0	9307	20229	0
Available	4320	6840	2364480	1182240	960
Available SLR	1440	2280	788160	394080	320
Utilization (%)	0	0	~0	1	0
Utilization SLR (%)	0	0	1	5	0

Cosimulation Report for 'bitonicSort'

Result

Utilization Estimates

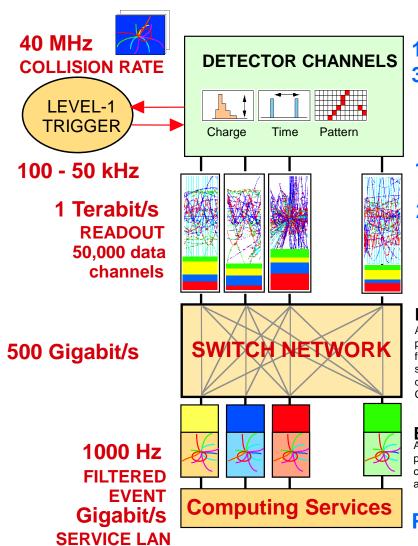

		Latency			Interval		
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	9	9	9	NA	NA	NA

Fig 4: Utilization summary and cosimulation result

Event Builder & High-Level Trigger

Current System

16 Million channels3 Gigacell buffers

1 MB EVENT DATA

200 GB buffers

~ 400 Readout memories

EVENT BUILDER.

A large switching network (400+400 ports) with total throughput ~ 400Gbit/s forms the interconnection between the sources (deep buffers) and the destinations (buffers before farm CPUs).

~ 400 CPU farms EVENT FILTER.

A set of high performance commercial processors organized into many farms convenient for on-line and off-line applications.

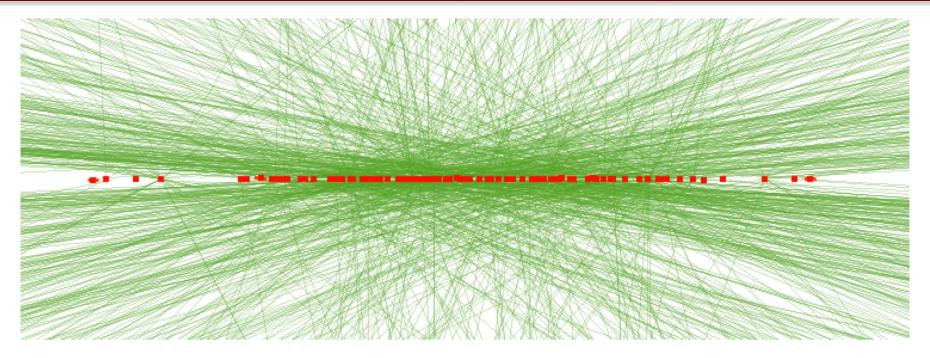
5 TeralPS

Petabyte ARCHIVE

Challenges:

1 GHz of Input Interactions

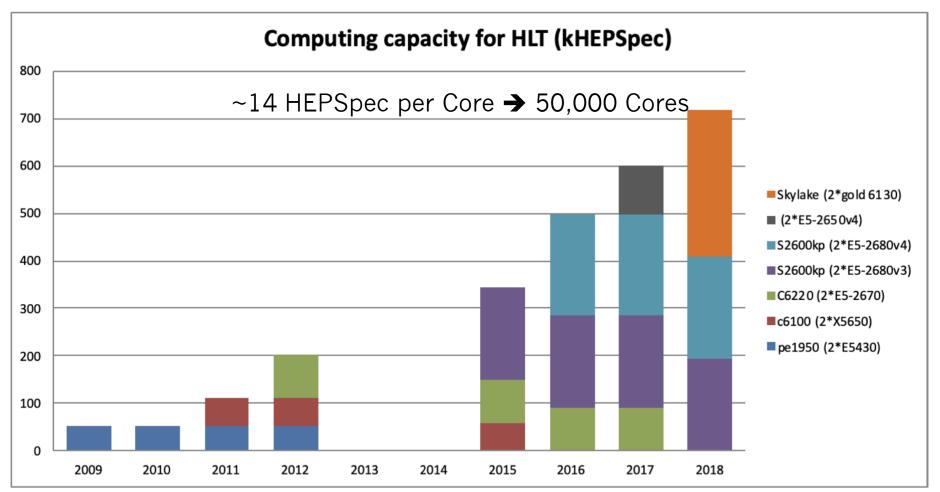
L1 Trigger selection 100 kHz


Build events

Process fully and select events

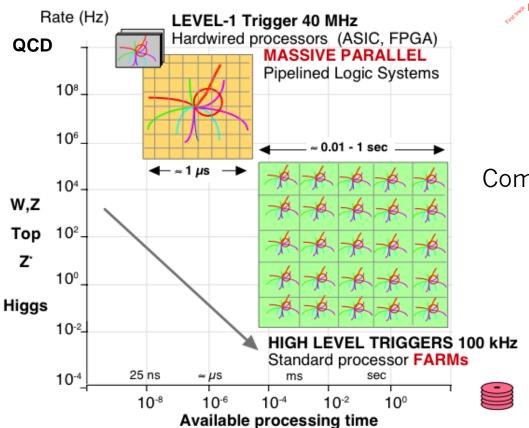
Archival Storage at about 1000 Hz of 1 MB events

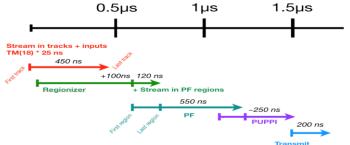
HL-LHC Computing Challenge



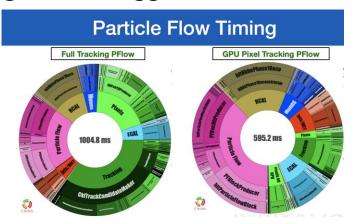
- HL-LHC with greater beam intensities results in per-event pileup of 140-200, compared to 30-40 today
- Maintaining the low trigger thresholds necessary for the physics program leads to an increase in trigger input rates from 100 kHz to 750 kHz; output rates from 1 kHz today to 7.5 kHz from 2025
- Busier events are larger and take ~16 more time to reconstruct

High Level Triggers — Online CPU WINSCONSIN


Process ~100 kHz input and select 1000 Hz output to storage systems

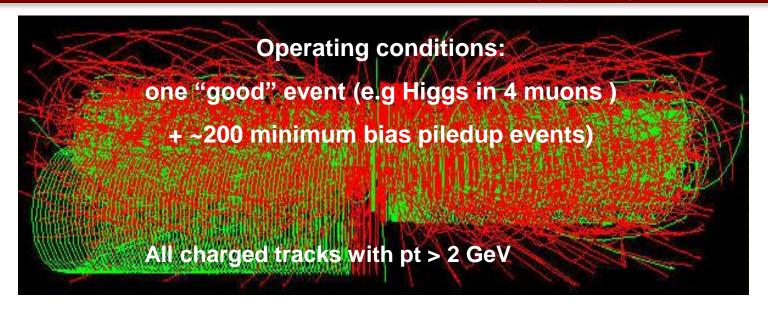

Added capacity as pileup increased

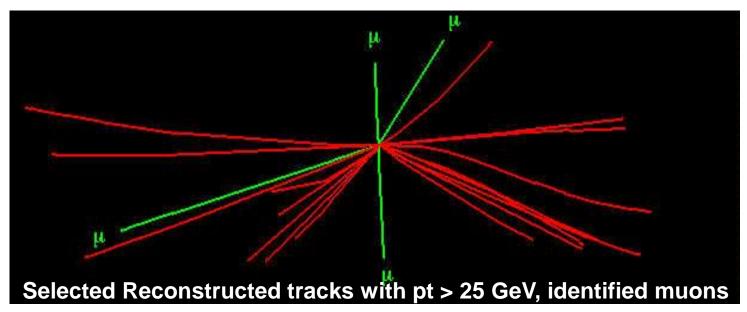
Processing HLLHC Data



Custom Processors (µs) – L1 Trigger

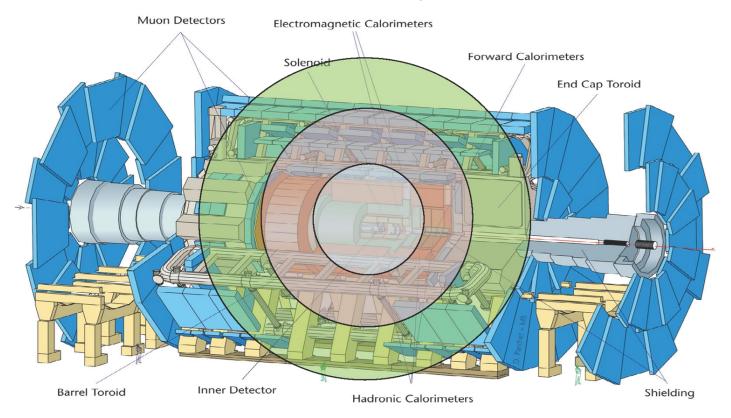
Commercial Processors (600ms – 1s) High Level Trigger




GPU Usage

processing on milliseconds of 100s of I modern

Event Reconstruction & Tagging


New Timing Detectors

Divide and conquer In space and time

Building in Timing
Detectors to exploit timing
information to mitigate

c = 30 cm/ns \rightarrow in 25 ns, s = 7.5 m eup

These timing Detectors are not in L1 trigger but in HLT Mitigate pileup & Access to Long lived particles

Concluding Thoughts

We in HEP are not innovators of modern computing technologies but we are amongst those who push it the most.

A team of engineers and physicists have tamed the LHC data deluge with intelligent use of telecommunications and computing technologies to enable fundamental physics discoveries.

We continue to push the technologies to the limit.

Advances in telecommunications and computing technologies are continually adapted to track increasing data volumes.

Students and postdocs are getting good training, especially in operations and firmware, for potential careers in both academia and industry – We invite you to join us in the HL-LHC adventure!