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Outline
q Mostly Machine Learning with Statistics interludes
q Part 1 : Overview

o What is Machine Learning?
o Specificities of ML in physics
o Useful concepts

q Part 2 : wider and deeper
o NN on HEP data

§ various hammers and nails (including wrong ones)
o Graph NN
o Anomaly detection

q Part 3 : even wider and deeper
o ML training tricks
o Surrogate models
o Recommendations for ML software and tools

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

See CERN Inter-Experiment Machine Learning workshop May 2022

https://indico.cern.ch/event/1078970/
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Deep Learning
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Deep Learning
Optimal stimulus
of a given neuron
Google 2012
http://arxiv.org/abs/1112.6209

GoogLeNet
ILSVRC 2014 Winner
4M parameters

˜1950
1990 hand-written
digits
2010 deep learning
explosion

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

http://arxiv.org/abs/1112.6209
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Réseau de Neurones 
Convolutifs (CNN)

2019

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



HEP data are rarely images 



7

Typical Deep Learning application

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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muon

anti-muon

electron

positron

Higgs boson

HèZ(èµ+µ-)Z(èe+e-)
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An image, not the data

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

EPS 2019, July 16, 2019                Katharina Müller

 Highlights from the LHCb experiment 
 

EPS 2019, July 10-17 2019

Katharina Müller

on behalf of the LHCb collaboration
Physik Institut, University of Zurich

Katharina Mueller, EPS HEP 2019
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An image, not the data

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

IceCube-170922A 22 September 2017
Blazar TXS 0506+056

Time encoded as color
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An exception : NOVA

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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arXiv 1604.01444 Aurisano et al
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http://arxiv.org/abs/1604.01444
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Hammer and Nail

qIf it does not fit:
o Reshape the nail : feature engineering
o Reshape the hammer : Neural Network 

architecture

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

H&N, Weizmann

Physics data ML algorithm

https://www.weizmann.ac.il/conferences/SRitp/Aug2022/
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Deep learning for analysis

q MSSM at LHC :  H0èWWbb vs ttèWWbb
q Low level variables:

o 4-momentum vector
q High level variables:

o Pairwise invariant masses
q Deep NN outperforms NN, and does not 

need high level variables
q DNN learns the physics ? 

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

1402.4735 Baldi, Sadowski, Whiteson

be
tte

r

https://arxiv.org/abs/1402.4735


15

Deep learning for analysis (2)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

q H tautau analysis at LHC: Hètautau vs Zètautau
o Low level variables (4-momenta)
o High level variables (transverse mass, delta R, centrality, jet 

variables, etc…)

1410.3469 Baldi Sadowski Whiteson

q Here, the DNN improved
on NN but still needed
high level features

q Both analyses with
Delphes fast simulation

q ~100M events used for 
training (>>100* full G4 
simulation in ATLAS)

https://arxiv.org/abs/1410.3469
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DL for analysis (3)
q Few published LHC analyses using DL 
q Recent trend is to feed more (up to 20) variables to classifiers, even

low level ones (2/3-vectors of particles) (see recent ATLAS/CMS ttH
papers)

q A few NN in top and Higgs physics but no clear advantage wrt BDT
q Not completely clear why, but best guess is the lack of statistics

(Baldi et al used ~100M events)
q We’ll still need clever variables building like:

q Neural Net more relevant if large number of unstructured variables 
(examples later)

q Also developments for physics aware NN, who know that they are 
dealing with 4-momenta (Lorentz-invariant NN arXiv:2208.07814.)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



End to end Learning
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End to end learning
q Train directly for signal on « raw » event ?
q Start from RPV Susy search
ATLAS-CONF-2016-057
q Fast Simulated events with Delphes

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Bhimji et al, 1711.03573

q Project energies on 64x64 hxf
grid

q Compare with usual jet 
Reconstruction and physics
Analysis variables such as: 

https://arxiv.org/abs/1711.03573
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End to end learning (2)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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End to end learning (3)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

q >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-
momenta

q èCNN extract information from energy grid which is lost in the jets ?
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Background Efficiency
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Jet Images

q Distinguish boosted W jets from QCD
q Particle level simulation
q Average images:

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman  
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http://arxiv.org/pdf/1511.05190v2.pdf
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Jet Images : Convolution NN

q Projection on calorimeter grid
q Variables build from CNN outperform the more 

usual ones

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

q What the CNN sees (the “cat” neurone”)
q Also with proper detector and pileup simulation ATL-

PHYS-PUB-2017-017 
q è3 Dimension ?

q See also GraphNN application
to CMS HGCAL, 
Arabella Martelli, EPS-HEP 2019, 
and arXiv:1902.07987

arXiv:1511.05190

https://arxiv.org/pdf/1902.07987.pdf
https://arxiv.org/abs/1511.05190
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Detectors are complex 3D objects

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



Not good ideas : SuperTML and 
Abstract images

Don’t do this at home

https://arxiv.org/abs/1903.06246
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SuperTML : principle

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

…then analyse image with fine tuned a
pre-trained CNN (on cats and dogs)

Tabular Machine Learning
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Super TML on HiggsML dataset

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

HiggsML : public Higgs Machine Learning challenge dataset
with a few 4-momentum features
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SuperTML results

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

No Way!
Overtraining ?

Giles Strong (CMS) tried to reproduce their results without success,
contacted them with little success.

èthis was published in a Computer Vision conference
èLesson : do not believe whatever appear on arXiv
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Abstract Images

q èdoes not work too well
q Unsurprisingly…. two bad examples of forcing data into one hammer (Convolution Neural Network)
q The physicist’ expertise should help the CNN, not obscure it

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

arXiv:1708.07034 arXiv:1807.00083

tt event in CMS

h

f

gamma charged hadron neutral hadron

Missing ETIsolated lepton

https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1807.00083


Graph Neural Networks
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Graph Neural Networks
q « Classical » NN : a structure less vector or matrix is

transformed from layer to layer (Convolution NN : use 
neighbouring information)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Marco Battaglia IML 2020
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GNN (2)

qNow some structure:
o vi : nodes
o ek : edges
o u : global  

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Global : potential energy
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GNN (3)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
Important : the number of input e and v is not predetermined
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Ice Cube

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

IceCube-170922A 22 September 2017
Blazar TXS 0506+056

Time encoded as color
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Graph NN for Ice Cube
q Graph NN: 

nodes,edges,and
Globals

q …allow generalization
of neighbouring pixels

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Jessica Hamrick
arXiv:1809.06166

q Application to IceCube, 
separating downwards
muon from neutrino from
muon from cosmic rays

q èquickly growing interest in 
Graph NN in HEP

https://arxiv.org/pdf/1809.06166.pdf
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Graph on HEP data

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

from 2007.13681

https://arxiv.org/abs/2007.13681


Tracking



TrackML challenge

A 3D point cloud challenge from
Particle Physics on Kaggle and Codalab
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TrackML

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

q All-silicon detector è 3D points cloud 
q 100’000 points to group into 10’000 tracks of 10 points

o è~10450’000 combinations
o ⇒brute force has (really) no chance

q Precision of the points : ~50µm on a volume ~40 m3
o è3 1014 voxels!
o 2D projection è2 109 pixels !
o ⇒ naïve image recognition algorithm have (really) no chance

q Note : trajectories are approximate arc of helices, originating from the 
center
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TrackML challenge
q Tracking (in particular pattern recognition) 

dominates reconstruction CPU time at LHC 
q CPU time quadratic/exponential 

extrapolation (difficult to quote any 
number) 

q Large effort within HEP to optimise 
software and tackle micro and macro 
parallelism. Not sufficient for future 
conditions

q >20 years of LHC tracking development. 
Everything has been tried?

o Maybe no, brand new ideas from ML 
(i.e. Convolutional NN)

q èTracking challenge 1st May 2018 to 
March 2019

q Conclusion : “ML-assisted” combinatorial 
tracking

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

https://sites.google.com/site/trackmlparticle/ arXiv:1904.06778 arXiv:2105.01160

https://sites.google.com/site/trackmlparticle/
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Track Seeding with GNN

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

q Build edges between neighbour
q Then GNN trained to classify

double and triplet
q High efficiency reached with

subsecond computing time 
(also very parallelisabled)

qècan be used as a filtering
stage before traditional Kalman
filter

2007.00149

https://arxiv.org/abs/2007.00149
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Cosmic ray in LArTPC

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

1903.05663
Truth labelSimulated signal

Full 3D information, sparse (non zero voxels <1%)
U-Resnet for semantic segmentation using Submanifold Sparse Convolutional
Network
100 times less memory, 10 times faster than normal CNN, high accuracy

https://arxiv.org/abs/1903.05663
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Cosmic ray (2)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

U-Resnet for semantic segmentation using
Submanifold Sparse Convolutional Network

100 times less memory, 10 times faster than normal CNN, 
high accuracy



Aparté on ML in HEP history
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q 1987 Very first Neural Net in HEP paper known
q NN for tracking and calo clustering
q B. Denby then moved from Delphi at LEP to CDF at 

Tevatron. He still active outside HEP (professor at 
USPCI Paris): 2017 analysis of ultrasonic image of the 
tongue

q 1992 JetNet Carsten Peterson, Thorsteinn
Rognvaldsson (Lund U.) , Leif Lonnblad (CERN) (~500 
citations) really started NN use in HEP

Bruce Denby
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q 23 Jan 2023 : Bruce Denby back at IJCLab 34 years later!

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Useful to read popular science magazine!



ML for trigger
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ML for trigger
q Growing use of ML in triggers
q Classifiers (BDT or NN) maybe long to train but evaluation is very fast
q Can be implemented on GPU or FPGA

o GBDT on FPGA (e.g. Yu Nakazawa, EPS-HEP 2019 conference)

o NN on FPGA : hls4ML (arXiv:1804.06913) 
o See also Sridhara Dasu’s talk yesterday

q Manpower efficient, few experts can code directly for GPU or FPGA  

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

https://arxiv.org/abs/1804.06913


Anomaly detection
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Anomaly detection

q Three approaches:
o Supervised : model for O and N
o Semi-supervised : model for N, O 

is non-N
o Unsupervised : give the full data, 

ask the algorithm to cluster N and 
find the lone entries : o1, o2, O3

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



50

Anomaly detection: supervised
q Suppose you have two independent samples A and B, supposedly

statistically identical. E.g. A and B could be:
o MC prod 1, MC prod 2
o MC generator 1, MC generator 2
o Geant4 Release 20.X.Y, release 20.X.Z
o Production at BNL, production at Lyon
o Data of yesterday, Data of today

q How to verify that A and B are indeed identical ?
q Standard approach : overlay histograms of many carefully chosen 

variables, check for differences (e.g. KS test)
q One supervised ML approach (not the only one): ask an artificial 

scientist, train your favorite classifier to distinguish A from B, 
histogram the score, check the difference (e.g. AUC or KS test)
o èonly one distribution to check

q Being developped for accelerator monitoring, experiment Data 
Quality monitoring

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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Recall what does a classifier do?

q The classifier “compresses” the two multidimensional 
“blobs” maximising the difference, without (ideally) 
any loss of information

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

A B

score
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A B

eA

score

ROC curveSmall non-local difference

A B

Local big difference (e.g. non overlapping distribution, hole)

score

eA

eB

eB

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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Anomaly Detection : Data Quality Monitoring
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Semi-supervised: DQM application

q Example application CMS muon chamber monitoring 
(with Convolutional NN)

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Adrian Alan Pol, CHEP 2018

Seen by standard alg and ML
Seen only by ML

Demo on real data. 
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Application to new physics

ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Maurizio Pierini



End of Part 2


