Machine Learning and Statistics in HEP part 2

David Rousseau, IJCLab-Orsay

rousseau@ijclab.in2p3.fr @dhpmrou

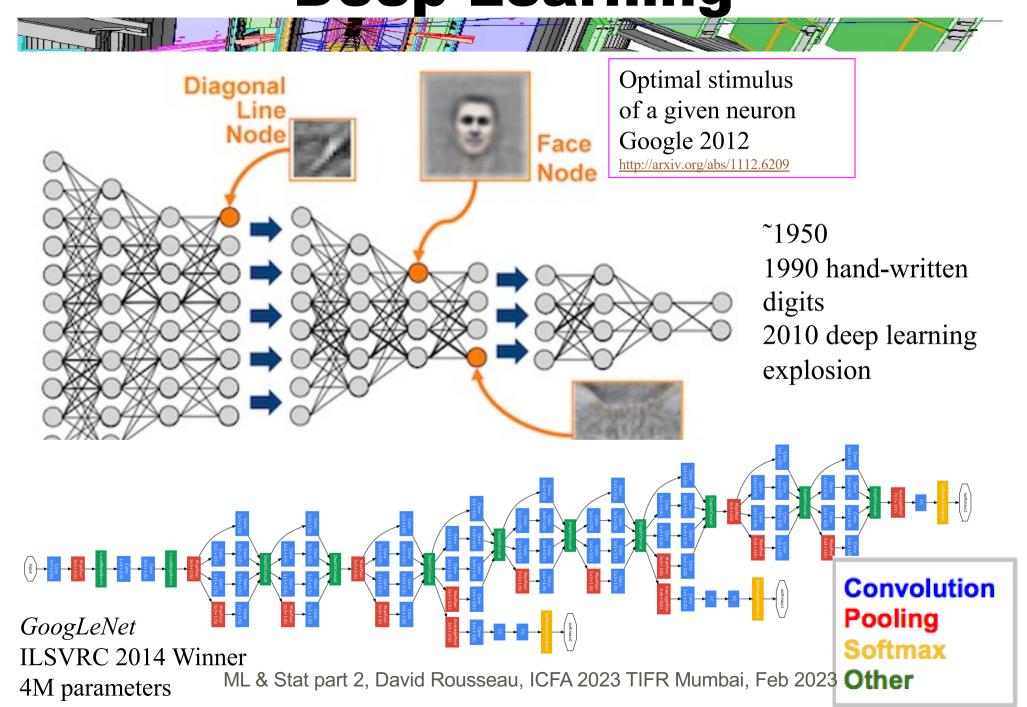
ICFA 2023 Instrumentation School Mumbai, Feb 2023

Outline

- - Mostly Machine Learning with Statistics interludes
 - Part 1 : Overview
 - What is Machine Learning?
 - Specificities of ML in physics
 - Useful concepts
 - □ Part 2 : wider and deeper
 - NN on HEP data
 - various hammers and nails (including wrong ones)
 - Graph NN
 - Anomaly detection
 - Part 3 : even wider and deeper
 - ML training tricks
 - Surrogate models
 - Recommendations for ML software and tools

See CERN Inter-Experiment Machine Learning workshop May 2022

Deep Learning



'Godfathers of Al' honored with Turing Award, the Nobel Prize of computing

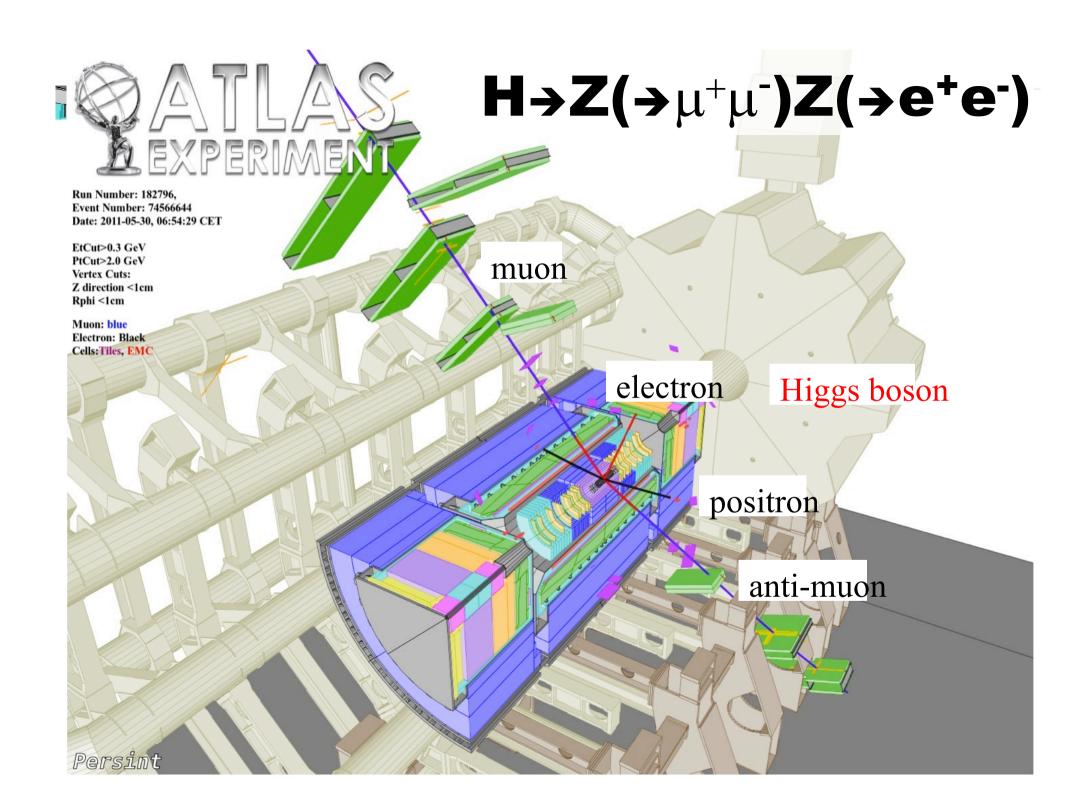
Yoshua Bengio, Geoffrey Hinton, and Yann LeCun laid the foundations for modern Al

By James Vincent | Mar 27, 2019, 6:02am EDT

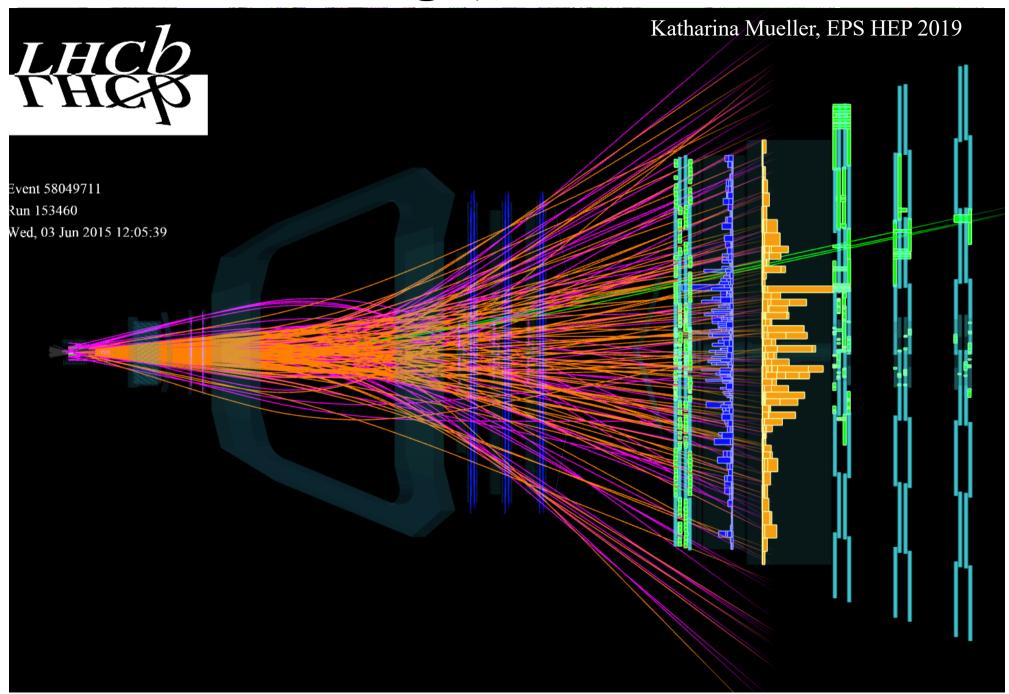
2019

HEP data are rarely images

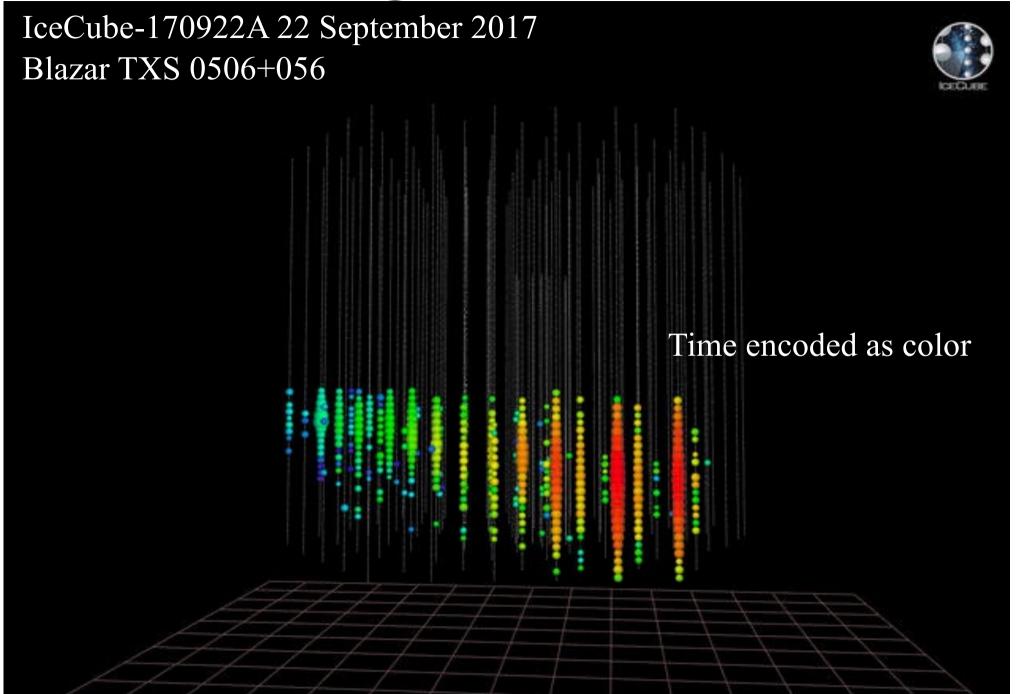
Typical Deep Learning application



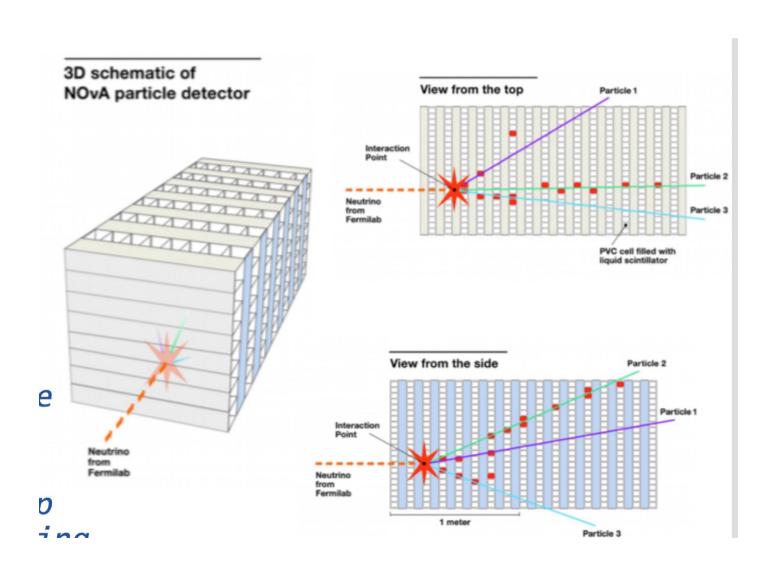
An image, not the data



An image, not the data



An exception: NOVA



NOVA (2) arXiv 1604.01444 Aurisano et al Softmax Output Avg Pooling and 1706.0459 6×5 Inception Module Convolutionnal Neural Network (GoogleNet) Inception Inception 20 Module Module Max Pooling Max Pooling 20 20 100 .03328 3×3, stride 2 3×3, stride 2 X-view Y-view (a) v_{μ} CC interaction. Inception Inception Module Module Inception Inception Module Module eutrino interaction classification results Max Pooling Max Pooling 3×3, stride 2 3×3, stride 2 LRN LRN in physics Convolution Convolution 20 3×3 Plane Plane 3×3 X-view (b) ν_e CC interaction. 40% $\epsilon^{y\text{-view}}$ provement Convolution Convolution 1x1 1×1 LRN LRN nseq **Max Pooling** Max Pooling 3×3, stride 2 3×3, stride 2 ctually Convolution Convolution 7×7, stride 2 7×7, stride 2 Sing X View Y View 20 40 60 60 Plane

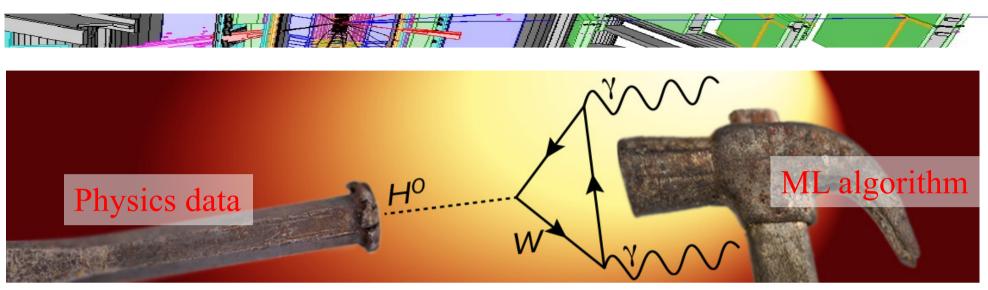
ML & Stat part 2, David Rousseau, ICFA

60

X-view

TIFR Mumbai, Feb 2023

Hammer and Nail

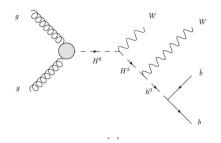


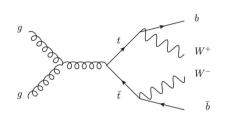
H&N, Weizmann

- □ If it does not fit:
 - Reshape the nail: feature engineering
 - Reshape the hammer : Neural Network architecture

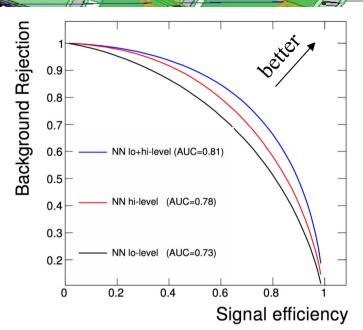
Deep learning for analysis

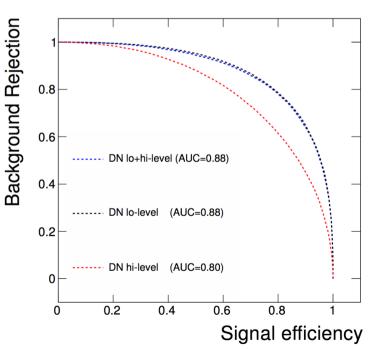
1402.4735 Baldi, Sadowski, Whiteson





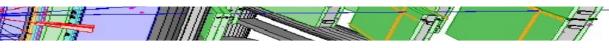
- MSSM at LHC : H⁰→WWbb vs tt→WWbb
- Low level variables:
 - 4-momentum vector
- High level variables:
 - Pairwise invariant masses
- Deep NN outperforms NN, and does not need high level variables
- DNN learns the physics ?



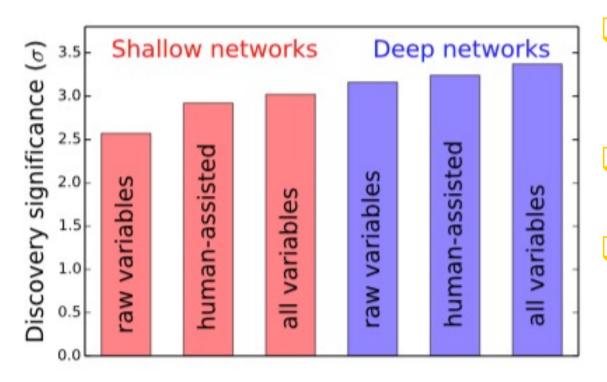


Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson



- □ H tautau analysis at LHC: H→tautau vs Z→tautau
 - Low level variables (4-momenta)
 - High level variables (transverse mass, delta R, centrality, jet variables, etc...)



- Here, the DNN improved on NN but still needed high level features
- Both analyses withDelphes fast simulation
- ~100M events used for training (>>100* full G4 simulation in ATLAS)

DL for analysis (3)

- □ Recent trend is to feed more (up to 20) variables to classifiers, even low level ones (2/3-vectors of particles) (see recent ATLAS/CMS ttH papers)
- ☐ A few NN in top and Higgs physics but no clear advantage wrt BDT
- □ Not completely clear why, but best guess is the lack of statistics (Baldi et al used ~100M events)
- We'll still need clever variables building like:

$$\bullet \ \mathsf{M_T(a)} = \sqrt{2|\vec{p}_T^a||\vec{p}_T^{miss}|\left(1-\cos\Delta\phi(\vec{p}_T^a,\vec{p}_T^{miss})\right)}$$

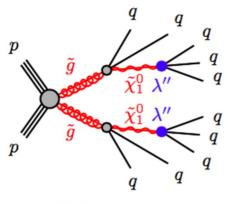
- $M_{T2}(\mathbf{a}, \mathbf{b}) = \min_{\vec{p}_{T1}^{miss} + \vec{p}_{T2}^{miss} = \vec{E}_{T}^{miss}} \left(\max \left[M_{T}(\vec{p}_{T}^{a}, \vec{p}_{T1}^{miss}), M_{T}(\vec{p}_{T}^{b}, \vec{p}_{T2}^{miss}) \right] \right)$ $\rightarrow \text{ well suited for pair production of } X \rightarrow Y(vis.) + Z(inv.)$
- MHT= $|-\sum_{jets} \vec{p}_T^j|$
- Neural Net more relevant if large number of unstructured variables (examples later)
- □ Also developments for physics aware NN, who know that they are dealing with 4-momenta (Lorentz-invariant NN arXiv:2208.07814.)

End to end Learning

End to end learning

Train directly for signal on « raw » event ?

- ☐ Start from RPV Susy search ATLAS-CONF-2016-057
- Fast Simulated events with Delphes

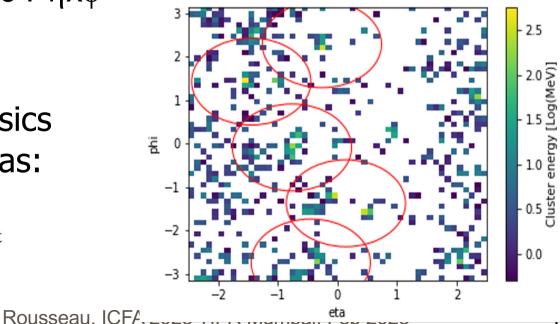


Bhimji et al, 1711.03573

(b) gluino cascade decay

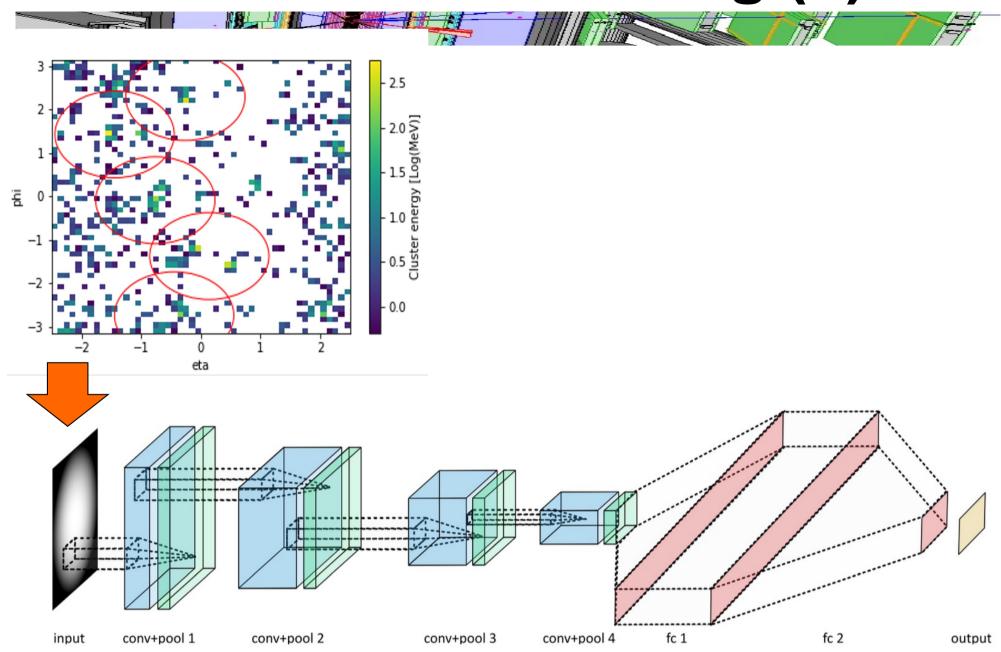
- Project energies on 64x64 ηxφgrid
- Compare with usual jetReconstruction and physicsAnalysis variables such as:

$$M_{\mathrm{J}}^{\Sigma} = \sum_{\substack{p_{\mathrm{T}} > 200 \,\mathrm{GeV} \ |\eta| \leq 2.0}}^{4} m^{\mathrm{jet}}$$

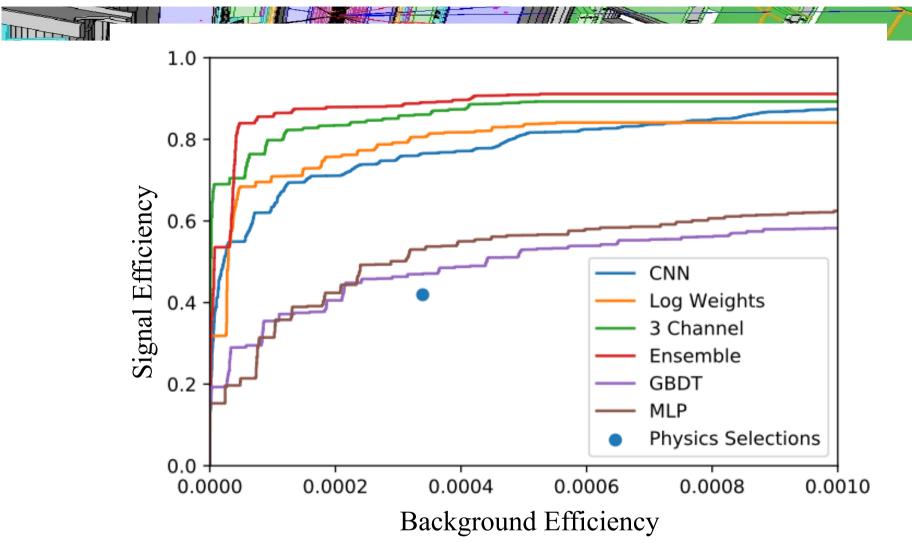


 ± 8

End to end learning (2)



End to end learning (3)

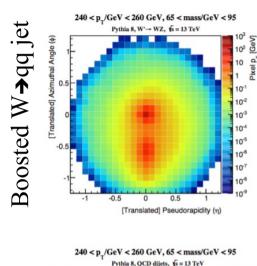


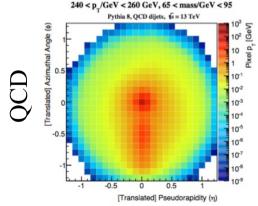
- >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-momenta
- □ →CNN extract information from energy grid which is lost in the jets?

Jet Images

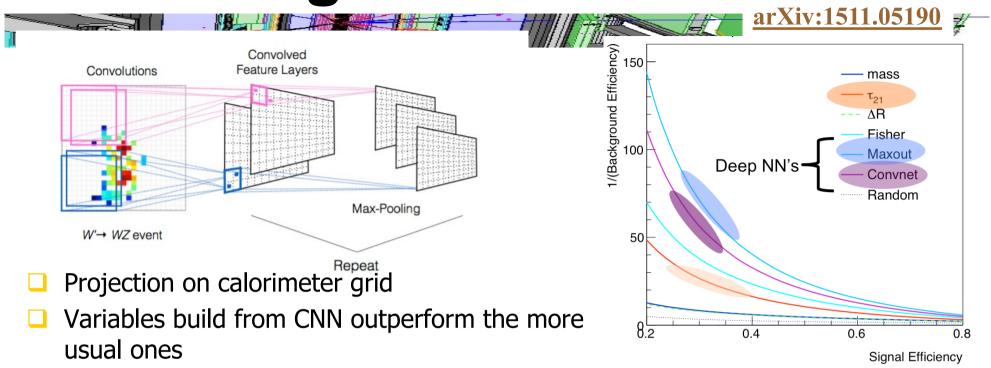
arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

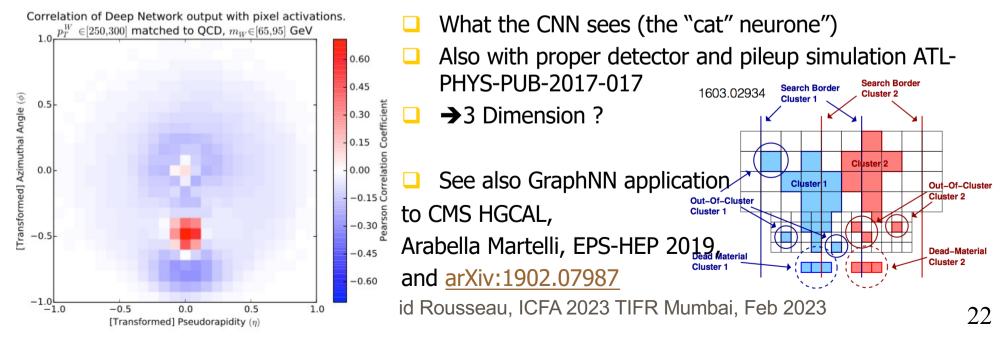
- Distinguish boosted W jets from QCD
- Particle level simulation
- Average images:



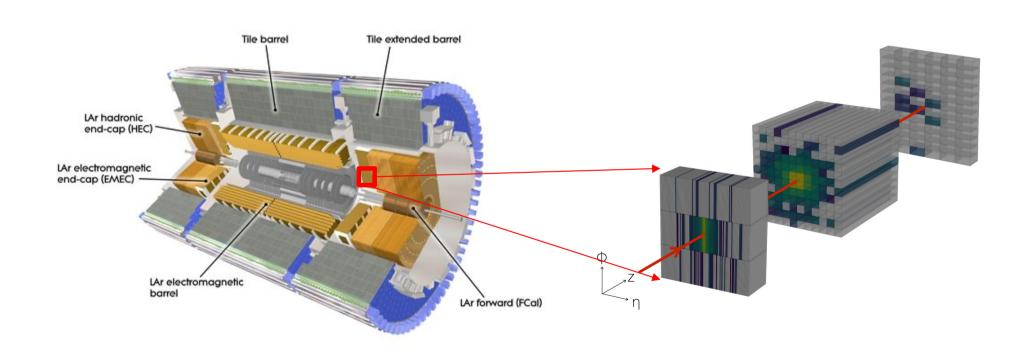


Jet Images: Convolution NN





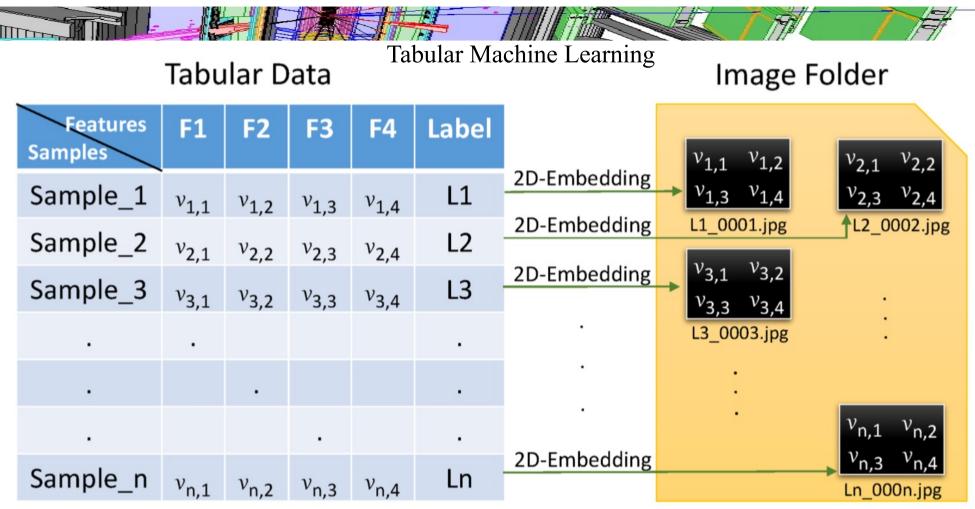
Detectors are complex 3D objects



Not good ideas: <u>SuperTML</u> and Abstract images

Don't do this at home

SuperTML: principle



...then analyse image with fine tuned a pre-trained CNN (on cats and dogs)

Super TML on HiggsML dataset

HiggsML: public Higgs Machine Learning challenge dataset with a few 4-momentum features

103. 706	2.618	
50. 754	0.602	
51. 627	310.982	
33, 558	-1.251	
2.047	617, 204	
2. 606	0.945	
495. 832	-0.693	
134, 523	1.986	
1.973	686, 787	
93. 708	2. 214	
-1.12	426. 564	
0.0	0.191	
2. 238	39. 975	
4. 582	500. 637	
3	-1.552	

(a) SuperTML image example for Higgs Boson data. Each feature is given equal importance in this example.

160.937	68.768	
103. 235	3. 473	
42.014	44. 704	
2.078	2.039	
0. 725	164, 546	
0.879	1, 414	
48, 146	0.501	
36, 918	0.103	
-1, 916	125, 157	
-999.0	-3,011	
1. 158	46, 226	
-999.0	-999.0	
-999. O	-999.0	
-999.0	46. 226	

(b) SuperTML image example for Higgs Boson data. Features are given different sizes according to their importance.

SuperTML results

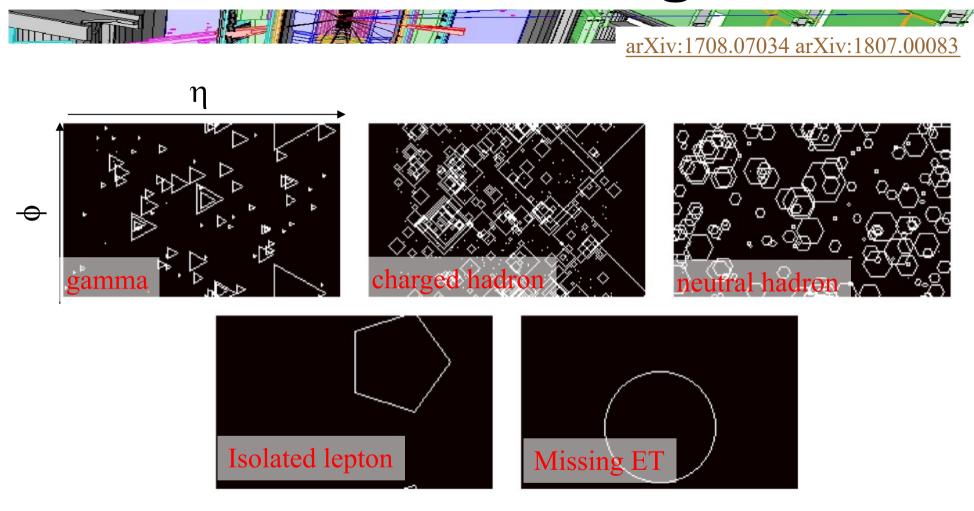
Table 3. Comparison of AMS score on Higgs Boson. The first two rows are winners in the Higgs Boson Challenge.

Methods	AMS	
DNN by Gabor Meli	3.806	
XGBoost	3.761	
SuperTML_EF(224x224)	3.979	No Way!
SuperTML_VF (224x224)	3.838	Overtraining?

Giles Strong (CMS) tried to reproduce their results without success, contacted them with little success.

- → this was published in a Computer Vision conference
- → Lesson : do not believe whatever appear on arXiv

Abstract Images



tt event in CMS

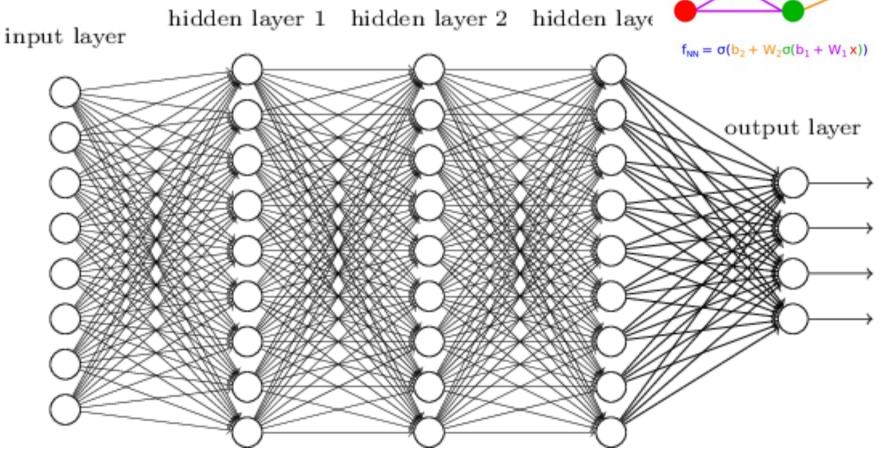
- does not work too well
- Unsurprisingly.... two bad examples of forcing data into one hammer (Convolution Neural Network)
- The physicist' expertise should help the CNN, not obscure it

Graph Neural Networks

Graph Neural Networks

Marco Battaglia IML 2020

 « Classical » NN: a structure less vector or maτrıx ıs transformed from layer to layer (Convolution NN: use neighbouring information)

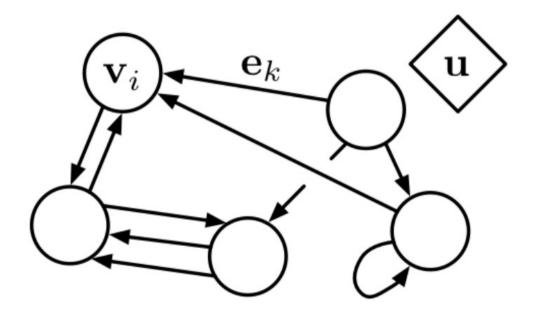


GNN (2)

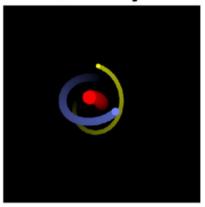
o v_i: nodes

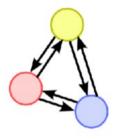
o e_k: edges

o u : global



n-body



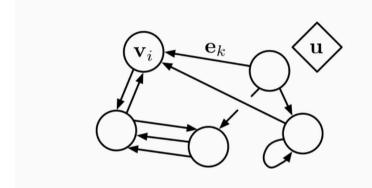


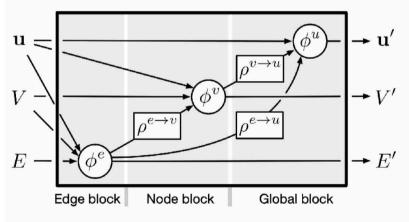
Nodes: bodies

Edges: gravitational forces

Global: potential energy

GNN (3)





Edge block

For each edge, $\mathbf{e}_k, \mathbf{v}_{s_k}, \mathbf{v}_{r_k}, \mathbf{u}$, are passed to an "edge-wise function":

$$\mathbf{e}_{k}^{\prime} \leftarrow \phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}\right)$$

Node block

For each node, $\ \bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u}$, are passed to a "node-wise function":

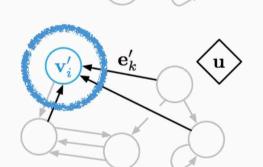
$$\rightarrow V'$$
 $\mathbf{v}_i' \leftarrow \phi^v \left(\mathbf{\bar{e}}_i', \mathbf{v}_i, \mathbf{u} \right)$

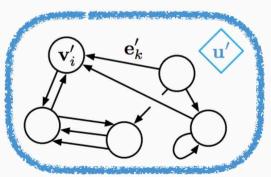
Global block

Across the graph, $\bar{\mathbf{e}}', \bar{\mathbf{v}}', \mathbf{u}$, are passed to a "global function":

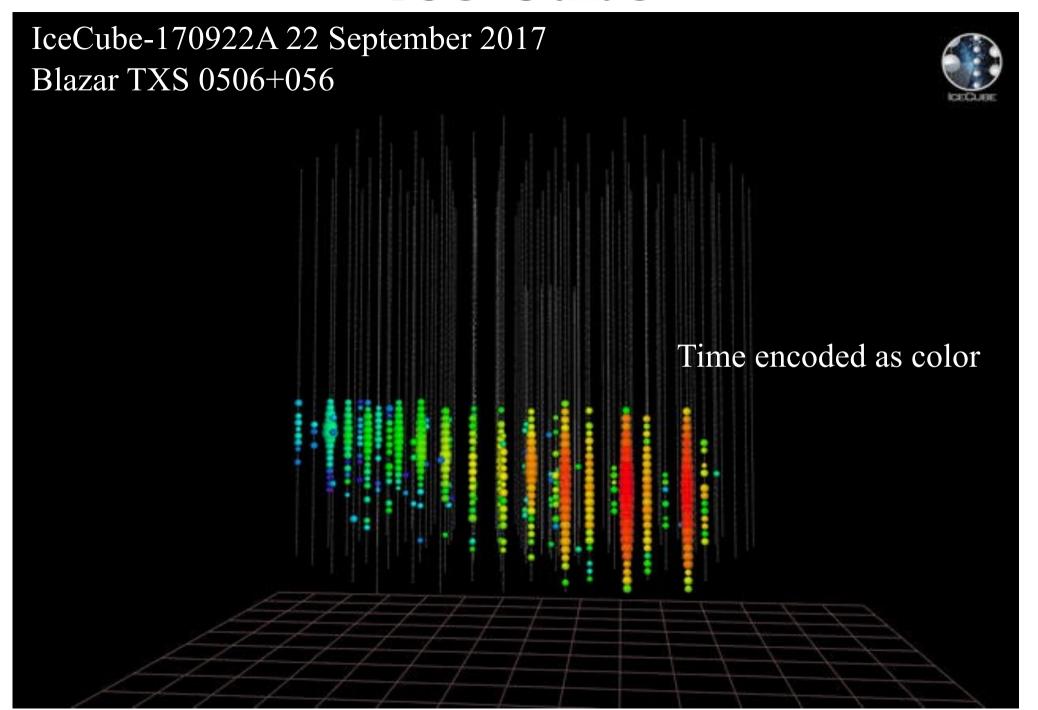
$$\mathbf{u}' \leftarrow \phi^u \left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u} \right)$$

Important: the number of input e and v is not predetermined



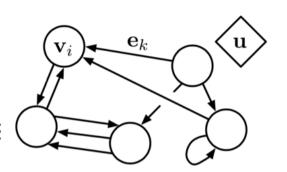


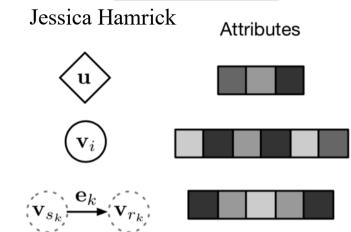
Ice Cube



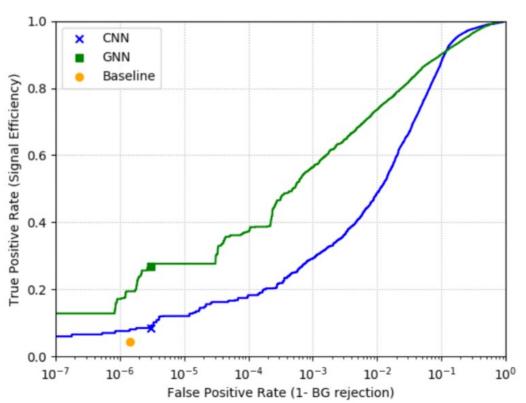
Graph NN for Ice Cube

- Graph NN: nodes,edges,and Globals
- ...allow generalization of neighbouring pixels

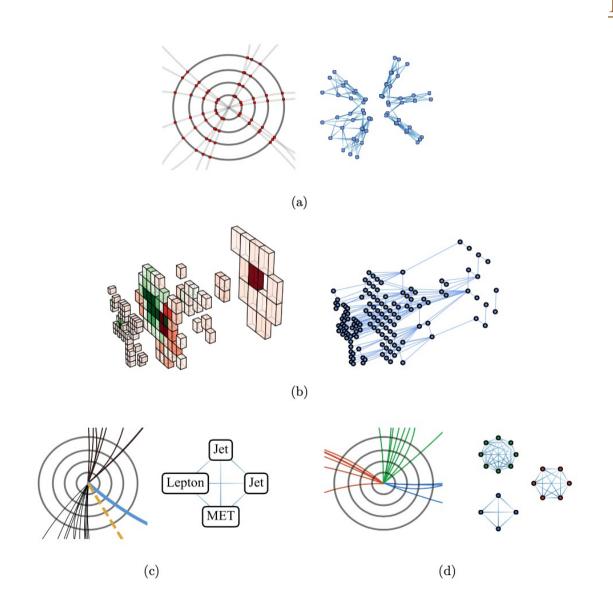




- Application to IceCube, separating downwards muon from neutrino from muon from cosmic rays
 - → quickly growing interest in Graph NN in HEP



Graph on HEP data

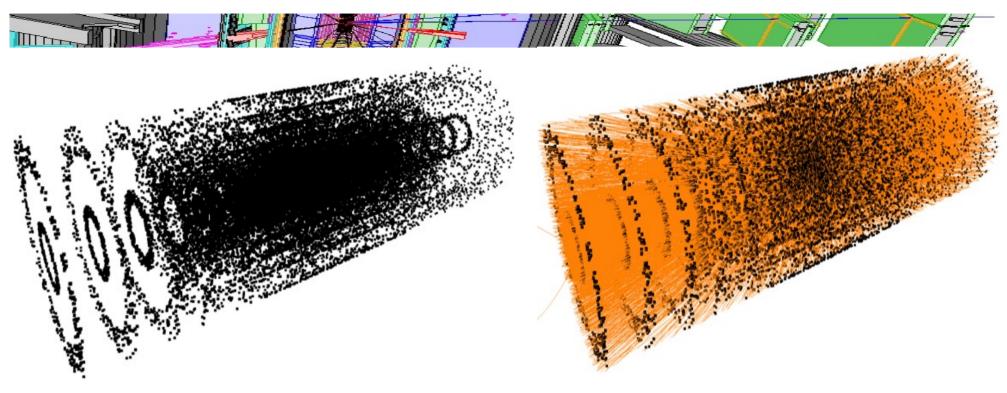


Tracking

TrackML challenge

A 3D point cloud challenge from Particle Physics on Kaggle and Codalab

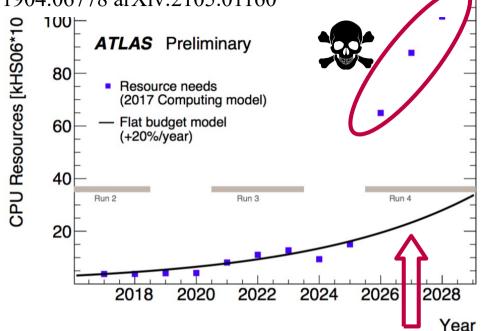
TrackML

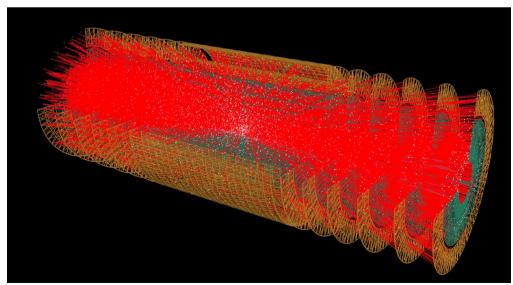


- □ All-silicon detector → 3D points cloud
- □ 100'000 points to group into 10'000 tracks of 10 points
 - \circ \rightarrow ~10^{450'000} combinations
 - o ⇒brute force has (really) no chance
- Precision of the points : $\sim 50 \mu m$ on a volume $\sim 40 m^3$
 - → 3 10¹⁴ voxels!
 - o 2D projection →2 109 pixels!
 - o ⇒ naïve image recognition algorithm have (really) no chance
- Note: trajectories are approximate arc of helices, originating from the center
 ML & Stat part 2, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

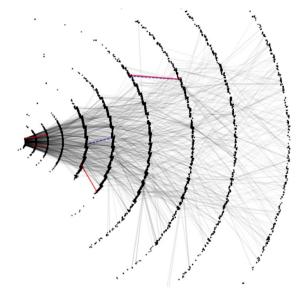
TrackML challenge

- https://sites.google.com/site/trackmlparticle/ arXiv:1904.06778 arXiv:2105.01160
 - Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
 - CPU time quadratic/exponential extrapolation (difficult to quote any number)
 - Large effort within HEP to optimise software and tackle micro and macro parallelism. Not sufficient for future conditions
 - >20 years of LHC tracking development. Everything has been tried?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
 - → Tracking challenge 1st May 2018 to March 2019
 - Conclusion: "ML-assisted" combinatorial tracking





Track Seeding with GNN

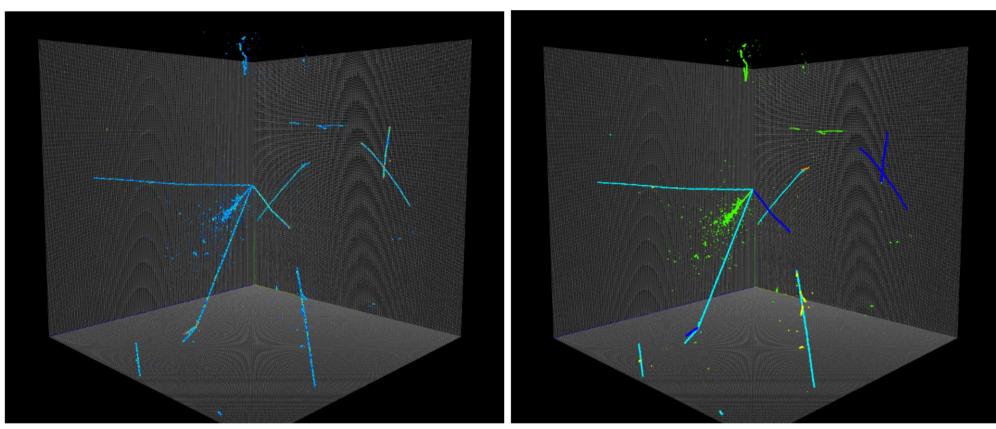


0.92 0.90 0.90 0.80 0.80 0.81 0.82 0.80 0.5 1.0 1.5 2.0 2.5 3.0 3.5

- Build edges between neighbour
- Then GNN trained to classify double and triplet
- ☐ High efficiency reached with subsecond computing time (also very parallelisabled)
- → can be used as a filtering stage before traditional Kalman filter

Cosmic ray in LArTPC

Simulated signal



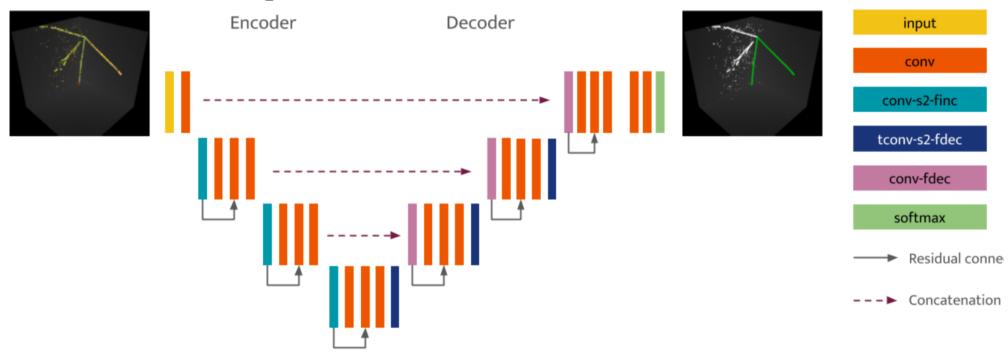
Full 3D information, sparse (non zero voxels <1%)

U-Resnet for semantic segmentation using Submanifold Sparse Convolutional Network

100 times less memory, 10 times faster than normal CNN, high accuracy

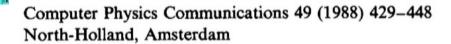
Cosmic ray (2)

U-Resnet for semantic segmentation using Submanifold Sparse Convolutional Network



100 times less memory, 10 times faster than normal CNN, high accuracy

Aparté on ML in HEP history



NEURAL NETWORKS AND CELLULAR AUTOMATA IN EXPERIMENTAL HIGH ENERGY PHYSICS

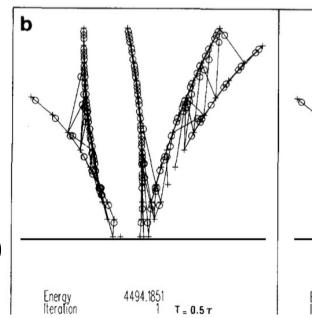
B. DENBY

Laboratoire de l'Accélérateur Linéaire, Orsay, France

Received 20 September 1987; in revised form 28 December 1987

- 1987 Very first Neural Net in HEP paper known
- NN for tracking and calo clustering
- B. Denby then moved from Delphi at LEP to CDF at Tevatron. He still active outside HEP (professor at USPCI Paris): 2017 analysis of ultrasonic image of the tongue
- ☐ 1992 JetNet Carsten Peterson, Thorsteinn Rognvaldsson (Lund U.), Leif Lonnblad (CERN) (~500 citations) really started Now we in HEP, ICFA 2023 TIFR MI

Bruce Denby

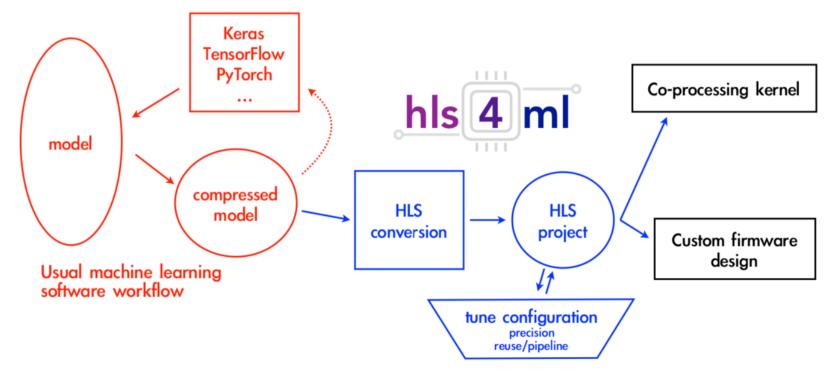


23 Jan 2023 : Bruce Denby back at IJCLab 34 years later!

ML for trigger

ML for trigger

- Growing use of ML in triggers
- Classifiers (BDT or NN) maybe long to train but evaluation is very fast
- Can be implemented on GPU or FPGA
 - O GBDT on FPGA (e.g. Yu Nakazawa, EPS-HEP 2019 conference)
 - o NN on FPGA: hls4ML (<u>arXiv:1804.06913</u>)
 - See also Sridhara Dasu's talk yesterday
- Manpower efficient, few experts can code directly for GPU or FPGA

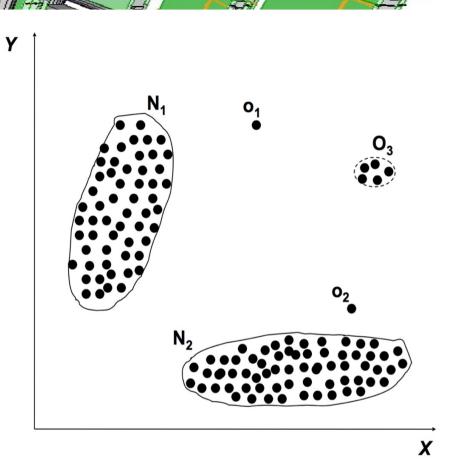


Anomaly detection

Anomaly detection

☐ Three approaches:

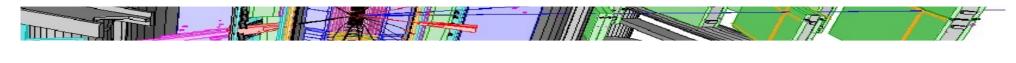
- Supervised : model for O and N
- Semi-supervised : model for N, O is non-N
- Unsupervised: give the full data, ask the algorithm to cluster N and find the lone entries: o1, o2, O3

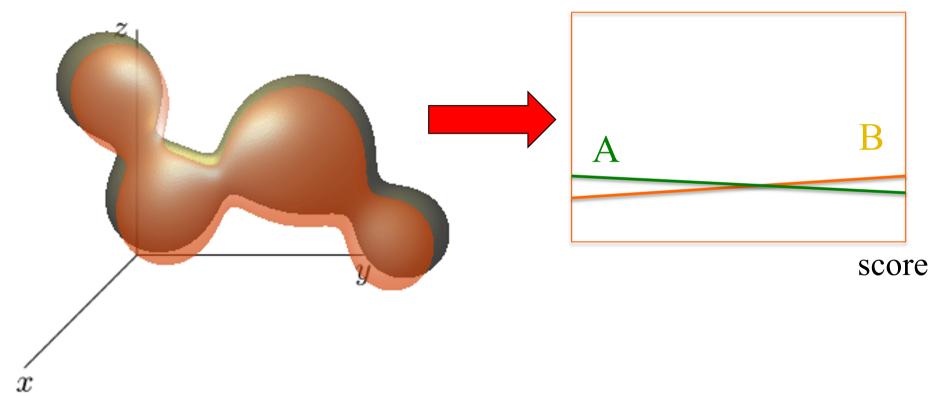


Anomaly detection: supervised

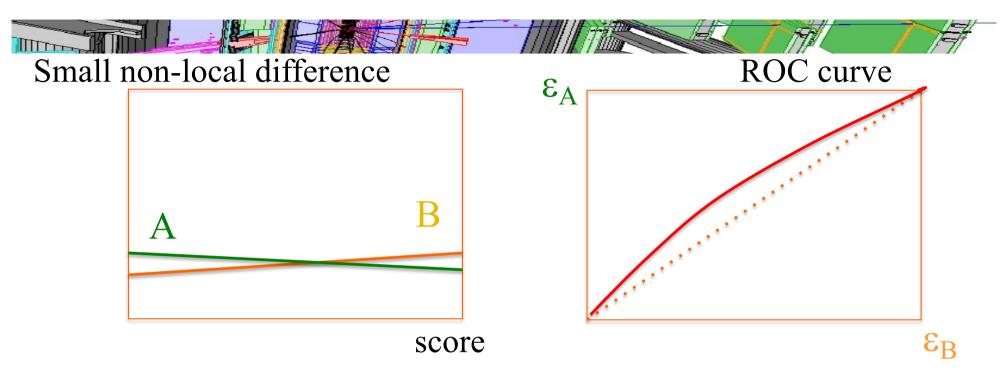
- Suppose you have two independent samples A and B, supposedly statistically identical. E.g. A and B could be:
 - MC prod 1, MC prod 2
 - MC generator 1, MC generator 2
 - Geant4 Release 20.X.Y, release 20.X.Z
 - Production at BNL, production at Lyon
 - Data of yesterday, Data of today
- How to verify that A and B are indeed identical?
- Standard approach: overlay histograms of many carefully chosen variables, check for differences (e.g. KS test)
- One supervised ML approach (not the only one): ask an artificial scientist, train your favorite classifier to distinguish A from B, histogram the score, check the difference (e.g. AUC or KS test)
 - →only one distribution to check
- Being developped for accelerator monitoring, experiment Data Quality monitoring

Recall what does a classifier do?

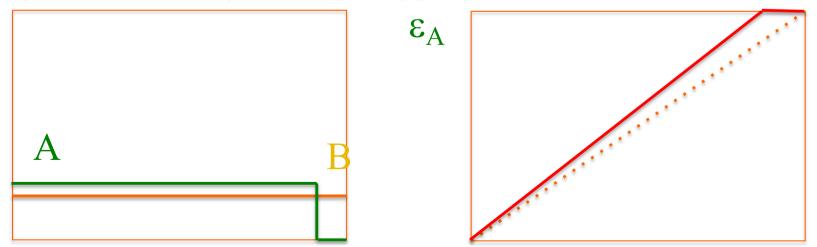




The classifier "compresses" the two multidimensional "blobs" maximising the difference, without (ideally) any loss of information



Local big difference (e.g. non overlapping distribution, hole)

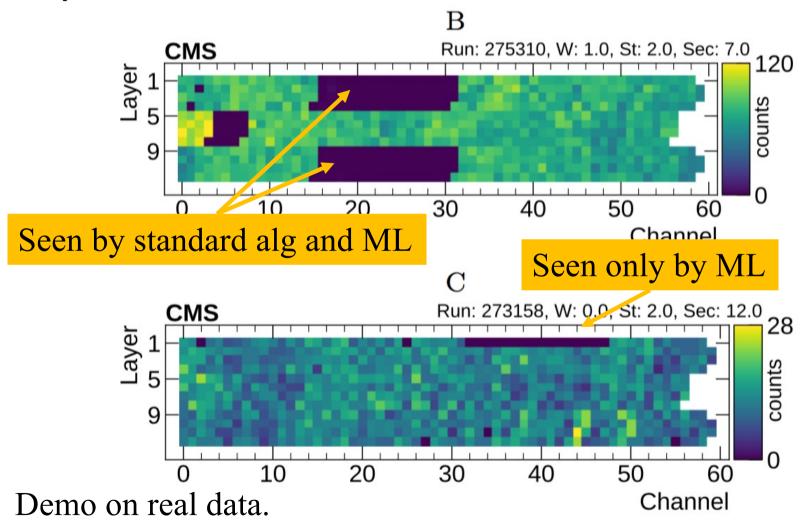


Anomaly Detection: Data Quality Monitoring

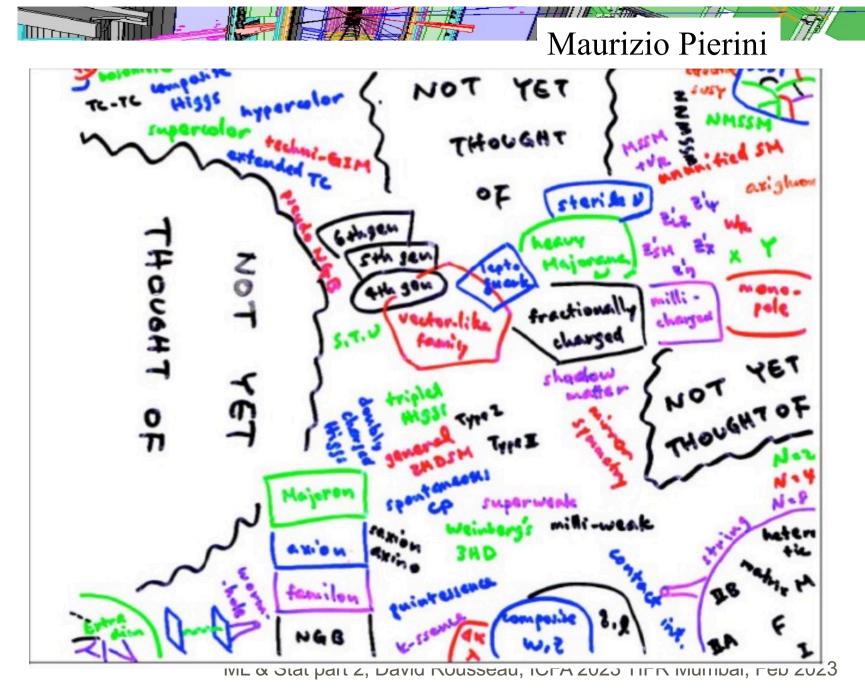
Semi-supervised: DQM application

Adrian Alan Pol, CHEP 2018

Example application CMS muon chamber monitoring (with Convolutional NN)



Application to new physics



End of Part 2