
Machine Learning and 
Statistics in HEP 

part 3

David Rousseau, IJCLab-Orsay
rousseau@ijclab.in2p3.fr @dhpmrou
ICFA 2023 Instrumentation School

Mumbai, Feb 2023

https://users.ijclab.in2p3.fr/david-rousseau/
mailto:rousseau@ijclab.in2p3.fr
https://twitter.com/dhpmrou


2

Outline
q Mostly Machine Learning with Statistics interludes
q Part 1 : Overview

o What is Machine Learning?
o Specificities of ML in physics
o Useful concepts

q Part 2 : wider and deeper
o NN on HEP data

§ various hammers and nails (including wrong ones)
o Graph NN
o Anomaly detection

q Part 3 : even wider and deeper
o ML training tricks
o Surrogate models
o Recommendations for ML software and tools
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See CERN Inter-Experiment Machine Learning workshop May 2022

https://indico.cern.ch/event/1078970/
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q ML (nor Artificial Intelligence) does 
not do any miracles

q For selecting Signal vs Background 
and  underlying distributions are 
known, nothing beats likelihood 
ratio! (often called “Bayesian 
limit”): 
o LS(x)/LB(x)

q OK but quite often LS LB are 
unknown
q + x is n-dimensional

q ML starts to be interesting when 
there is no proper formalism of the 
pdf

q èmixed approach, if you know 
something, tell your classifier 
instead of letting it guess

No miracle
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Overtraining examples
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Neural Network Decision Boundaries 33	

x1	

x2	

4-class	classifica0on	
2-hidden	layer	NN	
ReLU	ac0va0ons	
L2	norm	regulariza0on	

2-class	classifica0on	
1-hidden	layer	NN	
L2	norm	regulariza0on	

One	neuron	 Two	neuron	

Three	neurons	 Four	neurons	

Five	neurons	 Twenty	neurons	

FiGy	neurons	

hXp://www.wildml.com/2015/09/implemen0ng-a-neural-network-from-scratch/		 hXp://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r		

Overfitting

Testing on points not used in the training set 
« Cross-validation »

The sweet spot 
k=7,9

Finding « hyper-parameters » requires 
Cross-validation

qOvertraining
affect all 
algorithms

q…when
model is too
complex wrt
amount of 
training data
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under/over training
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Complexity of the classifier

Gilles Louppe, github

undertraining

some over training

clear over training

optimal

Some overtraining is good
…provided CrossValidation 
done correctly!

Example of
« controlled »
overtraining

https://github.com/glouppe/tutorials-scikit-learn/blob/master/1.%20An%20introduction%20to%20Machine%20Learning%20with%20Scikit-Learn.ipynb
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Training vs test check
q The score distribution should match…
q …some discrepancy is OK
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Training vs test check (2)
q Important to check

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

çBug!



Cross-validation
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Cross-Validation
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A B

A B

One-fold Cross Validation

Standard basic way (default TMVA until recently)

Goal of CV is to measure performance
and optimise hyper-parameters
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Cross-Validation
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A B

A B

Two-fold Cross Validation

ètest statistics = total statistics
èdouble test statistics wrt one fold CV 
è(double training time of course)
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A B C D E

Cross-Validation
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A B

5-fold Cross Validation

C D E

same test statistics wrt two-fold CV,
larger training statistics 4/5 over ½ (larger training time as well)
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A B C D E

Cross-Validation
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A B

5-fold Cross Validation

C D E
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A B C D E

Cross-Validation
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A B

5-fold Cross Validation

C D E
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A B C D E

Cross-Validation
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A B

5-fold Cross Validation

C D E
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A B C D E

Cross-Validation
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A B

5-fold Cross Validation

C D E

Note : if hyper-parameter tuning, need a third level of 
independent sample “nested CV”



18

A B C D E

Cross-Validation
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A B

5-fold Cross Validation “à la Gabor”

C D E

“Average”

Average of the scores on A B C D is 
often better than the score of one training ABCD
bonus: variance of the samples an estimate of the statistical uncertainty
(also save on training time)
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Cross-validation

A B C D E
A X
B X
C X
D X
E X
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Train on …
Te

st
 o

n 
…

èTesting variance

è
Training variance

èTesting variance

èTesting variance
èTesting variance

èTesting variance

è
Training variance

è
Training variance

è
Training variance

è
Training variance
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Training, Validation, Test
In practice

* Training set: used to train the classifier 
* Validation set (optional): choose between different methods, finite-tune parameters, 
* Testing set: predict the generalization error

No cheat: do not use the test set to train your algorithm!

Divide the labelled set into training, validation and testing sets

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Ideally, look at it only once at the end

More diffic
ult to handle when

working in large collaboration
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ML highest crime
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Horror stories
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Abuse of validation
set (and no test set)
lead to exagerated claim 

See page

Also in physics…

Training on test set particularly
bad because undetectable
unless:
• training reproducible
• new i.i.d data

https://www.technologyreview.com/s/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/


Learning curve
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Learning curve
q Performance as a function of number of training events

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Just an example, things to look at
• plateau with full dataset ?
• behavior at low values ?



Hyper-Parameter
Optimisation (HPO)
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Hyper Parameters Optimization
q HPO  : tune the auxilliary parameters for a specific problem
q =>Redo the study for many combinations
q (also sklearn GridSearchCV)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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HPO (2)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



Surrogate models

Universal Approximation Theorem:
A NN can emulate with arbitrary precision any model 
y=f(x)  (x and y of any dimension) …

… if properly trained !
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b,g camera for medical application

qsd

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Inaccurate & fast accurate & slow accurate & fast

29

Françoise Bouvet IMNC
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Generative model
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GAN for simulation (1)

q Half of LHC grid computers (~1.000.000 
cores) are crunching Geant4 simulation 
24/24 365/365

q …while LHC experiments are collecting 
more and more events

q èreducing CPU consumption of 
simulation is very important

q Imagine training a GAN on single particle 
showers of all types and energies

q Then when an event is simulated it would 
ask for GAN showers on request 
(superfast by 3-4 order of magnitude)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Geant4

GAN showers
(just cell energies)

Cells energies
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ATLAS calo simulation
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arXiv:2210.06204

+ h, f translation
177000 cells è266 cells
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Results

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

E layer 1 E layer 2 E layer 3

h spread f spread

• Speed: <1ms compared to 10s
• Promise : as accurate as more
classical parameterisation approach
with less hand tuning
• Sufficient accuracy ? 
• Handling of edges ?

Just an example, 
many more generative
models in arXiv
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Simulation of energy resolution

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Updated architecture!!!

sE/E~10% /√E
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So much progress since 2016
#Dall-e Diffusion model

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

See nice introduction

GAN becoming obsolete, can we do something with diffusion model  ?

https://twitter.com/MathisHammel/status/1561628989453733889?s=20&t=MCdtnC3PS4Z9CPw0-2v0Tg
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Simulation with diffusion model

q Fast Calorimeter Simulation Challenge Datasets 2022
q Open Geant4 simulation, 3 datasets of increasing detector 

complexity
q èseems to work, claim it is easier to train
q However inference (=generation) slower

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Mikuli, Nachman

https://arxiv.org/pdf/2206.11898.pdf
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Another GAN application

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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Paper Visual Layout

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Bad paper Good paper
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Données

Simulation

Higgs ?

Style transfer, to fix simulations ?

Application

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



Adversarial examples



43

Adversarial examples
qSubtle alteration of an image fooling a classifier

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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Interpolation vs Extrapolation

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

Extrapolation
Interpolation

?

Interpolation/Extrapolation already ill-defined in 2D, what about large dimensions ? 

Sur-apprentissage

Non généralisation
L’algorithme est très performant sur les données d’apprentissage et mauvais sur
les données nouvelles : il ne généralise pas bien

Sur-apprentissage des données d’apprentissage : Bien que ce modèle soit très
fidèles aux données connues, pensez-vous qu’il soit fiable ?

21 décembre 2017 40 / 63
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Adversarial examples (2)
q Extraneous object
q èmore worrying, for HEP it would be e.g. a glitch in the data which

is not simulated

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

the verge 2019/04/23

https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection
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Adversarial examples

qLike an optical illusion for a NN
qTune for a specific known NN è fools

many NN (share a common behavior)
qDangerous for physics if we rely more and 

more on NN ?
qNot really because one has to have a 

deliberate intent to fool a DNN

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023



Wrapping-up
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ML playground

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

papersdata Analysis statistical 
optimisation

Particle ID
optimisation

Single trigger
optimisation

Analysis stat+syst
optimisation

Energy regression
Overall trigger
optimisation

Detector
Simulation

Generators
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I want to start with ML where do I start?

q Start with HEP and ML school week online (slides, recording, hands-
on) : 

§ SOS 2022 (France, in english)
§ HEPML Schoool 2020 next one Apr 2023 in Erice, Italy, no remote

participation but updated material will be available
q Available computing resources, GPU ? (laptop is already a very

good start)
q Many papers are now releasing code in addition to paper
q The book ($$$ but many chapters on arXiv)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

https://indico.in2p3.fr/event/26179/timetable/?view=standard
https://en.pelican.study/classroom/213/dialogs/
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ML Tool : Root or not Root
q Root-TMVA de-facto standard for ML in HEP
q Has been instrumental into “democratising” ML at LHC (at least)
q Well coupled with Root (which everyone uses)
q But: not quite up to date for BDT and Neural Network
q Advice : 

o use uproot (pip install uproot) to read a ntuple into a python notebook (and 
then write .csv or .h5 file)

o Then carry on with Xgboost or lightgbm, and python ecosystem scikit-learn, 
matplotlib etc…

q Note in passing : for (weighted) histogram fitting with proper 
uncertainties, root is still better than scipy etc… (I would like the 
pyHep group to take this on board)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

https://iris-hep.org/projects/uproot.html
https://hepsoftwarefoundation.org/workinggroups/pyhep.html
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ML Tool : XGBoost
q XGBoost : Xtreme Gradient Boosting : 

https://github.com/dmlc/xgboost, arXiv:1603.02754

q Written originally for HiggsML challenge
q Used by many participants, including number 2
q Meanwhile, used by many other participants in many 

other challenges
q Open source, well documented, and supported
q Has won many challenges meanwhile
q Best BDT on the market, performance and speed
q Classification and regression
q In general, much easier to start with BDT (very fast 

training and simple to tune), and often sufficient for 
tabular data

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

https://github.com/dmlc/xgboost
https://arxiv.org/abs/1603.02754
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ML Tool : SciKit-learn
q SciKit-Learn : toolbox for Machine Learning in python
q Open source (several core developers in Paris-Saclay)
q Modern Jupyter interface (notebook à la Mathematica)
q Built on NumPy, SciPy, and matplotlib
q (very fast, despite being python)
q Install on any laptop with Anaconda
q All the major ML algorithms (except deep learning)
q Superb documentation
q Quite different look and fill from Root-TMVA

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023

http://scikit-learn.org/
https://docs.continuum.io/anaconda/install
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ML Tool : Neural Networks

q Two major libraries for Neural Networks:
o TensorFlow (Keras interface) developed by Google
o pyTorch developed by Meta
o Both are free open source
o Both can “talk” to GPU with (in principle) minimal effort (cuda…)

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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Why ML for physics is special?

1. Our data are rarely images 
2. Often very good (but never perfect) 

simulation/model
3. Large data and very detailed models: èneed

for speed
4. (almost) all physics papers conclude with a 

measurement with uncertainty (or Confidence 
Interval, or p-value…)

èwe are not just taking off-the-shelves tools
developed by the GAFAM
èHEP ML developments relevant to other
sciences

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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ML in production
q We (in HEP) are analysing data from multi-billion € projectsèshould make 

the most out of it!
q Recent explosion of novel (for HEP) ML techniques, novel applications for 

Analysis, Reconstruction, Simulation, Trigger, and Computing 
q Some of these are ~easy, most are complex: open source software tools 

(sklearn, xgboost, Keras, Tensorflow…) are easy to get, but still need 
(people) training, know-how

q Never underestimate the time for :
o (1) Great ML ideaè
o (2) …demonstrated on toy datasetè
o (3) …demonstrated on semi-realistic simulation è

o (4) …demonstrated on real experiment analysis/dataset è
o (5) …experiment publication using the great idea

ML & Stat part 3, David Rousseau, ICFA 2023 TIFR Mumbai, Feb 2023
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