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Without PID

With PID typical event

Example: HERA-B
𝐾𝐾+𝐾𝐾− invariant mass.

The  𝛷𝛷 → 𝐾𝐾+𝐾𝐾− decay only becomes visible after the 
use of the particle identification, strong suppression 
of pions was required

Why we need PID?
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Need to distinguish 𝐵𝐵𝑑𝑑 → 𝜋𝜋+𝜋𝜋− from other similar topology 2-body 
decays and to distinguish B from anti-B using K tag.

Example 2: LHCb

(MC)

Why we need PID?
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• Most of the particles are short-lived and decay before reaching the detectors
• Their detection is based on decay products, detected in the spectrometer

𝐁𝐁𝟎𝟎

Event reconstruction
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Aerogel Cherenkov Counter
(n=1.015-1.030)

Electromag. Cal.
(CsI crystals, 16X0)

ToF counter
1.5T SC solenoid

Silicon Vertex Detector
(4 layers DSSD)

µ and KL detection system
(14/15 layers RPC+Fe)

Central Drift Chamber
(small cells, He/C2H6)

8 GeV e-

3.5 GeV e+

Spectrometer Belle
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Particle Mass 
[𝑴𝑴𝑴𝑴𝑴𝑴/𝒄𝒄𝟐𝟐]

Lifetime
𝒕𝒕𝟎𝟎 [𝒔𝒔]

Range estimate
𝒄𝒄𝒕𝒕𝟎𝟎 [m]

electron (positron) 𝑒𝑒−/𝑒𝑒+ 0,511 stable --
muon 𝜇𝜇−/𝜇𝜇+ 105,7 2,2 × 10−6 660
tau lepton 𝜏𝜏−/𝜏𝜏+ 1777 2,9 × 10−13 8,7 × 10−5

neutral pion 𝜋𝜋0 135 8,4 × 10−17 2,5 × 10−8

charged pion 𝜋𝜋+/𝜋𝜋− 139,6 2,6 × 10−8 7,8
short-lived kaon 𝐾𝐾𝑆𝑆 498 9,0 × 10−11 2,7 × 10−2

long-lived kaon 𝐾𝐾𝐿𝐿 498 5,1 × 10−8 15,3
charged kaon 𝐾𝐾+/𝐾𝐾− 494 1,2 × 10−8 3,6
neutral B meson 𝐵𝐵0/ �𝐵𝐵0 5279,6 1,5 × 10−12 4,5 × 10−4

charged B meson 𝐵𝐵+/𝐵𝐵− 5279,3 1,5 × 10−12 4,5 × 10−4

𝐽𝐽/Ψ meson 𝐽𝐽/Ψ 3097 7,2 × 10−21 2,2 × 10−12

proton (antiproton) 𝑝𝑝/𝑝̅𝑝 938,2 stable --
neutron 𝑛𝑛/�𝑛𝑛 939,6 885,7 2,7 × 1011

Masses and lifetimes for some particles
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• particles are identified by their mass or interaction
• charged and neutral particles that live long enough 

to rich detectors:
𝑒𝑒, 𝜇𝜇,𝜋𝜋,𝐾𝐾,𝑝𝑝, d, 𝛾𝛾,𝐾𝐾𝐿𝐿 ,𝑛𝑛

• momentum is measured by track
curvature in magnetic field

• in addition we can measure velocity:
• Time Of Flight - TOF
• ionization loss – dE/dx, dN/dx
• Cherenkov radiation

(threshold, RICH, DIRC …)
• transition radiation

• or identify by specific interaction:
• electrons → EM calorimeters
• muons → muon detectors

𝑝𝑝 = 𝛽𝛽𝛾𝛾𝑚𝑚𝑚𝑚
E = 𝛾𝛾𝑚𝑚𝑐𝑐2

𝐸𝐸
𝑝𝑝𝑝𝑝

= 𝛽𝛽 ≈ 1

Particle IDentification - PID
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𝑲𝑲/𝝅𝝅 separation at B factories
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𝑲𝑲/𝝅𝝅 PID at Belle
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𝑲𝑲/𝝅𝝅 PID at BaBar
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Momentum range for different PID methods at ALICE
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5𝜎𝜎

4𝜎𝜎

3𝜎𝜎

2𝜎𝜎 1𝜎𝜎

some discriminating variable
(eg., time of flight, likelihood ...)

Efficiency and purity are tightly coupled!

particle 1 particle 2

Efficiency vs. misidentification probability

(A variation of a Receiver Operating Characteristic (ROC) 
curve for binary classification parameter that shows 
efficiency vs. misid. probability as parameter is varied.)

2𝜎𝜎

4𝜎𝜎

Efficiency and misidentification probability
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• measure particle travel time over known distance
• typical resolution 𝜎𝜎𝑡𝑡 ≈100 ps

TDC

Time difference

𝑡𝑡 =
𝐿𝐿
𝑣𝑣

=
𝐿𝐿
𝛽𝛽𝛽𝛽

=
𝐿𝐿
𝑐𝑐

1 +
𝑚𝑚𝑚𝑚
𝑝𝑝

2

𝐿𝐿

𝑡𝑡

path length 10m

p [GeV/c]

TO
F-

L
/c

 [s
]

𝒑𝒑

𝒆𝒆

𝑲𝑲
𝝅𝝅𝝁𝝁

Time-Of-Flight (TOF)
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𝑡𝑡 =
𝐿𝐿
𝑣𝑣

=
𝐿𝐿
𝛽𝛽𝛽𝛽

=
𝐿𝐿
𝑐𝑐

1 +
𝑚𝑚𝑚𝑚
𝑝𝑝

2

Δ𝑡𝑡 =
𝐿𝐿
𝑐𝑐

1 +
𝑚𝑚1𝑐𝑐
𝑝𝑝

2

− 1 +
𝑚𝑚2𝑐𝑐
𝑝𝑝

2

≈
𝐿𝐿𝐿𝐿

2𝑝𝑝2
(𝑚𝑚1

2 −𝑚𝑚2
2)

• typical time resolution 𝜎𝜎𝑡𝑡 ≈ 100 ps
• 5𝜎𝜎 𝜋𝜋/𝐾𝐾 separation up to ≈ 1.2 GeV/c for 𝐿𝐿 = 2 m

• mass resolution ( 𝑚𝑚 = 𝑝𝑝
𝑐𝑐

𝑐𝑐𝑐𝑐
𝐿𝐿

2
− 1 )

𝜎𝜎𝑚𝑚
𝑚𝑚

=
𝜎𝜎𝑝𝑝
𝑝𝑝
⊕ 𝛾𝛾2

𝜎𝜎𝐿𝐿
𝐿𝐿
⊕
𝜎𝜎𝑡𝑡
𝑡𝑡

≈ 𝛾𝛾2
𝜎𝜎𝑡𝑡
𝑡𝑡

• mainly determined by time resolution

• measured TOF difference

2GeV/c p/K:Δ𝒕𝒕~ 180ps

4GeV/c p/K: 𝚫𝚫𝒕𝒕 ~ 45ps

path length 2m

1GeV/c p/K:Δ𝒕𝒕~ 700ps

Time-Of-Flight (TOF)
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TOF based on scintillation counters:
• 128 255 cm long scintillator bars (BC408), 4x6 cm2

• read out on both sides by finemesh PMT (Hamamatsu R6680)
• start time from collision time t0 , 𝜎𝜎𝑡𝑡0~25 ps
• ~ 100 ps timing resolution
• 2𝜎𝜎 K/π separation up to ~1.25 GeV

NIM A453(2000)315Belle TOF with scintillator counters
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Multi-gap Resistive Plate Chambers:
• 2 x 5 gaps – 250um
• ~ 80 ps timing resolution
• K/π separation up to ~2.5 GeV
• requires many tracks for accurate t0

Eur.Phys.J.Plus 128(2013)44

ALICE TOF with MRPCs
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A Large Ion Collider 
Experiment 

𝑡𝑡0 resolution depends on 
the number of tracks in 
the event

ALICE TOF
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• Excellent timing properties 
require fast light source → 
Cherenkov radiator

• Small prototypes based on MCP-
PMT directly attached to the 
radiator show TOF in the range 
of ~10 ps may be possible

Excellent timing resolution 
6.2 ps obtained in the pion 
beam (includes contribution 
from electronics).

K.Inami@PD07

TOF – where are the limits?



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 23)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

Outline:

• Why PID?
• TOF detectors
• Specific ionization loss - dE/dx
• Transition radiation detectors (TRD)
• Cherenkov based PID devices

• Threshold detectors
• RICH detectors
• DIRC type detectors



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 24)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

dE
/d

x

P[GeV/c]

• dE/dx is a function of particle velocity

• Separation is possible in low momentum 
region up to about ≈ 1 𝐺𝐺𝐺𝐺𝐺𝐺
• With a good resolution partial separation 
is available also at higher momenta 

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝑁𝑁𝐴𝐴𝑟𝑟𝑒𝑒2𝑚𝑚𝑒𝑒𝑐𝑐2
𝑍𝑍
𝐴𝐴
𝑧𝑧2

1
𝛽𝛽2

1
2

ln
2𝑚𝑚𝑒𝑒𝑐𝑐2𝛽𝛽2𝛾𝛾2𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼
− 𝛽𝛽2 −

𝛿𝛿 𝛽𝛽𝛽𝛽
2

Ionization loss – dE/dx
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• tracking in magnetic field → momentum

• ionization loss measurement → charged 
particle identification

Central drift chamber - Belle
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• dE/dx distribution has long tails due to delta electrons – Landau 
distribution, not Gaussian
• to improve the resolution average of many samples is taken and 
about 30% of largest ones are discarded

dE/dx - distribution
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• large drift chamber - Belle • large TPC chamber - ALICE

dE/dx - examples
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• Number of clusters per track follows Poissonian statistics → 
better PID performance
• Timing of individual clusters in single cell → better tracking
• Single cell prototype with gas mixture 90%He+10%iC4H10
• Beam test with 210 MeV e,µ,π
• Combination of dN/dx and dE/dx → improved performance
• Waiting for large scale implementation

J.F.Caron et al. arXiv:1307.8101

Cluster counting – dN/dx (SuperB)
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• when charged particle travers the boundary of two 
materials electric field abruptly changes leading to 
emission of EM waves
• X rays emitted at the boundary of two media
with different refractive indices (relativistic particles)
• emission angle 𝜃𝜃 ≈ 1/𝛾𝛾
• emission rate depends on 𝛾𝛾 (Lorentz factor):
becomes important at 𝛾𝛾 ≈ 1000
• electrons at 0.5 GeV
• pions, muons above 100 GeV
• In between: discrimination of electrons vs pions, mions

𝜃𝜃 ≈ 1/𝛾𝛾

𝜖𝜖1,𝑛𝑛1 ≠ 𝜖𝜖2,𝑛𝑛2

𝜖𝜖1 > 𝜖𝜖2

Transition Radiation
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• emission at small angle (𝜃𝜃 ≈ 1/𝛾𝛾), photons propagate along 
the track – detected in tracking detectors
• many boundaries required for measurable output

• stacks of thin foils or
• porous materials – foam with many boundaries of individual 

‘bubbles’ 

• detection of X rays (~10keV): high Z gas used in gaseous 
detector (mixture with Xe)
• repeated many times to detect few TR photons

• X rays detected by localized deposition of energy contrary to 
ionization loss, which is spread out along the track:
• high threshold – X ray (larger red dots)
• low threshold – ionization loss (smaller blue dots)

single stack

Transition Radiation Detector (TRD)
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• ATLAS TRT (Transition Radiation 
Tracker) in Inner Detector
• tracking + electron ID
• ~15 polypropylene fibers/foils -
fibers (barrel) and foils (end-cap)
• 70% Xe + 27% CO2 + 3% O2
• straw tube type (4mm dia.) - faster

NIM A 540 (2005) 140

ATLAS TRD detector
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• ATLAS TRT (Transition Radiation 
Tracker) in Inner Detector
• tracking + electron ID
• ~15 polypropylene fibers/foils -
fibers (barrel) and foils (end-cap)
• 70% Xe + 27% CO2 + 3% O2
• straw tube type (4mm dia.) - faster

NIM A 540 (2005) 140

ATLAS TRD detector
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• few percent pion misid. at 
90% electron efficiency

• X-ray probability for single 
straw

JINST 3(2008)S0803

ATLAS TRD detector
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• tracking + electron ID
• ~100 foils traversed
• 85% Xe + 15% CO2
• drift chamber type –
better ID

NIM A706(2013) 16

ALICE TRD detector
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• Cherenkov radiation is electromagnetic shock wave 
phenomena
• threshold - radiation is emitted when charged particle 
moves through the medium  faster than the speed of light

𝑣𝑣 >
𝑐𝑐
𝑛𝑛
→ 𝛽𝛽 =

𝑣𝑣
𝑐𝑐

>
1
𝑛𝑛

𝑝𝑝𝑡𝑡ℎ𝑟𝑟 =
𝑚𝑚𝑚𝑚
𝑛𝑛2 − 1

≈
𝑚𝑚𝑚𝑚

2(𝑛𝑛 − 1)
, n − 1 ≪ 1

• Cherenkov angle - angle between the particle and 
photon momenta directions depends on particle velocity

𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝐶𝐶 =
1
𝛽𝛽𝛽𝛽

<
1
𝑛𝑛

shock wave phenomena

𝛝𝛝

𝐯𝐯𝐭𝐭

𝐜𝐜𝐜𝐜𝐜𝐜𝝑𝝑𝐜𝐜 =
𝒄𝒄𝒏𝒏
𝒗𝒗

GAS

AEROGEL

LIQUID
SOLID

𝜋𝜋

𝐾𝐾

Cherenkov radiation
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• an example from LHCb
RICH I and II radiators

• an aerogel radiator example, candidate for ARICH

𝜋𝜋
K

p

𝜗𝜗𝜋𝜋 − 𝜗𝜗𝐾𝐾

Cherenkov angle - examples
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• number of photons per unit photon energy per
unit length - depends on:
• refractive index → Cherenkov angle
• path length
• photodetector spectral response

𝑑𝑑2𝑁𝑁
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝛼𝛼𝑧𝑧2

ℏ𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠2𝜗𝜗𝐶𝐶 =

𝛼𝛼𝑧𝑧2

ℏ𝑐𝑐
[1 −

1
𝛽𝛽2n2(E)

] ≈
370
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠𝑠𝑠2𝜗𝜗𝐶𝐶

• transformed to wavelength dependence
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℎ𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1
𝜆𝜆2

→ more photons in blue and UV part of the spectrum
• prompt emission – no raise and decay time constants as with scintillators
→    enables precise time measurements

• light is polarized – E lies in the plane defined by particle and photon momenta

100           250            400            550           700            850    λ[nm]

12.3           4.9            3.1            2.24           1.76           1.45    E [eV]

2

VISIBLE Near-IRNear-UV

Photon energy:

𝐸𝐸𝛾𝛾 = ℎ𝜈𝜈 =
ℎ𝑐𝑐
𝜆𝜆
≈

1239 eV ⋅ nm
𝜆𝜆

• visible range
400 nm – 780 nm
→ 3.1 - 1.6 eV, Δ𝐸𝐸𝛾𝛾 ≈ 1.5 𝑒𝑒𝑒𝑒

Cherenkov radiation
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• estimated number of detected photons
(Δ𝐸𝐸 = 2𝑒𝑒𝑒𝑒,𝑃𝑃𝑃𝑃𝑃𝑃 = 0.1)

𝑁𝑁 ≈
370
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑠𝑠𝑠𝑠𝑠𝑠2𝜗𝜗𝐶𝐶Δ𝑙𝑙Δ𝐸𝐸 =
74
𝑐𝑐𝑐𝑐

𝑠𝑠𝑠𝑠𝑠𝑠2𝜗𝜗𝐶𝐶Δ𝑙𝑙

• for saturated ring (𝑛𝑛 = 2, l = 1cm)

N ≈
74
𝑐𝑐𝑐𝑐

1 −
1
𝑛𝑛2

Δ𝑙𝑙 = 37

• approximated for gas (𝑛𝑛 = 1.001, 𝑙𝑙 = 1𝑚𝑚)

N ≈
74
𝑐𝑐𝑐𝑐

2 𝑛𝑛 − 1 Δ𝑙𝑙 ≈ 15

• for aerogel (𝑛𝑛 = 1.05, 𝑙𝑙 = 1𝑐𝑐𝑐𝑐) ≈ 7

pion

Number of Cherenkov photons - examples
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Outline:

• Why PID?
• TOF detectors
• Specific ionization loss - dE/dx
• Transition radiation detectors (TRD)
• Cherenkov based PID devices

• Threshold detectors
• RICH detectors
• DIRC type detectors
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• ACC (Aerogel Cherenkov Counter) @ Belle
(variable n=1.03,1.01,1.015, 1.02).

Detector unit: a block of aerogel 
and two fine-mesh PMTs

𝑝𝑝𝑡𝑡ℎ𝑟𝑟 =
𝑚𝑚𝑚𝑚
𝑛𝑛2 − 1

1.
01 1.
1

1 GeV/c

NIM A453 (2000) 321

Threshold Cherenkov counters
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Yield for momentum range 2-3.5 GeV/c: 
expected and  measured number of Ch. 
photons.

Normalized yield vs. momentum. 

NIM A453 (2000) 321

Belle ACC performance
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Outline:

• Why PID?
• TOF detectors
• Specific ionization loss - dE/dx
• Transition radiation detectors (TRD)
• Cherenkov based PID devices

• Threshold detectors
• RICH detectors
• DIRC type detectors
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• proposed in 1977 by
J. Seguinot and T. Ypsilantis

NIM A142 (1977) 377

RICH counter basic idea
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Ring Imaging CHerenkov counter (RICH) → measurement of Cherenkov 
angle → particle velocity.
Base designs:

detector with focusing mirror
→ gas radiator

proximity focusing detector
→ solid or liquid radiator

Cherenkov angle

low velocity high velocity

𝜗𝜗

RICH detector basic types
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RICH counter: measure photon impact point on the photon 
detector surface 

→ detection of single photons with:
 sufficient spatial resolution
 high efficiency and low background (few photons!)
 cover a large area (square meters)

Special requirements:
• Operation in magnetic field
• High-rate capability
• Very high spatial resolution
• Excellent timing (time-of-arrival information)

Selection of photon detector is a crucial part of the detector design.

RICH photon detection
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Photosensors comparison table

Peak
PDE

QE 
range

Gain ENF single 
photon

?

TTS B Rad. 
Hard.

Ageing

PD ≈ 100%

UV-IR

1 1 NO -

OK

OK

OKAPD ≈ 80% < 1000 > 2 NO - OK
(gain, dark 

count noise?)SiPM ≈ 60% ≈ 106 ≈ 1.1 YES
(dark counts?)

≈ 50𝑝𝑝𝑝𝑝

PMT

≈ 35%

UV-IR

≈ 107 ≈ 1.1

YES

≈ 200𝑝𝑝𝑝𝑝 ≈ 0.1 𝑚𝑚𝑚𝑚

HIGH
(window?)

OKMA-PMT ≈ 107 ≈ 1.1 ≈ 150𝑝𝑝𝑝𝑝 ≈ 10 𝑚𝑚𝑚𝑚

MESH-PMT ≈ 106 ≈ 1.1 − 2 ≈ 100𝑝𝑝𝑝𝑝 ≈ 2 𝑇𝑇
(axial)

MCP-PMT ≈ 25% ≈ 106 ≈ 1.1 − 2 ≈ 20𝑝𝑝𝑝𝑝 ≈ 2 𝑇𝑇
(axial)

OK?
(ALD)

VPT ≈ 25% ≈ 10 ≈ 2 NO - ≈ 2 𝑇𝑇
(axial)

OK

HPD ≈ 40% ≈ 5000 ≈ 1 YES -
OK

(axial)

OK
OK

HAPD ≈ 40% ≈ 105 ≈ 1 YES ≈ 30𝑝𝑝𝑝𝑝
(@high gain)

OK
(DC noise?)

CsI MWPC ≈ 25% UV ≈ 105 ≈ 2 YES ≈ 10𝑛𝑛𝑛𝑛
OK HIGH IBF?

CsI MPGD ≈ 20% UV ≈ 106 ≈ 1.2 − 2 YES ≈ 100𝑝𝑝𝑝𝑝

Solid state 
detectors

Vacuum 
detectors

Hybrid 
detectors

Gaseous 
detectors
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• from the known track and photon ring a Cherenkov angle 
can be reconstructed

• error for single photon Cherenkov angle comes mainly from:
• track error,
• dispersion, variation of phase refractive index
• unknown emission point along the track in the radiator
• detector granularity – pad size
𝜎𝜎𝜗𝜗𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎𝜗𝜗,𝑡𝑡𝑡𝑡.𝑒𝑒. ⊕𝜎𝜎𝜗𝜗,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. ⊕𝜎𝜎𝜗𝜗,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑝𝑝. ⊕𝜎𝜎𝜗𝜗,𝑝𝑝ℎ.𝑑𝑑𝑑𝑑𝑑𝑑.𝑟𝑟𝑟𝑟𝑟𝑟.

• Cherenkov angle resolution per track reduces with square 
root of the number of detected photons

𝜎𝜎𝜗𝜗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜎𝜎𝜗𝜗𝑐𝑐
𝑁𝑁

RICH basic reconstruction



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 50)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

• example of a reconstructed
Cherenkov angle vs. track
momentum distribution
• bands corresponding to
different particle types are
clearly visible
• 𝜋𝜋/𝐾𝐾 separation up to
~ 50 GeV/c

RICH – reconstructed Cherenkov angle
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• Detection of photons by gaseous detectors:
• photosensitive substance (TMAE, TEA) added to 
gas or deposited on one cathode (CsI)
• works in magnetic field
• low initial costs
• only UV transparent materials and high purity gas 
(not for aerogel)

TMAE

TEA
CsI

UV photon

photo-electron

 drift, TPC

TMAE

• DELPHI, SLD, OMEGA RICH counters based on TMAE:
• long absorption length → thick wire chamber detector – TPC
(UV photon    photo-electron  detection of a single electron in a TPC)
• slow – low rate
• aging

Early RICH detectors
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• OMEGA • DELPHI (dual radiator)

OMEGA, DELPHI RICH counters based on TMAE

Early RICH detector
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Thin multi-wire proportional chamber with cathode pad readout →
short drift distance → fast detector

CLEO RICH:
• TEA → short absorption length
• sensitive only below 160 nm
• aging

• HADES, COMPASS, ALICE RICH:
• thin CsI layer over photocathode pads
• high-rate instabilities

TMAE

TEA
CsI

TEA

CsI0.5 mm

signal

Faster wire chambre based RICH detectors
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JINST 3(2008)S08002

ALICE experiment uses MWPCs with CsI
photocathode for high momentum PID:
• proximity focusing configuration
• liquid radiator C6F14 (15 mm, 

n=1.2989@175nm)
• CH4 gas, gain ~ 4*104

• 300nm CsI reflective photocathode, 
QE~25%@175nm

ALICE CsI RICH



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 55)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

COMPASS RICH-1 upgrade:
• THGEM + CsI – new development in 
gaseous photo detectors
• ~ 10 photons for saturated ring
• resolution ~1.8 mrad ...

NIMA 952 (2020) 161832

GEMs and THGEMs with CsI – gaseous detector comeback?
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• operation at high rates over longer periods
• sensitivity for visible light – compatible with aerogel radiator
• does not work in magnetic field

• HERMES RICH (SELEX, PHENIX):
• dual radiator C4F10 (n=1.00137 @ 633nm)+
aerogel (n=1.03 @ 633nm)
• single channel PMTs (¾ inch, Philips XP1911/UV)

NIMA 479 (2002) 511

Vacuum based photon detectors - PMTs
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 smaller pad size → better resolution
HERA-B RICH:
 high-rate operation (>1MHz/cm2) →
wire chamber prototypes(CsI,TMAE) abandoned
 multi-anode PMTs (Hamamatsu R5900-M16(M4))
→ first use on large scale
 excellent single photoelectron detection
 low noise (few dark counts/s/ch.)
 low cross-talk (< 1%)
 low active area ration (<50%) 

→ imaging light concentrators (area ratio 4:1)

NIM A453 (2000) 289

Multi-anode PMTs
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• imaging light concentrators:
• two lens system
• demagnification factor 2
• area ratio 4:1
• limited angular acceptance ≈ 150 mrad

(saturated Cherenkov angle ≈ 53 mrad)
• injection moulded plastic lenses

The HERA-B RICH lens demagnification
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• low noise (few hits per event)
• ~ 30 ph./ring(saturated)

• good performance even at 
high occupancy events (typical) 

The HERA-B RICH performance
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COMPAS RICH upgrade:
• CsI in central (high occupancy) part replaced with multi-
anode PMTs
• similar imaging light concentrator system used
• UV extended PMTs and optics (down to 200 nm)
• area demagnification 7:1
• 60 ph. for saturated ring, resolution 0.3 mrad ...

MA-PMTs - COMPAS RICH upgrade
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• 2 RICHs with 2(3) radiators
(aerogel, C4F10; CF4)
• Hybrid Photon Detector introduced
• electron optics → 5x demagnification
• sensitive to magnetic field
• HV ~20kV, gain ~5k
• CERN+DEP-Photonis (replaced with MaPMTs)

NIM A 603 (2009) 287

p

n

bombardment
gain ~10k

HV ~20 kV

photocathode

photon

e- photoelectron

electron-hole
creation

window

photocathode

photon

focusing
electrode

Si sensor
(segmented)

photoelectron

window

RICH 1

LHCb RICH 1&2 with HPDs
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Vertex detector
DEPFET (pixel) + DSSD (strip)

Central drift chamber

Barrel PID – TOP counterARICH: aerogel radiator

ARICH: photon detector

Calorimeter (CsI(Tl))

Return joke with 
KLM detector

The aim is 
precise 
measurement of 
rare decays of B 
and D mesons, 
𝜏𝜏 leptons, dark 
matter search, 
and CP violation.

Belle II spectrometer
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Proximity focusing Aerogel Ring Imaging CHerenkov
detector (ARICH) components:
• double layer focusing aerogel radiator (20 mm each)
• 160 mm expansion gap
• photon detector - Hybrid Avalanche Photo Detectors 

(HAPD)

Belle 2 ARICH
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• Two main contributions to single photon resolution (n=1.05)

• pad size a (~6mm), position resolution 𝑎𝑎
12

• aerogel thickness d, emission point uncertainty 𝑑𝑑
12

• single photon resolution 

𝜎𝜎𝜗𝜗,𝑟𝑟 ≈
𝑐𝑐𝑐𝑐𝑐𝑐2𝜗𝜗𝑐𝑐
𝑙𝑙−12𝑑𝑑

𝑎𝑎
12
≈ 8 mrad

𝜎𝜎𝑑𝑑 ≈
𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝑐𝑐

𝑙𝑙−12𝑑𝑑
𝑑𝑑
12
≈ Ad = d ⋅ 4 mrad/cm

𝜎𝜎𝜗𝜗𝑐𝑐
2 ≈ 𝜎𝜎𝜗𝜗,𝑟𝑟

2 + 𝐴𝐴𝐴𝐴 2

𝜎𝜎𝜗𝜗𝑐𝑐 = 𝜎𝜎𝜗𝜗,𝑎𝑎 ⊕ 𝜎𝜎𝜗𝜗,𝑑𝑑

𝑙𝑙
𝑟𝑟

tan 𝜎𝜎𝜗𝜗𝑐𝑐 ≈
𝑟𝑟
𝑙𝑙

Single photon Cherenkov angle resolution
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• Single track Cherenkov angle resolution

• with no attenuation (𝑁𝑁 = 𝐵𝐵𝐵𝐵)

• minimum at

• minimum sigma (data)

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜎𝜎𝜗𝜗𝑐𝑐
𝑁𝑁

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ≈
𝜎𝜎𝜗𝜗,𝑟𝑟
2 + 𝐴𝐴𝐴𝐴 2

𝐵𝐵𝐵𝐵

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜎𝜎𝜗𝜗,𝑟𝑟
2

𝐴𝐴
≈ 2𝑐𝑐𝑐𝑐

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈
14𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

6
= 5.7𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Aerogel thickness optimization
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Single photon resolution

thickness [mm]

Cherenkov angle resolution 
per track is optimal at ~ 2cm

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝜎𝜎𝜗𝜗𝑐𝑐
𝑁𝑁

thickness [mm]

nu
m

be
r o

f p
ho

to
ns L = 38 mm

L = 13 mm

• Radiators of different thicknesses and refractive
indices were tested (2001,2003)

• Typical distributions for 
2cm sample, obtained in the 
pion beam tests → Nph, ϑC

Proximity focusing aerogel RICH
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• two layers of 20 𝑚𝑚𝑚𝑚 thick hydrophobic aerogel :
• upstream, n ≈ 1.045, 𝜆𝜆400 𝑛𝑛𝑛𝑛 ≈ 47 mm
• downstream, 𝑛𝑛 = 1.055 , 𝜆𝜆400𝑛𝑛𝑛𝑛 ≈ 37 mm

• 4 segmented rings, 2 × 124 tiles
• all but exit surface of each pair covered by black 

paper
• each pair fixed by two black strings running 

radially
• completed in December 2016

Aerogel radiator
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HAPD properties:
• size: 73 × 73 × 28 mm3

• 2 × 2 APDS with 6 × 6 channels, 
4.9 × 4.9 mm2

@ 5.1mm pitch
• < 𝑄𝑄𝐸𝐸400𝑛𝑛𝑛𝑛 >≈ 32 %
• combined gain ≈ 70k
• channel capacitance 80 pF
• operation in B = 1.5 T
• radiation tolerance ≈ 1012 𝑛𝑛1𝑀𝑀𝑀𝑀𝑀𝑀

cm2

420 HAPDs in 7 rings

18 planar mirrors neutron shield

QE

Photon detector - HAPD
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• ARICH is aligned by maximising the agreement between 
expected and measured photon 

• After alignment, a very good agreement is achieved between 
expected and measured Cherenkov angle distributions.

𝑒𝑒+𝑒𝑒− → 𝜇𝜇+𝜇𝜇−

ARICH Cherenkov angle



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 70)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

ARICH rings

• two pion ring
examples
• compared with
expected Cher.
angle distribution
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𝑛𝑛𝑐𝑐𝑐𝑐 𝜗𝜗,𝑚𝑚 ≈
𝑁𝑁1
2𝜋𝜋𝜎𝜎1

𝑒𝑒
−
𝜗𝜗−𝜗𝜗1 𝑚𝑚 2

2𝜎𝜎12 +
𝑁𝑁2

2𝜋𝜋𝜎𝜎2
𝑒𝑒
−
𝜗𝜗−𝜗𝜗2 𝑚𝑚 2

2𝜎𝜎22 𝑛𝑛𝑏𝑏𝑏𝑏 𝜗𝜗,𝑚𝑚 ∝ 𝜗𝜗

• PDF of Cherenkov photons from both radiators and uniform background for mass hypothesis 𝑚𝑚 can be
approximated as a function of Cher. angle (𝜗𝜗) and by

• likelihood function – Poisson distribution of hits on each pad with mean value 𝑛̄𝑛𝑖𝑖(𝑚𝑚)

• summation is needed only over the pixels with hit

PID capability: Likelihood calculation

ℒ 𝑚𝑚 = �
𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑒𝑒−𝑛̄𝑛𝑖𝑖 𝑚𝑚 ⋅�
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑒𝑒−𝑛̄𝑛𝑖𝑖 𝑚𝑚

lnℒ 𝑚𝑚 = − �
𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑛̄𝑛𝑖𝑖 𝑚𝑚 + �
𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖

ln 1 − 𝑒𝑒−𝑛̄𝑛𝑖𝑖 𝑚𝑚 = − �
𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑛̄𝑛𝑖𝑖 𝑚𝑚 −�
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑛̄𝑛𝑖𝑖 𝑚𝑚 + �
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑛̄𝑛𝑖𝑖 𝑚𝑚 + �
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

ln 1 − 𝑒𝑒−𝑛̄𝑛𝑖𝑖 𝑚𝑚

lnℒ 𝑚𝑚 = −𝑁̄𝑁 𝑚𝑚 + �
ℎ𝑖𝑖𝑡𝑡𝑡𝑡

𝑛̄𝑛𝑖𝑖 𝑚𝑚 + 𝑙𝑙𝑙𝑙 1 − 𝑒𝑒−𝑛̄𝑛𝑖𝑖 𝑚𝑚
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● Apply selection criteria on

- likelihood for given id. hypothesis

R [K/pi] > 0.6
# of pi: 40.67 +/- 7.67

pi misid.: 0.086

R [K/pi] > 0.6
# of K: 502.25 +/- 24.05

K eff.: 0.939

w/o R[K/pi]  
selection

mass peak

• 𝜋𝜋,𝐾𝐾 identified by 𝜋𝜋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 charge

PID capability: 𝝅𝝅/𝑲𝑲 separation power with 𝑫𝑫∗± decays
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 immune to magnetic field
 high photon detection efficiency (PDE)
 good timing properties (< 300ps FWHM)
 no high voltage
 low material budget
 high noise rate ~ 0.1MHz/mm2

 radiation damage - increase of dark noise
Possible candidate:
 array of Hamamatsu S10362-11-100P
Improve signal to noise ratio by:
 narrow time window
 use of light concentrators

TDC [100ps]
 beam test result (1cm,n=1.03)

NIM A613 (2010) 195

Photon detectors: SiPM
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Aerogel

Fresnel lens

Sensor plane

Geant4 Simulation

• radiator: aerogel + Fresnel lens
• photosensor: SiPM

EIC mRICH
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Outline:

• Why PID?
• TOF detectors
• Specific ionization loss - dE/dx
• Transition radiation detectors (TRD)
• Cherenkov based PID devices

• Threshold detectors
• RICH detectors
• DIRC type detectors
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e -

e +

Quartz Barbox

Standoff box

Compensating coil

Support tube (Al)

Assembly flange

• quartz bar as radiator and light guide
• water filled expansion volume with 
PMTs outside magnetic field

• event

NIM-A479(2002)1

DIRC detector @ BaBar
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NIM A538 (2005) 281, NIM A553 (2005) 317

Lots of photons

Excellent π/K separation

DIRC performance
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⌠narrow≈140ps

Focusing DIRC (SuperB R&D)
• additional wedge and expansion volume with mirror made 
from quartz → smaller volume less sensitive to neutrons
• flat-panel PMT Hamamatsu H8500 for photon detection → 
better time resolution
Background suppression x25 (volume) x10 (timing).

SLAC-PUB-13464, 2008

FDIRC design
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𝚫𝚫𝑻𝑻𝑻𝑻𝑻𝑻/𝑳𝑳𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = (𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝑻𝑻𝑻𝑻𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆)/𝑳𝑳𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑[𝒏𝒏𝒏𝒏/𝒎𝒎]𝚫𝚫𝝑𝝑
𝒄𝒄

=
[𝝑𝝑

𝒄𝒄,
𝒎𝒎
𝒎𝒎𝒎𝒎𝒎𝒎
𝒎𝒎
𝒎𝒎𝒎𝒎
𝒎𝒎
−
𝝑𝝑 𝒄𝒄

,𝒆𝒆
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆




][
de

g]

Chromatic correction with 3mm pixel size

• correlation between the 
propagation time (𝐿𝐿/𝑐𝑐𝑔𝑔) 
and Cherenkov angle 
(𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝑐𝑐 = 𝑐𝑐/𝑣𝑣𝑣𝑣) is used to 
improve the angular 
resolution

FDIRC chromatic error correction
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• group velocity is lower than phase velocity
• variation of group refractive index 𝑛𝑛𝑔𝑔 𝜆𝜆 is larger than variation of phase refractive index 𝑛𝑛 𝜆𝜆

https://www.rp-photonics.com/group_index.html

𝑛𝑛𝑔𝑔 𝜆𝜆 = 𝑛𝑛 𝜆𝜆 − 𝜆𝜆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

0 °C (blue), 100 °C (black) and 200 °C (red)

Phase vs group light speed – refractive index of quartz

https://www.rp-photonics.com/group_index.html
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Linear array PMT (~5mm)
Time resolution σ ~40ps

~2m

Based on a DIRC concept:
 instead of 2D imaging → 1D + Time Of Propagation (TOP, path length) 
→ compact detector

 measured time relative to bunch crossing is a combination of photon 
propagation time and time of flight from the interaction point to the quartz bar

𝑐𝑐𝑐𝑐𝑐𝑐𝜗𝜗𝐶𝐶 =
1

𝛽𝛽 𝑛𝑛(𝜆𝜆)

tTOP =
l

cg(𝜆𝜆)
=

l 𝑛𝑛𝑔𝑔(𝜆𝜆)
c0

Belle II TDR

TOP principle
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Focusing  TOP concept:
• focusing added for photons reflected from non 
instrumented side of the bar
• by focusing photons of different wavelength, that are 
emitted at different Cherenkov angles, are separated at the 
focal plane -> reduced error due to chromatic dispersion

Imaging  TOP extension (iTOP)

Focusing TOP
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TOP radiator
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𝝈𝝈 = 𝟑𝟑𝟑𝟑.𝟐𝟐 ± 𝟎𝟎.𝟒𝟒 ps

TDC [1count/25ps]

Multiandode MCP-PMT was developed in 
cooperation with Hamamatsu:
• bi-alkali photocathode
• gain ~1.5x106 @ 1.5 T
• single photon time resolution ~35ps @ 1.5T
• pad size ~5mm x 5mm (4x4 array)
• additional cut-off filter 320 nm

𝛾𝛾

𝑒𝑒−

window with photocathode

dual MCP - Chevron config.

Fast photon detection: MCP-PMT (Hamamatsu  SL10)
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• hit distribution for kinematically tagged kaon from D∗+ → 𝐷𝐷0 → 𝐾𝐾−𝜋𝜋+ 𝜋𝜋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+ decay 
compared with PDFs for three different hypothesis: 𝝅𝝅,𝑲𝑲,𝒑𝒑 , 
• hit distribution compatible with 𝑲𝑲 hypothesis (highest logL)

TOP – event example
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• preliminary TOP PID performance – K efficiency vs. 
𝜋𝜋 misidentification probability

TOP – PID performance: 𝑫𝑫∗+ → 𝑫𝑫𝟎𝟎 → 𝑲𝑲− 𝝅𝝅+ 𝝅𝝅+
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• TORCH for LHCb PID upgrade
• TOF based on internally 
reflected Cherenkov light
• low momentum PID (< 10 GeV)
• in front of RICH2

TORCH: TOP like TOF disc detector
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• trigger: 2 cm plastic scintillator 

• ARICH
• focusing radiator - two layers of 

2 cm thick aerogels :
• upstream, n ≈ 1.048,
𝜆𝜆400 𝑛𝑛𝑛𝑛 ≈ 44 mm

• downstream, 𝑛𝑛 = 1.062,
𝜆𝜆400𝑛𝑛𝑛𝑛 ≈ 55 mm

• photon detector:
• 6x6 array of Ma-PMTS 

(HERA-B) at 30 mm pitch –
576 channels

• readout electronics – Belle 2 
ARICH FE boards

16 cm

ICFA 2023 ARICH detector
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BACKUP SLIDES
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Mesh PMT
Coarse mesh or fine mesh types:
• multiplication is confined in space

→ cross-wire readout
→ multi-anode designs

• high gain up to 107

• good linearity
• operation in relatively high 

magnetic field
→ maximum gain at 30𝑜𝑜 between 
the magnetic field and PMT axes

(Hamamatsu)
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Gaseous photodetectors
Different ways to achieve photo-
sensitivity:
• addition of photosensitive molecules 

to the counter gas (TMAE, TEA)
• solid photocathode deposited on the 

cathode (CsI)
• semitransparent cathode on the 

window (bialkali)

Released photoelectron drifts toward 
the high field region and produces the 
avalanche → multiplication → 
detectable signal

photocathode

photon

window

e-

photon

e-

window

photosensitive
molecule

photon

window
photocathode

Difficulties:
● High gain operation (ion feedback 
and light emission from avalanche)
● Gas purity → UV transparency
● Aging (ion backflow, impurities)

• TMAE, TEA, CsI sensitive in deep UV
• bialkali sensitive also in visible but requires very clean gas – long term 

operation not yet demonstrated



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 92)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

Photosensitivity in gaseous detectors

molecule EI [eV] (lI [nm]) max. QE(E) labs@293K [mm]

TEA         (C2H5)3N 7.5   (164) 0.33 (8.2) 0.43

TMAE  C2[(CH3)2N]4 5.36 (230) 0.51 (8.3) 26

DMA       (CH3)2NH 8.3   (148) 0.2   (9.2)

TMA        (CH3)3N 7.9   (156) 0.27 (8.6)

Gaseous detectors (MWPCs, TPCs) use admixtures of photosensitive substances or 
solid CsI photocathode to gain photo-sensitivity in UV region.

Photosensitive agent is admixed to the counting gas of a MWPC by bubbling the gas 
through the liquid agent at a given temperature → concentration control.
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100                  250                 400                  550                 700                850    λ [nm]

12.3                 4.9                   3.1                  2.24               1.76               1.45    E [eV]

2

VISIBLE Near-IRNear-UV

Photosensitive materials - photocathodes

N
aF, M

gF

begin of arrow indicates threshold

Si (1100nm)

Cut-off limits of window materials

Almost all photosensitive materials are 
very reactive (alkali metals). Operation 
only in vacuum or extremely clean gas.
Exceptions: CsI, Si.

Bialkali
K2CsSb

GaAs

Multialkali
NaKCsSb

TMAE,
CsI

TEA

N
aF, M

gF
2 , LiF, C

aF
2

quartz

borosilicate glass

norm
al w

indow
 glass

GaAsP

CsTe

GaN

Remember :
𝐸𝐸𝛾𝛾 ≈ 1239 eV ⋅ nm/𝜆𝜆
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Transmission mode photo-cathodes
Photon energy Eγ (eV)

12.3                               3.1                             1.76                             1.13

(Hamamatsu)

GaAsP GaAs

CsTe
(solar
blind)

MultialkaliBialkali

Ag-O-Cs

Bialkali: Sb-K-Cs, Sb-Rb-Cs, Na-K-Sb  Multialkali: Sb-Na-K-Cs
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Photo-multiplier tubes (PMT's)

M = 𝛿𝛿1 ⋅ 𝛿𝛿2 ⋯𝛿𝛿𝑁𝑁 = �
i=1

N

𝛿𝛿i Dynodes

Photo-
electron

Photon

Window with 
photocathode

Secondary
-electrons

High voltage

𝛿𝛿1

𝛿𝛿2 𝛿𝛿𝑁𝑁

D1

D2

D3

DN

A

K

Principle of operation:
• photo-emission from photo-cathode – 𝑄𝑄𝑄𝑄
• collection of photoelectrons by 1st dynode - 𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐 (CE)
• Secondary emission (SE) from N dynodes:

• dynode gain 𝛿𝛿𝑖𝑖~3 − 50 (function off
incoming electron energy);

• total gain 𝑀𝑀:

• Example:
• 10 dynodes with

• 𝛿𝛿 = 4
• 𝑀𝑀 = 𝛿𝛿𝑁𝑁 = 410 ≈ 106
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Multi-anode PMT (MA-PMT)

Metal channel dynode (Hamamatsu):
• multiplication is confined in a narrow channel

→ multi-anode designs
→ some tolerance to modest magnetic field

• ~ 30 mm x 30 mm
• gain up to 107, excellent single photon detection
• gain uniformity typ. 1 : 2.5;
• cross-talk typ. < 2% (for 2x2 mm2 pads)
• low DCR, few counts/cm2/s

Flat-panel (Hamamatsu H8500):
● 8 x 8 channels (5.8 x 5.8 mm2 each)
● ~ 50 mm x 50 mm
● Excellent active area coverage (89%)

50 mm
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Micro Channel plate PMT (MCP-PMT)

MCP is a thin glass plate with an array 
of holes (<10-100 µm diameter) -
continuous dynode structure

MCP gain depends on
L/D ratio – typically 1000
For L/D=40

~ 400 µm

Φ ~ 10 µm

Similar to ordinary PMT – dynode structure is replaced by MCP.
Basic characteristics:
● Gain ~ 106 → single photon
● Collection efficiency ~ 60%
● Small thickness, high field
→ small TTS

● Works in magnetic field
● Segmented anode
→ position sensitive

Anodes → can be segmented 
according to application needs

γ

e−
window with photocathode

dual MCP -
Chevron config.

PHOTONIS
HAMAMATSU

PHOTEK
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Hybrid photodetector (HPD) concept

Combination of vacuum and 
silicon device – multiplication step 
in silicon. Detection steps:
• photon interacts in 

photocathode and produces 
photoelectron

• high electric field accelerates 
photoelectron

• on impact electron-hole pairs 
are generated (“bombardment” 
gain)

p

n

bombardment
gain ~10k

HV ~20 kV

photocathode

photon

e- photoelectron

electron-hole
creation

window



Samo Korpar
Univ. of Maribor and J. Stefan Institute

Particle identification in HEP experiments
(slide 99)

February 12th-25th, 2023,
ICFA School, TIFR, Mumbai

Hybrid avalanche photodetector (HAPD) concept

Combination of vacuum device and 
avalanche silicon diode:
• first steps equal as in HPD

→ photoelectron acceleration, electron-hole 
pair generation on impact

• primary electrons drift into avalanche region 
where they produce second multiplication 
(~50)
→ lower HV  required
→ higher gain
→ higher capacitance → larger electronic 
noise

• intrinsically very fast

p

p

n

bombardment
gain 1k-10k

HV ~10kV

photocathode

photon

e- photoelectron

avalanche
gain 1-100

electron-hole
creation

window
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