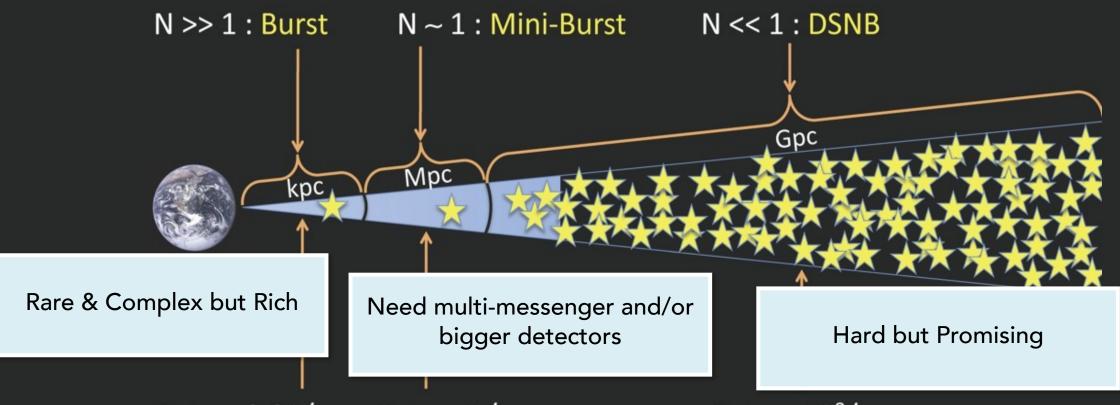
DUNE-India Meeting at TIFR 6 June 2025

SI Reutzinos at DUNE

Opportunities, Challenges, Ideas

Basudeb Dasgupta
TIFR Mumbai

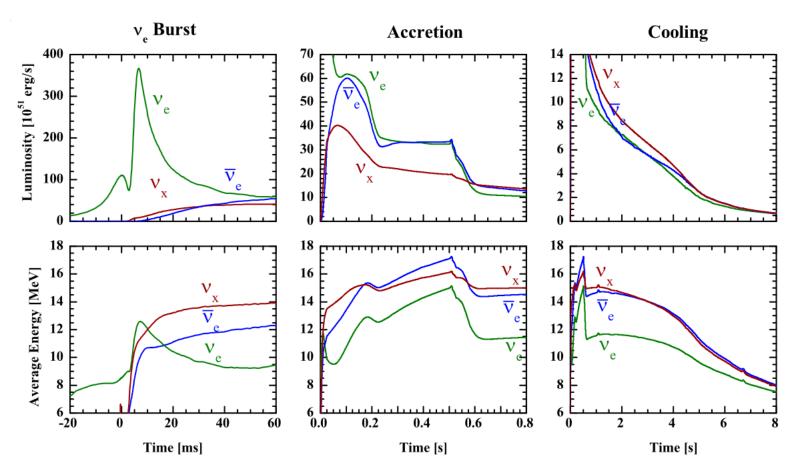


lete, Thete, Evelywhete

Rate ~ 0.01/yr

Rate ~ 1/yr

Rate $\sim 10^8/yr$


high statistics, all flavors

object identity, burst variety

cosmic rate, average emission

Slide adapted from John Beacom

Neutrinos from a SN

Modelling is driven by SN simulations, though most features are theoretically well- justified

SN1987A is the only data.

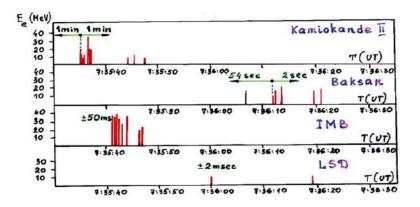


Image credit: Suzuki (2003)

1d simulation of a 27 M_{sun} star by Garching group See review by Janka, Melson, and Summa (2016)

Neutrinos from a SN

Electron / Non electron (v_{μ}, v_{τ}) neutrinos (v_e) / antineutrinos $(\bar{\nu}_e)$ decouple later / earlier / earliest

R < 10 km Trapping No Oscillation (?)

Core ~ 10 km

Neutrinos Oscillate

Nucleosynthesis

Stellar Heating

R ~ 10-100 km Collective Effects

Shock front ~ 200 km

R ~ 1000 km Free-streaming MSW Conversion

Interstellar space
Free-streaming
Kinematic Decoherence

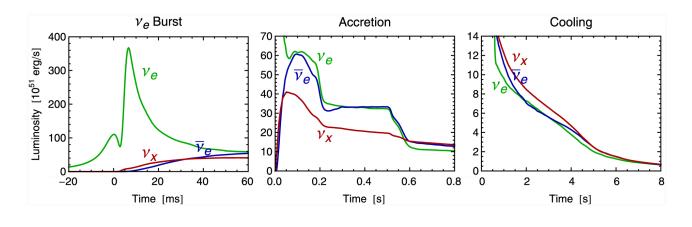
Mantle ~ 105 km

Neutrinos Detected

SN signals

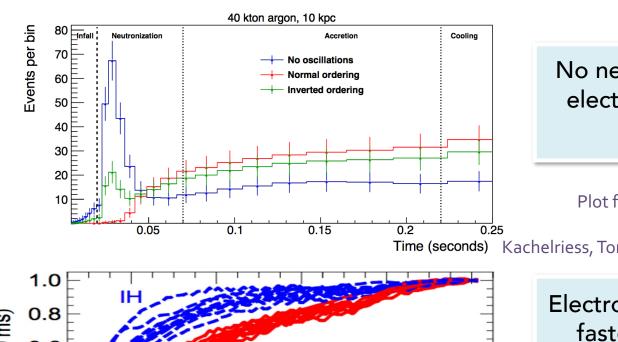
Inside Earth Free-streaming Regeneration

SN Neutrino Program

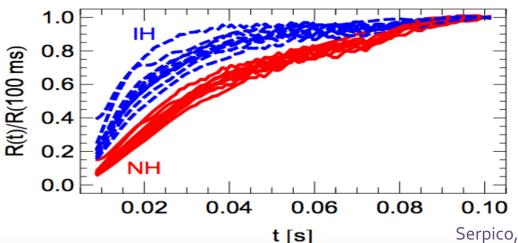

Running

Future

Detector	Type	Mass (kt)	Location	Events	Flavors
Super-Kamiokande	$_{ m H_2O}$	32	Japan	7,000	$\bar{\nu}_e$
LVD	C_nH_{2n}	1	Italy	300	$ar{ u}_e$
KamLAND	C_nH_{2n}	1	Japan	300	$ar{ u}_e$
Borexino	C_nH_{2n}	0.3	Italy	100	$ar{ u}_e$
IceCube	Long string	(600)	South Pole	(10^6)	$ar{ u}_e$
Baksan	C_nH_{2n}	0.33	Russia	50	$ar{ u}_e$
$MiniBooNE^*$	C_nH_{2n}	0.7	USA	200	$ar{ u}_e$
$_{ m HALO}$	${\operatorname{Pb}}$	0.08	Canada	30	$ u_e, u_x$
Daya Bay	C_nH_{2n}	0.33	China	100	$ar{ u}_e$
$\mathrm{NO} u \mathrm{A}^*$	C_nH_{2n}	15	USA	4,000	$ar{ u}_e$
SNO+	C_nH_{2n}	0.8	Canada	300	$ar{ u}_e$
$MicroBooNE^*$	Ar	0.17	USA	17	$ u_e$
DUNE	Ar	34	USA	3,000	$ u_e$
Hyper-Kamiokande	H_2O	560	Japan	110,000	$ar{ u}_e$
JUNO	C_nH_{2n}	20	China	6000	$ar{ u}_e$
RENO-50	C_nH_{2n}	18	Korea	5400	$ar{ u}_e$
LENA	C_nH_{2n}	50	Europe	15,000	$ar{ u}_e$
PINGU	Long string	(600)	South Pole	(10^6)	$ar{ u}_e$


From review by Scholberg (2012)

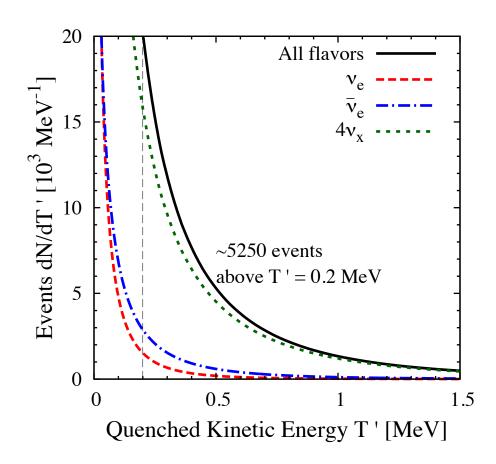
Several detectors capable of detecting SN neutrinos.
There is a rich science-case.


Burst	Accretion	Cooling
SN standard candle	Collective effects	Nuclear physics
Mass ordering	SN theory	Exotics/Axions
Timing	Mass ordering	Nucleosynthesis
•••	Pointing	Shock

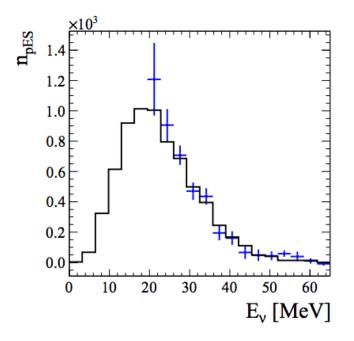
Mass Ordering at DUNE

No neutronization peak seen in electron neutrinos for normal mass ordering

Plot from E. Worcester's talk at Neutrino 2018
Wallace, Burrows, Dolence (2015)
Time (seconds) Kachelriess, Tomas, Buras, Janka, Marek, Rampp (2004)

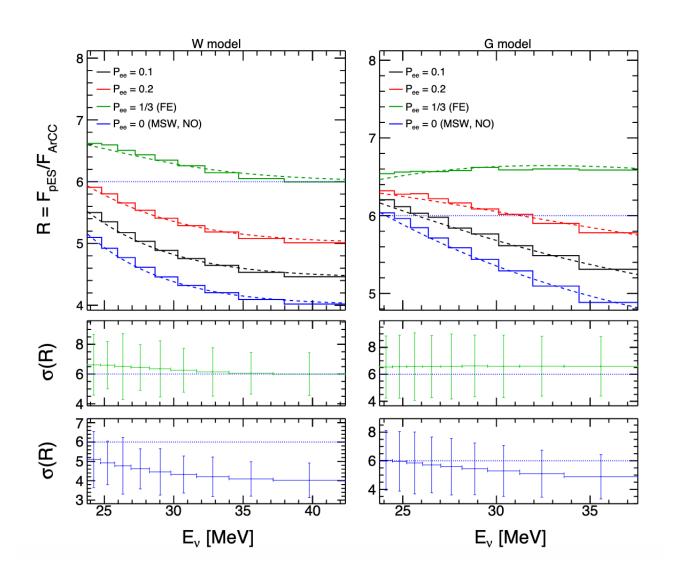

Electron antineutrino signal rises faster for inverted ordering

Note: This can change if fast conversions occurs in the accretion phase


Serpico, Chakraborty, Fischer, Hudepohl, Janka, Mirizzi (2011)

Neutronization burst can reveal the neutrino mass ordering

Neutral Current is Important



Beacom, Farr, Vogel (2003) Dasgupta and Beacom (2011) See also Chauhan, Dasgupta, Datar (2021) for a new idea using Deuterium Neutrino – Proton elastic scattering can give the unoscillated fluxes if measured with enough statistics and reconstructed with precision

Detailed analysis for JUNO by Li, Li, Wang, Wen, Zhou (2017)

Collective Effects at DUNE

Capozzi, Dasgupta, Mirizzi (2018)

Takeaway

<u>www.bdasgupta.com</u> bdasgupta@theory.tifr.res.in

- SN theory
 - Different phases of SN explosion and different oscillation physics
- Oscillations
 - Adiabatic and Non-adiabatic (at Shock) MSW
 - Slow/Fast Collective Mixing due to "Crossings"
- Detection Prospects
 - Neutrinos of all Flavors, Energies, Times, Directions ...
 - Multi-flavor detection helps
- Upshot
 - DUNE is extremely important to detect the electron neutrinos
 - Liq. Scintillator Detectors are useful for non-electron flavors