Large N Gauge Theory from Lattice or 2.3.4....∞

Saumen Datta

Asian School on Lattice Field Theory 2011, TIFR

Outline

- •Introduction to $SU(N_c)$ at large N_c
- •Properties of the $N_c o \infty$ theory; phase structure

Narayanan and Neuberger

•Measurement of various observables and estimate of N_c dependence

Teper and collaborators; Lucini, et al.; Bali, et al; ...

•Deconfinement transition of $SU(N_c)$ gauge theory

Teper and Coll.; Panero; Datta and Gupta

Outline

- •Introduction to $SU(N_c)$ at large N_c
- •Measurement of various observables and estimate of N_c dependence Teper and collaborators; Lucini, et al.; Bali, et al; ...
- ullet Properties of the $N_c o \infty$ theory; phase structure Narayanan and Neuberger
- Deconfinement transition of $SU(N_c)$ gauge theory

Introduction

The theory of Strong interactions: SU(3) gauge theory Quark fields ψ_i : triplet of SU(3), i = 1, 2, 3 color

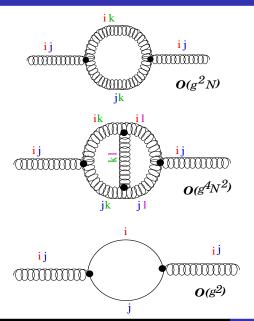
Gluon fields: traceless Hermitian matrices A^{μ}_{ij}

$$\alpha_{S}(Q^{2}) = \frac{g^{2}(Q^{2})}{4\pi} = \frac{4\pi}{(11 - \frac{2N_{f}}{3}) \ln Q^{2}/\Lambda^{2}}$$
 in leading order

The interactions become strong at hadron physics scales: no natural small expansion parameter

G. 't Hooft 1974 Consider SU(N_c), use $1/N_c$ as expansion parameter Meson spectra of QCD with $N_c \to \infty$ colors in two dimensions

Large N



 $g\sim 1/\sqrt{N}$ for nontrivial tractable large N limit $\lambda_{tH}=g^2N$ Quark loops ignored in leading order unless $N_f\sim N_c$

$$\lambda_{tH}(Q^2) \sim \frac{48\pi^2}{11 \, \ln Q^2/\Lambda^2}$$

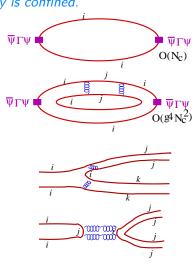
see, e.g., S. Coleman, Aspects of Symmetry

Qualitative hadron physics

Some qualitative understandings of hadron physics in four dimensions, assuming SU(N) theory is confined.

- Mesons are stable e.g., $\frac{\Gamma_{\rho}}{m_{\rho}} \sim 0.2$ Mass $\sim O(N_c^0)$, decay width $\sim O(1/N_c)$
- Meson-meson scattering weak, amplitude $\sim O(1/N_c)$
- ▶ Meson states are q̄q (quark sea suppressed)
- Zweig's rule (quark line disconnected decays suppressed)

But $N_c = 3 = \mathcal{O}(N_f)!$ Witten: $e \sim \frac{1}{3}!$



Lattice study of $SU(N_c)$ Gauge Theory

Can we use lattice to understand why large N intuitions hold? Teper: study the theory with 3,4,5,... colors and estimate coefficient of leading correction term.

Body of work; see arXiv:0812.0085 (plenary, Lattice 2008) and references therein. Also works of Lucini, Bali, etc.

- ► SU(N) gauge theory confines for all N; measurement of string tension.
- Glueball spectra measured
- Computational cost $\sim O(N_c^3)$
- Meson spectra measured in the quenched theory
- ▶ Computational cost $\sim O(N_c^2)$ (actually less)

Narayanan & Neuberger: Study theory with $N_c \gg 3$ Use large N_c simplifications

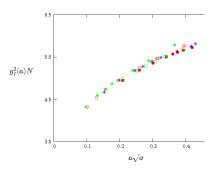


Figure 3: The (mean-field improved) bare 't Hooft coupling as a function of the so of the calculated string tension, for N=2 (\triangle), N=3 (o), N=4 (*), N=6 (\square), (*).

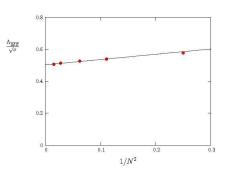


Figure 7: Calculated values of $\Lambda_{\overline{MS}}/\sqrt{\sigma}$ versus $1/N^2$ with a linear extrapolation to $N=\infty$ shown.

$$\frac{\Lambda_{\overline{MS}}}{\sqrt{\sigma}} = 0.503(2)(40) + \frac{0.33(3)(3)}{N_c^2}$$

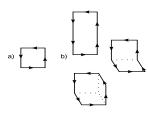
Allton, Trivini, Teper, JHEP 0807 ('08) 021

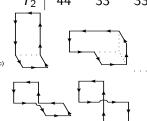
Glueball spectrum: Operators

Detailed measurement of glueball spectrum in all the channels at z = 1/6T

$a = 1/0 I_C$					
J	A_1	A_2	Ε	T_1	T_2
0	1	0 0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	1	0	1	1
4	1	0	1	1	1

	++	-+	+-	
$\overline{A_1}$	8	2	1	3
A_2	3	1	3	3
Ε	22	7	7	14
T_1	19	24	48	27
T_2	44	33	33	29





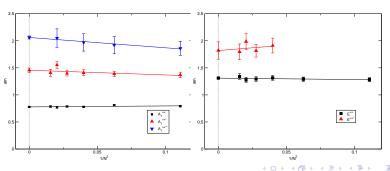
$SU(N_c)$ Glueball spectra

Variational technique to get ground and excited states.

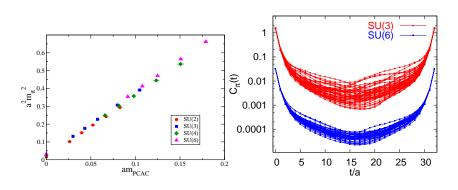
$$am_G(N_c o \infty) = am_G(N_c) + rac{c}{N_c^2}$$

good fit for $N_c=$ 3-7, $c\leq 1$

Lucini et al., arXiv:1007.3879

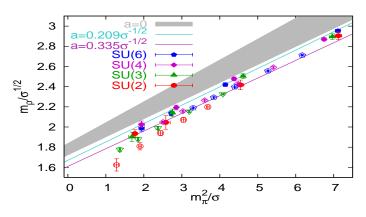


Meson spectra in quenched approximation



Del Debbio, et al., JHEP03('08)062; Bali & Bursa, JHEP09('08)110

ρ meson in SU(N_c)



$$\frac{m_{\rho}}{\sqrt{\sigma}} = 1.670(24) - \frac{0.22(23)}{N_c^2} + \left(0.182(5) - \frac{0.01(5)}{N_c^2}\right) \frac{m_{\pi}^2}{\sigma}$$

Gives $m_{\rho}=794(23)$ MeV for the $N_{c}\rightarrow\infty$ theory!

Narayanan-Neuberger Approach

Narayanan and Neuberger follow a different approach of using simplifications arising at large N_c .

see, e.g, Narayanan & Neuberger, arXiv:0710.0098 (Lattice 2007 plenary)

The $N_c \to \infty$ theory is volume independent so long as the system is in confined phase.

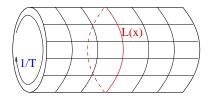
Used this to study very large $N_c \sim 20$ theories at very small volume.

They found an increasing slope of m_{ρ} $vs.m_{\pi}^2$ with increasing N_c .

Hietanen, Narayanan, et al., PLB 674 ('09) 80

Equilibrium Thermodynamics on Lattice

$$Z(T) = \int dU \exp(-\beta \int_{0,pbc}^{1/T} d\tau \int d^3x \mathcal{L}(U))$$



As lattice spacing
$$a \rightarrow 0$$
, $\beta \mathcal{L} \rightarrow {\rm Tr} F_{\mu\nu}^2$ with $\beta = 2N/g^2 = 2N^2/\lambda_{tH}$

- ► $A_{\mu}(\vec{x},0) = A_{\mu}(\vec{x},1/T)$ Z_{N} group of aperiodic gauge transformation $U_{\mu}(\vec{x},1/T) = e^{2\pi i/N}U_{\mu}(\vec{x},0)$
- Order parameter for deconfinement transition:

$$egin{array}{lll} L &=& rac{1}{N} \mathrm{Tr} \prod_{\mathsf{x}_0=1}^{N_ au} U_{(\mathsf{x}_0,\mathsf{x}),\hat{0}}
ightarrow 1/N \, \mathrm{Tr} \, \mathrm{P} \, \mathrm{e}^{\int_0^{1/\mathrm{T}} \mathrm{d} au \, \mathrm{A}_0(ilde{\mathrm{x}}, au)} \ & Z_N &: & L = rac{1}{V} \sum L(ec{x})
ightarrow e^{2\pi i/N} L \end{array}$$

Z_N Symmetry and Deconfinement

- $lacktriangleright | < L > | \sim e^{-F}$, F free energy of a static quark source
- $ightharpoonup < L> \neq 0 \rightarrow Z_N$ broken and deconfinement
- ▶ SU(2): 2nd order transition in Z_2 universality class

Engels et al. 1982-90

- ▶ For N > 2: Z_N : 1st order transition expected
- ▶ The QCD transition $N_f = 2 + 1$ is a *crossover*. Expected to be first order for all finite mass at $SU(\infty)$
- Chiral limit may be more involved.
- ▶ Similarly, complicated phase structures have been predicted for $\mu_B \sim O(N_c)$.

McLerran & Pisarski '07

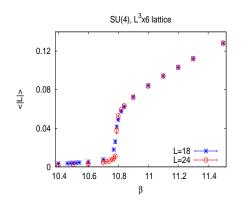
Study of SU(N) theory at finite T

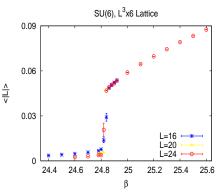
Interesting predictions at finite temperature, which may help our understanding of SU(3)

- Symmetry of Polyakov loop → strong 1st order transition?
- ► How does $T_c/\Lambda_{\overline{MS}}$ scale?
- ▶ For N > 3 the latent heat $\sim N^2$
- Does one reach the asymptotic state soon after the transition?
- ▶ Deviation from conformality in the plasma phase?

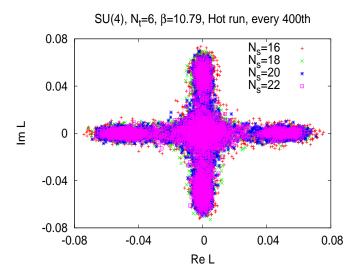
Gavai; Ohta & Wingate; 2001 Lucini & Teper; Lucini, Teper & Wenger; Bringholtz & Teper 2003– Panero 2009; Datta & Gupta 2009-10

Deconfinement Transition for SU(4) and SU(6)



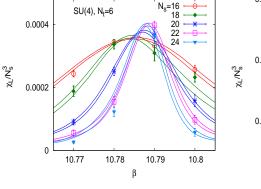


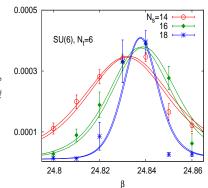
Degenerate Vacuua at T_c



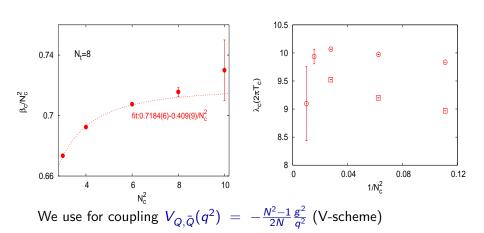
Finite Size Analysis

Susceptibility $\chi_L = V(\langle |L|^2 \rangle - \langle |L| \rangle^2) \sim V$ for 1st order.





N_c dependence of transition point



$T_c/\Lambda_{\overline{MS}}$

- ▶ Use 2-loop running to directly calculate $T_c/\Lambda_{\overline{MS}}$
- ▶ For each N_c , continuum limit of g_{Vscheme}^2
- We also checked using other schemes.
 Scheme-dependence observed to be stronger than cutoff dependence.
- ► N_c -dependence using $c_0 + \frac{c_1}{N_c^2}$

$$\frac{T_c}{\Lambda_{\overline{MS}}}|_{N\to\infty} = 1.121(2) + \frac{0.51(5)}{N_c^2}$$

Equation of State from Lattice

Define thermodynamic quantities

$$F(T, V) = T \ln Z(T, V)$$
 Z: grand canonical partition function

$$\begin{split} \epsilon &= -\frac{1}{V} \frac{\partial F(T,V)/T}{\partial (1/T)} \\ p &= \frac{\partial F}{\partial V} &= F/V \ \ \text{for homogeneous} \end{split}$$

Trace of energy momentum tensor $\theta^{\mu\mu}=\Delta=rac{\epsilon-3p}{T^4}$

$$(\epsilon - 3p)/T^4 = 6N_{\tau}^4 a \frac{\partial \beta}{\partial a} (P(T) - P(T=0))$$

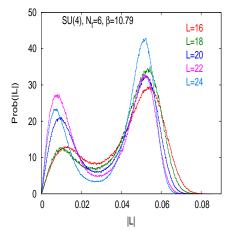
$$a \frac{\partial \beta}{\partial a} = -\frac{\partial \beta}{\partial g_R^2(k/a)} \cdot 2g_R \beta(g_R)$$

$$rac{p(T)}{T^4} - rac{p(T_0)}{T_0^4} = \int_{eta_0}^{eta} deta \; (P(eta) - P(eta_0))$$

Latent Heat: Method

 L_h/T_c^4 obtained from the discontinuity of $(\epsilon-3p)/T^4$ at T_c

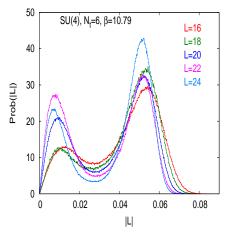
•Put |L| cut to identify confined and deconfined phase at T_c



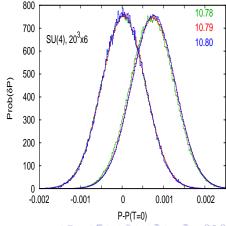
Latent Heat: Method

 L_h/T_c^4 obtained from the discontinuity of $(\epsilon - 3p)/T^4$ at T_c

•Put |L| cut to identify confined •Procedure stable in the and deconfined phase at T_c



metastability regime



Latent Heat: Results

▶ Results from $N_{\tau} = 8$ lattices:

N_c	β	L_h/T_c^4	L_h/Δ_{\max}
3	6.0609	1.67(4)(4)	0.68(3)
4	11.08	4.32(6)(6)	0.82(2)
6	25.46	11.93(34)(5)	0.90(3)

$$\frac{L_h}{T_A T_c^4} = 0.388(3) - \frac{1.61(4)}{N_c^2}$$

(statistical error only) correction considerable at $N_c = 3$

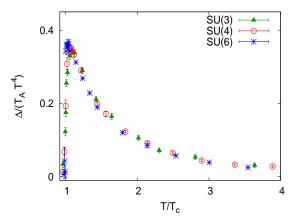
In excellent agreement with the $N_t = 8$ results of Teper et al. (at smaller volume, lower statistics)

Lucini, Teper, Wenger, JHEP02, 033 ('05)

➤ A larger value obtained for SU(4) by Gavai. Uses bare coupling.

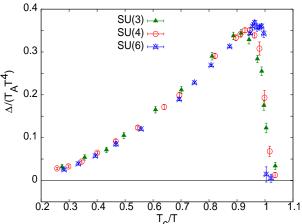
R. Gavai, Nucl. Phys. B 633, 127 ('02)

$(\epsilon - 3p)/T^4$



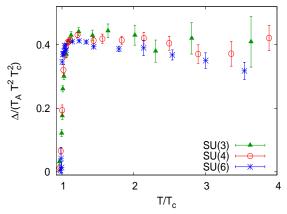
- ▶ Good scaling with $T_A = N_c^2 1$ except very close to T_c
- ▶ Peak moves towards T_c with increasing N_c , requires better accuracy to quantify the movement.

$(\epsilon - 3p)/T^4$



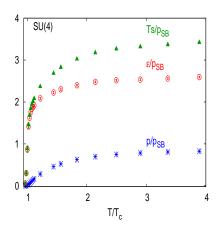
- ▶ Good scaling with $T_A = N_c^2 1$ except very close to T_c
- ▶ Peak moves towards T_c with increasing N_c , requires better accuracy to quantify the movement.
- lacktriangle Substantial conformal symmetry breaking at $2T_c\colon \Delta^{1/4}\sim T$

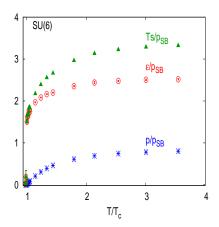
$\overline{|\epsilon-3p|}\sim T^2$?



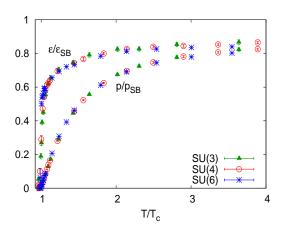
- ▶ $e 3p \sim T^2$ observed for SU(3) over large T range.
 - Meisinger, Miller, Ogilvie '02; Pisarski '07
- ▶ Similar behavior observed for $N_c = 4,6$, subleading term also contribute at SU(6)

Bulk Thermodynamic Quantities

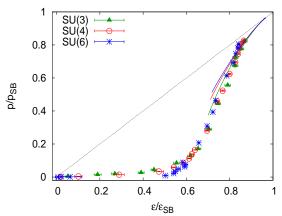




N_c scaling



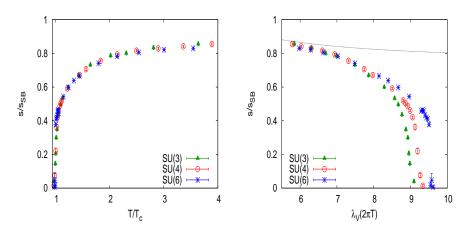
Approach to conformality



Closer to weak coupling theory (Laine & Schroeder, PR D 73('06)) than to conformal theory.

No evidence of a strongly coupled, near-conformal phase.

Entropy and 't Hooft scaling



Strong N_c scaling is better than scaling with the 't Hooft coupling, which holds only at the higher temperatures.

The line is the result for $\mathcal{N}=4$ SYM (Klebanov et al. '02)

Summary

- Interesting physics insights from lattice study of $SU(N_c)$ gauge theories with $N_c > 3$
- ▶ Helps in understanding qualitative success of large N_c intuitions in understanding features of hadron physics
- Quark loop effects, baryons in theory with large number of colors: not studied yet
- Insights about the deconfined gluonic plasma
- Here, quark loop effects will be even more interesting.