Computation of higher order quark no. susceptibilities in QCD

Sayantan Sharma

Tata Institute of Fundamental Research

Work done in collaboration with Rajiv Gavai & Sourendu Gupta

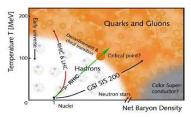
Asian School on Lattice Field Theory, TIFR, March 18, 2011

Outline

- Introduction
- 2 Fermion operator at finite density
- 3 Results for QNS for $N_f = 2$ QCD
- 4 Conclusions

Introduction

- The QCD phase diagram is very interesting and intriguing topic.
- The nature of the phase transition is dependent on the number of quark flavours. For $N_f=2$ and finite quark masses there is a critical end-point in the QCD phase diagram [Rajagopal & Wilczek review].



- Experiments currently underway at RHIC and LHC and planned at GSI for finding out the critical point.
- Lattice QCD is the non-perturbative tool that can give first principle estimate of the critical point.

Introduction..

- The nature of deconfined QCD medium is not well understood.
- The constituent quark scaling of elliptic flow(v_2) shows the medium is mainly partonic in the deconfined phase. On the other hand strong jet quenching and large collectivity \rightarrow strongly interacting medium.
- Quasi-static probes like screening masses shows that medium is strongly interacting at $T > T_c$. [MILC collaboration, RBC-Bielefeld collaboration, Banerjee, Gavai& Gupta('11)].

Introduction..

- Quark number susceptibilities(QNS) determine the fluctuations of conserved charges like electric charge, Baryon number, strangeness in the QCD medium.
- These help us in understanding the properties of the QCD medium specially the nature and the correlations amongst the quasi-particles for $T > T_c$.
- Determining these quantities accurately from first principle lattice calculations is important for understanding the QCD medium.
- Also important for estimating the location of the critical end point of QCD by Taylor series method [Gavai& Gupta('03)].

Current results

- Estimation of the location of critical point from radius of convergence estimates requires ratio's of susceptibilities → current state of art is eighth order baryon no. susceptibility[Gavai& Gupta('08)].
- Is it possible to extend it to 10-12th order?
- Current problems: Too many matrix inversions.
- $\langle \mathcal{O}_{ij...} \rangle$ has large volume dependence.

Current results

- There are about 10-5% differences between the lattice and the HTL resummed results for second order diagonal susceptibility in the temperature range $2 5T_c$ [Rebhan('05)].
- We need to separate the cut-off effects from the effects due to interactions → reduce cut-off effects in the fermion operators.
- Improved staggered fermion operators like the p4 and Asqtad are currently used for computing susceptibilities → have small cut-off effects but expensive to compute.
- Can we reduce the cut-off effects in the existing results? Motivation from the continuum theory for introducing μ in lattice fermion operators.

Basic set up

- This operator was motivated for the Overlap fermions. A recent proposed Overlap operator at finite density:
 D_{OV}(μ) = 1 + γ₅ε(γ₅D_W(μ))[Bloch & Wettig('06)].
- Instead of putting μ for all the Pauli-Villars fields choose the physical fields to construct N and $D_{ov}(\mu) = D_{ov}(0) + \mu N$. [Gavai & Sharma('10)]
- This formalism can be applied for all fermion operators on the lattice. We use staggered fermions for our computations.

$$D(\mu)_{xy} = D(0)_{xy} - \frac{\mu a_4}{2} \eta_4(x) \left[U_4^{\dagger}(y) \delta_{x,y+\hat{4}} + U_4(x) \delta_{x,y-\hat{4}} \right] \ .$$

- Potentially divergent $\mu^2/a^2(1/a^2)$ terms present in the lattice expression of energy density (quark no. susceptibility)— have to perform a zero-temperature subtraction to remove such terms.
- Conventional method: $e^{\pm\mu a_4}$ is multiplied with U_4 , U_4^{\dagger} respectively in $D_W(0)$ leads to a $D_W(\mu)$ [Hasenfratz-Karsch ('83)] \rightarrow do not give the divergences.
- In general functions, $f(\mu a_4)$, $g(\mu a_4)$ multiplying U_4 , U_4^{\dagger} respectively and satisfying f.g=1, $f-g\approx \mu a_4$ lead to cancellation of the divergences [Gavai('85)].

Basic set up

The quark number susceptibilities(QNS) are defined as

$$\chi_{ij}(\mu_i, \mu_j) = \frac{T}{V} \frac{\partial^{i+j} \ln Z(T, \mu_{i,j}, m)}{\partial \mu_i \mu_j}$$

- On the lattice, $T = 1/(N_T a_4)$ and $V = N^3 a^3$.
- The partition function in terms of the lattice Dirac operator is

$$Z(T, \mu_{i,j}, m) = \langle DetD \rangle = \int \mathcal{D}U e^{-S_G} DetD.$$

- For 2 flavour QCD and conserved isospin symmetry $\mu_u = \mu_d$.
- The baryon no. susceptibilities can be expressed in terms of QNS by noting that $\mu_B = 3\mu_u = 3\mu_d$.
- The χ_{ij} 's can be written as derivatives of the Dirac operator. Example : $\chi_{20} = \frac{T}{V} \langle \text{Tr}(D^{-1}D^{''} + (D^{-1}D^{'})^2) \rangle$.
- On the lattice these are computed at $\mu_B = 0$. Can be extended to finite μ regime by Taylor expansion method.

Basic set up

The computation of higher order QNS is much faster using our operator

$$D' = \sum_{x,y} N(x,y),$$
 and $D'' = D''' = D'''' \dots = 0$,

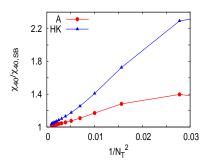
incontrast to the to the $\exp(\pm \mu a_4)$ -prescription, where,

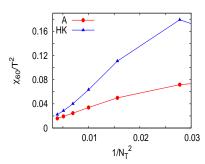
$$D' = D''' \dots = \sum_{x,y} N(x,y)$$
 and $D'' = D''''' = D''''' \dots \neq 0$.

• Each derivative term comes with a inverse of fermion operator D^{-1} . Inversion is the most expensive step on the lattice so need to cut down on fermion matrix inversions \rightarrow achieved using our operator. For 8th order χ , the no. of matrix inversions reduced from 20 to 8.

Free fermi gas results

- We compute the susceptibilities for free fermions (U=1). The additional lattice artifacts in the second and higher order QNS are estimated on a 24^3 lattice with infinite temporal extent and subtracted from our computations.
- The cut-off effects are different in both the methods. For higher order susceptibilities cut-off effects are smaller in our method.





Simulation details

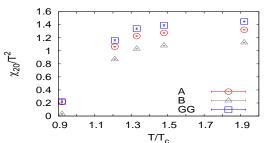
- The configurations used were generated for $N_f=2$ flavour QCD with Wilson action for gauge part and naive staggered fermions. The details mentioned in [Gavai& Gupta ,PRD 78,114503('08)]
- R-algorithm was used to generate the configurations.
- The input pion mass: $M_{\pi} \approx 230 \text{MeV}$.
- Lattice size was $24^3 \times 6$. The susceptibilities were measured for temperatures upto $1.92 T_c$ in the deconfined phase.
- Traces were computed using 500 random vectors.

Results for χ_{20}

• χ_{20}/T^2 computed using our fermion operator has $\mathcal{O}(1/a^2)$ terms on the lattice. We compared two different prescriptions to remove them:

A) subtract the free quark gas T=0 contribution computed on a 24^3 lattice with infinite temporal direction.

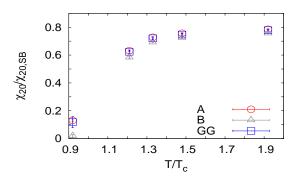
B)subtract the free theory contribution obtained from a 24^4 lattice. The GG results were for χ_{20}/T^2 using HK operator. [Gavai& Gupta('08)]



• The subtraction scheme B seems to give results close to the free fermion results at $T > 1.5 T_c$: consistent with the RBC & MILC results which were computed using different improved fermions.

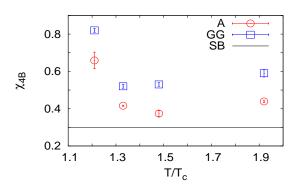
Results for χ_{20}

- How dominant are the cut-off effects?
- At $T < T_c$ the cut-off effects are huge and both these subtraction procedures do not work out.
- At high temperatures the ratio is independent of the method.

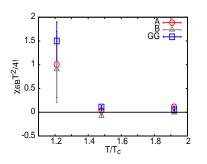


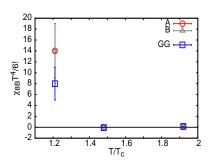
Fourth order susceptibility

- χ_n have a leading order cutoff dependent term of the form a^{n-4} in our method.
- The cut-off effects are larger for χ_{4B} for $T > T_c$.



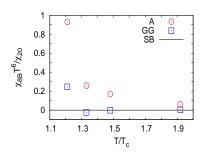
Higher order susceptibilities

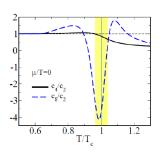




- Higher order susceptibilities $\chi_{6,8}$ have an additional cutoff dependent which are irrelevant in the continuum limit.
- The results are not very sensitive to the subtraction procedure.

Ratios of susceptibilities

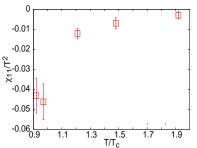


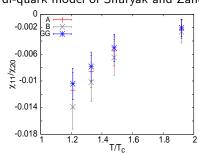


- Ratio of higher order susceptibilities are independent of the method.
 These ratios appear in the expression for the radius of convergence.
 Compares with model calculation.
 - [K. Redlich, ICPAQGP 2010, QPM model]
- These are sensitive indicators of the location of critical point and allow for bracketing the critical region.

Off-diagonal susceptibilities

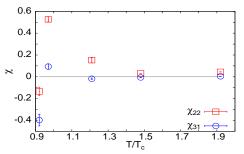
- Zero for the free theory→ gives a qualitative estimate of the interactions of the QCD medium.
- The lowest order finite off-diagonal susceptibility is χ_{11}/T^2 -should be same in both the methods. Gives us a consistency check.
- χ_{11}/T^2 falls to zero rapidly for $T>1.5\,T_c\to indicates$ that the medium consists of very weakly interacting quasiparticles at $T\sim 2\,T_c$ which carry the quantum numbers of quarks.
- The data seems to rule out the colour di-quark model of Shuryak and Zahed.





Off-diagonal susceptibilities

- Do not require any subtractions because χ_{11} data suggest that the correlations between u and d quarks are vanishingly small at $T > T_c$.
- The χ_{22} peak near T_c and fall to zero rapidly for $T > T_c \rightarrow$ gives an estimate of the T_c . Previous estimate of T_c from this peak is consistent with the peak in χ_L . [Gavai& Gupta ,PRD 78('08)]
- χ_{31} falls to zero \rightarrow indicative of deconfinement at $T > T_c$.



Conclusions

- Computing higher order quark number susceptibilities(QNS) from existing lattice fermion operators is very expensive.
- We suggest a lattice fermion operator which would allow us to reduce computation time for higher order QNS. Also has reduced lattice cut-off effects.
- There would be additional lattice artifacts appearing in the QNS computed using our method. We have proposed a method to eliminate these additional terms in the QGP phase without extra computational effort.

Outlook

- The proposed subtraction scheme fails for $T < T_c$. One has to do a full QCD simulation on a symmetric lattice to estimate the zero temperature values of χ_n 's as done for pressure and number density computation on the lattice.
- Continuum extrapolation of higher order susceptibilities is desirable for estimating the location of the critical end point in QCD phase diagram \rightarrow important for experimental searches. This method could still be efficient for continuum extrapolation of χ_n 's for $n \geq 8$. We would like to address these issues in future studies.