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SU(3) Gauge theory on a lattice



Lattice Gauge Theory: Hamiltonian Formulation

site
2+1 Dimensional Space-time Time
N+ j o—l N+1+ |

e ==pplaquette

| T T e —— n’—Qtl
link
ﬁ E.(n+i,i) ==UT(n,i)E, (n,i)U(n,i)
E (n,i) m mE (n+i,i)

U(n,i)

"




~ Kogut-
susskind

Hamiltonian formulation of LGT '
Hamiltonian —

NC -1
_ 2 : T
for SU(N) - H _Z_ Zl E*(n,1)+K IZH Tr(U plaquette +U plaquette)
Lattice S &

Gauge
Theory

U =Un,DU(n+i, DUT(n+ j, DU (n, j)

plaquette

Under Gauge . ..
Transformation: N+ J N+1+ J

U(n,i) — AMU (N, AT (n+i)
E, (n,i) > A(N)E, (n,i)A"(n)

.ER(n+i,i)—>A(n+i)ER(n+i,i)AT(n+i) N N




| Gauge Invariant Objects: Wilson loops I

_

Wilson loop

on a 2d lattice
A

Drawbacks of
Conventional

Variables
|

*Infinite Number Of Loops Are
Possible.

*Over Complete Basis.
*Dynamical Variables are Highly
Nonlocal.




ﬂl‘herefore, it is important to explore new descriptions of\
QCD where the loop, string states and their dynamics as
well as the associated Mandelstam constraints can be
\_ analyzed locally. )

v

The Prepotential Approach To Lattice Gauge Theories

Provides Such A Platform.

More precisely, this approach allows us to analyze and solve the Mandelstam
constraints locally at each lattice site without all the irrelevant non-local
details associated with the loop states. Towards this goal, a complete analysis
was carried out for SU(2) lattice gauge theory and all mutually independent
loop states were constructed in terms of prepotential operators .

Manu Mathur, Nucl. Phys. B 779, 32 (2007)

Present Goal: Formulate SU(3) LGT in Prepotential

Framework



New Variables: Prepotentials
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} Constraints |
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Features of Prepotential Formulation

»Both the gauge symmetries SU(2)®U (1) together lead to
non-local (involving at least a plaquette) Wilson loop states.

v
»Non-abelian fluxes can be absorbed locally at a site.

» The abelian fluxes spread along the links.

;



Action of link operator
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Consistent with U(1) Gauss law!
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Local SU(2) fluxes are created at each end
of the link connected by U(1) constraints
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SU(2) Gauge Theory Hilbert Space

H, is spanned by:

|j(?’L, i)amL(nv i): mR(na %)> — |j(nai)7mL(nai)>L ¥ |j(nai)ﬂm3(nvi)>37

jn.i),mp(ni)), = al, (L)al,(L)---al, (L)0)r = La,aya,|0)L.
j(n.d),mr(n.i))r = af (R)al (R)---al, (R)0)r = Rp,p,5,|0)r.

These operators are SU(2) irreducible as they are
symmetric in all the SU(2) spin half indices.

H. =H.. ~ SU(2) Prepotential
g b Hilbert Space




| Local SU(2 ) Gauge Invariant States ‘

For d-dimensional lattice, /Hence all possible SU(2)

2d number of prepotential [Dxagianbcreation
creation operators at each operators ‘:It ;'te e
site all transforming in the constructed by anti-

same way under the SU(2) symmetrizing any two
different prepotential

group present at the site Qoublets /
Lij(n) = ¢*%al (n.i)al(n. j) = a'(n,i) - @' (n, ), ii=1,2,..2
Hence, the most general . 2d

gauge invariant states at a (n)) = H (L
lattice site n is given by,



| SU(2) Local Gauge Invariant States & Mandelstam Constraints ‘

) et o))

Further, all possible mutually orthonormal loop states were
explicitly constructed in terms of the prepotential operators. The
dynamics of these orthonormal SU(2) loop states was shown to
be governed by 3-nj Wigner coefficients.



Prepotentials for SU(3)

a" (L) b" (R)

N e .n+|

bT(L) (n.1) aT(R)

al (L) — al(L)(A}) e al(R) — al(R)(A]) s
b (L) — (AL) sb™ (L), b’ (R) — (Ar)" b (R)
E? = (aT(L)ga(L)b(L)ng(L))

£y = (aT(R)ga(R)b(R)ng(R))




[Ahelian bauss Law }

Hilbert space of lattice gauge theory is built by applying the link
operators on the vacuum state: o o o
P Lf151 [IQfﬁ "'[]728 O>

symmetrizing/anti- left and right

symmetrizing the lefta € 3 .
. 4- . representations are
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induces the same always conjugate to
symmetries/antisymmetries each other

on the right B € 3% indices. [N(L) _ ]\;‘1(3)7 NI(L) — N(R)}
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SU(3) flux z{ = SU(3) flux
direction b . direction
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b+ o) Abelian flux line on a link a'®r)
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SU(3) Prepotential Hilbert space
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Big difference with
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As a consequence of E%(n, 1) = E%(n +i,1) and U(1)XU(1) invariance



SU(3) Gauge Theory Hilbert Space

the Hilbert space of SU(3) lattice
gauge theory can be completely

Generators of Sp, (2, R)

and uniquely labeled by Vv
[SU. 3 ®Sp, (2. R)®SU, (3) ©5p, (2 R)| k—(1) = a(l) - b(l)
quantum numbers on every link. LoD = at () - b7 (D)

1
Satisfying, kO(Z) = Z (GT(Z) ' a(l) + bT(Z) ' b(l) + 3)

ko(1), k< (1")] = 010k (1), [k—(1), k()] = 2010 ko(l)
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SU(3) Irreducible Prepotentials

k- (L), U] =0, [k_(R),U" 5] ~ 0.

v

We need to construct SU(3) irreducible prepotential
operators from prepotential operators such that:

1. they have exactly the same SU(3) & U(1) & U(1)
guantum numbers,
2. they commute with the Sp(2,R) destruction operator.

As a result, acting on the strong coupling vacuum they
directly create states in the gauge theory Hilbert space.



[ Irreducible Prepotential: Construction }

1 B 1

b= N(L)+ M(L)+1°

These factors are chosen so that,

k_(1), AT ()] ~0; [k=(1), BT (1)] ~0.



We can now define states on a link in the
gauge theory Hilbert space

B162---f 010 _ p PP 516
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with, Lol |0 = AL (L)-- AL (D)BI(L)- B (L)[0),,

RO 00r = AL (R)--- AL (R)B™ (R)--- B (R)0)

SU(3) Irreducible!

Having all the symmetries of
SU(3) Young tableauex inbuilt



In terms of SU(3) irreducible prepotentials, the
“spurious gauge invariant states” do not exist as:

AT(L) - BY(L)|0)L, = 0,
AT(R) - B"(R)|0)r = 0.

The role played by SU(2) prepotentials in SU(2)

lattice gauge theory is exactly equivalent to the

role played by SU(3) irreducible prepotentials in
SU(3) lattice gauge theory.
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SU(3) Prepotential Formulation
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Under U(1):
Under SU(3) : |
AlL(L) —>e”Al (L)

AL(LIR) = AJ(LIR)(AL)

B (L/R) — (A[,R)“ﬁ BY(L/R)

B"(R) > e "“B™(R)
B (L) > eB™ (L)
A'(R) > e ™A' (R)




The Link Operator

Should have all the following group theoretical properties:

@Under SU(3) transformations \
U(’I’L, i)aﬁ - (AL)(X’YU(na 7;)75(ART)55'

» It is invariant under U(1) @ U(1) abelian gauge
transformations.

. 0
Q It creates and destroys fluxes in Hp j
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| Old vs. New Variables: I
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| Local Gauge Invariant States ‘ R ]
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| SU(3) Mandelstam Eunstraints:‘ T”/
The Simplest One




| Mandelstam Constraints for Wilson loop ‘

FOR r NUMBER OF ARBITRARY LOOPS C, (r>3) WITH ANY
POSSIBLE SHAPES AND SIZES STARTING FROM A SITE N TO

l,1,,..,. DIRECTIONS AND COMING BACK AT N FROM

jir Jpse-r j, DIRECTIONS,

/
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Non Local Constraints!!



| Advantage of Prepotentials: All Constraints are Local |




‘ Summary: ‘

» Prepotentials : Transforming
Like Fundamental Matter Fields.

» SU(3) irreducible prepotentials:
directly creates QCD fluxes w— CONSTRALSTAM
around lattice sites. L0y,

» SU(3) invariant vertices at every
lattice site.

PrePOte.nt'al I Solve all the
Formulationfor 4! Future i .

Higher SU(N) | T Mande.lstam
Lattice Gauge u Constraints for
Theory SU(3)







