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1. Lattice Field Theory?

For example:

Standard Model
— QCD: Strong interaction, Hadrons <= quarks, gluons

— Glashow-Weinberg-Salam: Electroweak
* QED: electromagnetic interaction: charged particles, photon
 Weak interaction: Z,W bosons, leptons,...
* Higgs mechanism

These are based on Quantum field theory (QFT).

— Perturbative analysis using the coupling constant
expansion.

— Rely on the smallness of the coupling.
QCD: at low-energy, coupling expansion fails.
— Non-preturbative analysis is required.



* To understand the nature of the strong
interaction among Hadrons from the dynamics of

quarks anc
(QCD) has

neen introduced ano

gluons, Quantum Chromodynamics

investigated.

e QCD is wel

under stood in the

nigh-energy

experiments where the asymptotic-free nature of
the coupling constant of QCD enables us the
perturbative expansion analysis.

 Howerver, at low-energy, the perturbative
analysis fails due to the large coupling constant.



The lattice field theory is one of the non-

preturbative analysis method.
Lattice QCD has been used and develo

ned to

understand the low-energy nature of Hadrons.

The various technique for lattice field theory is
common and also has been used in LQCD.

In this lecture | would like to give some lattice
techniqgue and numerical algorithms for LQCD

as an example of lattice field theories.




2. Path integral and lattice field theory

* Feynman's path integral quantization is a
fundamental basis for lattice field theory.

* Euclidean field is also required to introduce
well defined (numerically calculable) path
integral formulation.

e Lattice QCD is based on SU(3) gauge theory
defined on a Euclidean 4Dim lattice universe.



2-1 Feynman’s path integral quantization

A quantum field theory :
—  §[¢] : Action.
—  ¢(x) : Field to be quantized (real scalar for simplicity).
— x :Space-time corrdinate.

* Feynman’s path integral quantization.

— Generating functional for Green’s functions (correlation func.)

Z[n]=| D¢exp[ (S[g1+7- ¢)}

— N-point Green’s function of the theory.
h" o0"Z[n]
inZ[0] o (X,) 61 (%) - n (X,)|,
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(TIPx)F0) -+ p(x,)]) =

" Z[0]

— We can extract various information from Green’s functions basically....



However, the analytic integration of the path-integral is
not always available except for free field theories.

The integral also has a difficulty in Minkowski metric.
The integral is a kind of Fresnel integrals and the
integrant oscillates. This may prevents us to evaluate it
numerically....

In order to evaluate this integral:

— Introduce Euclidean path integral

* Needs validation : Minkowski<> Euclid relation.
Experimentally or constructive field theory,
Osterwalder-Schrader axiomes...

— Discretize Space-Time => Lattice space-time
* Needs validation: lattice spacing error

Here we assume:
— thereiis a Euclidean field theory for a target Minkowski field theory.



2-2 Euclidean path integral

— S:[é:] : Euclidean action.
d-(Xc) : Euclidean field. Real valued.

— X=(XY27) : Euclidean 4D coordinate.
* They are usually obtained from Minkowski versions after Wick’s rotation. t =|r

* Generating functional for Euclidean Green’s functions.

Zelnl= ID¢E eXp[ ( eldel-n- ¢E):|

— If the Euclidean action is real valued, the integral has a better property than the
Mikowski version. A chance to evaluate them by numerical integration?

— The physics information can be obtained from Euclidean Green’s functions by inverse
Wick’s rotation or investigating the tau dependence.

1 5*Zenl |

(4,216 0.0) = 7 %0 @0), ., 2 [0] (4 (%,7)¢c (0.0)) exp [~ S [g.1/ 7]

jdx<¢5 (X, 7)de (6,0)>e“w ﬁ)ce—E(p)f

E(P) : lowest energy in this channel (intermediate state).



2-3 Euclidean path integral and lattice

* Pathintegral measure  [Dg,
— Integration by field shape (configuration)

ID¢E = + W+ A+

sum over field shape

maintain | D¢ for numerical evaluation. This will cause
UV divergences. The renormalization and regularization is
required.

— Introduce the lattice discretization:
* As aregularization.

* As a well defined integration measure.

— Degree of Freedom (DoF) is still finite. IR regulator by limiting system size
(finite volume).

— Euclidean stace time, x.=(xy,z,7) is continuous. Difficult to



e |Lattice Ea Lattice spacing

X=an

g
(4
[
« v
#(x) ag(na) = 4., (N)
* Lattice regularized path integral n=(n,n,,n,n)ez*

Ze[nl= ID¢Ee><p{ = (Selgel - 77¢E)}~

Z w[nl= _‘.D¢Latt eXp|: SLatlPLan] =17 DLan ):l

ixp

sum over lattice field shape

Multiple integration on the vector 5 = ( . -¢Latt(n1), ¢Latt(n2)’ ¢Latt(n3)’ . ')T
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* Lattice regularized path integral

Zauln] = _[ Do, .. €0 I:_%(SLatt[¢Latt] —n- ¢Latt):| n=(n,n,n,,n)ez
= 2(7) = [dg e (5(4)-77-4)

Multiple integration on the vector b = ( B (N, B (), B (M), .)T
* How to evaluate this integral?

— Similar to Canonical partition function in statistical mechanics.
— Dimension of is very large. For real scalar on a 4D lattice with the size

(16x16x16x16), dim(¢_5>) —16* = 65.536

— If the weight exp(...) is real and non-negative, we can evaluate it using
Monte Carlo Methods.

— Note: Lattice action should be designed appropriately. (based on Symmetry, spectrum,
relation Minkowski< Euclid, .....)

— When no real and non-negative weight is derived, we encounter the sign problem in the
Monte Carlo method. Ex. System in finite density.
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2-4 Integration using Monte Carlo

Methods.

e Monte Carlo

— Ex. Integration with a single variable.

= [ f(x)ax
f(x) >0, and real valued.

A

F(x)

— Rectangular integration

| = |!|im f (X )AX, | f(x,)
Ax=(b—-a)/N Y
X
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Random sampling

(1) Pick up a number X; =X from the interval [a,b] randomly.

(2) Evaluate function as f. = f(x.) .

(3) Repeat (1)-(2) N times, then we get samples {fl’ PYRRE fN} :
We can estimate the integral as

The random number sequence {Xl, Xy, XN} has a uniform
distribution in [a,b]. This means that the random variable x has the

following probability density: Const xe[a,b]
P(x) = |
(0 { 0 X ¢[a,b]
Thus the statistical averaging for f. = f(x;) means

lim — Zf = j f (X)P(x)dx/ j P(x)dx

N—oowo N

Denominator is for the
probability normalization.



* A defect and inefficient property of the simple
rectangular and random sampling integration.

— If the target function f(x) has a keen peak with narrow width W,

The integration may fail until *
A
(a—b)/ N <<W
is satisfied. f(x)
One sample in the peak. ,\) L/] s
Most of samples are unimportant. a V"\; b

sample ratio = 1/N.
— In multi dimensional integrations, the situation becomes more worse.

— D-dimension | :ﬂjﬂ f (X)d°x
(a—Db). /N, <<W. for i-thdirection

D
TotalSample Number=] [N; = N° Only one sample is in the peak.
=1 Ratio = 1/NP << 1.

Asian School on Lattice Field Theory

2011/3/14 2011@TIFR

14



Importance Sampling (Monte Carlo)

— As seen before uniform sampling is not effective if the integrant has
keen peaks.

— Euclidean Path-integral is a kind of huge-multi dimensional integration.

— The integral has narrow peaks in general, and the highest peak
corresponds to the classical solution of the system.

<¢Latt ( )¢Latt ( y) j ¢Latt (¢Latt (X) ¢Latt ( y)) eXp |: =l £-2¢Latt] :|

Z at [0]

— In the classical limit (k->0), the dominant contribution to the integral

comes from: ) S, 4.1
A solution ¢, . which gives the highest peak of exp{— %}

— This corresponds to the stationary (or minimum) solution of action:

S,..[d... +A]=0 forany variation A. ¢, :classical solution.
— We know that the classical solution gives a narrow peak for exp(-S)

Uniform sampling for ¢ is not effective to evaluate path integrals.



* Importance Sampling (Monte Carlo) cont’d A

= [ f (x)dx
f(x) >0, and real valued.

 To integrate this function f(x): a X b X

— If we can generate a sequence / ensemble {x} so that the statistical
histogram/distribution of {x} is w(x).
— We have {x® x@ x® ... x"N)}
Distribution of {x}: w(x)

A A N 0)
| = J'a f (x)dx = J'a %w(x)dx = leo%; ng(i); = <ng3> :statistical averaging.

f(x)

— The error behaves as 1/Sqrt(N)
- e (10 LR 000} o

w(X) N w(X)

— The error is minimized when f(x)=w(x).

— The error behaves as 1/Sqrt(N) even for the multi-dimensional
integrations.
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Importance sampling for Euclidean path-
integrals.

— For the two-point correlation function:

44)=75 —[dd(4s) 0[S

— Generate a sequence/ensemble: {¢(1),¢(2),¢(3),°“,¢(N)}

— So that the sample has the distribition : wW(g) =Cexp [_ S(¢)]
— The two-point correlation function can be estimated as:

< > Z¢(k)¢ (k)
— The error behaves as 1/Sqrt(N).
— Note: the dimension of the integral/ ¢ is o (Latticesites 2164 forex)

How to generate such an ensemble ?

Asian School on Lattice Field Theory
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 Markov Chain Monte Carlo (MCMC)

(general description)

* Asimple random sampling generation is not effective as seen before.
* A non-random generation is required.

— MCMC Set up. There exisit

—

¢ . random variable

{5 D 6@ 6D ,... 40P }: t-1stepsequence generated.

— MCMC adds a new sample to the sequence as
Generate ¢ witha probability distribution P(¢® | “™).
Then add the new sample to the sequence.
{¢7 D 6@ g ... gD O }: t stepsequence generated.
Where
P(#Y |4 P): Transition probability 4™ — ¢® in MCMC.



* Markov Chain Monte Carlo (MCMC) cont’d
* How to generate the desired distribution from the transition P?
— Perron-Frobenius theorem.

* P(d]|P’) transition probability can be treated as a matrix element
which index takes a value of state number.

¢ .state—i:i-thstate, P(¢|¢') — B
transition probability from j-thstatetoi - thstate.

* The matrix P satisfies P, >0, Real positive Probability.

Z Pij =1, Probability conservation.
i

* P s called a positive matrix.

— Perron-Frobenius theorem:

e Any positive real matrix has a unique and largest eigenvalue (with
=1), and associated eigenvector with positive components.

Pw =w, w, >0
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Markov Chain Monte Carlo (MCMC) cont’d
Using Perron-Frobenius theorem, we have

For a given initial state:
v initial distribution.

if thesystemis in i - thstate,v!”; =1, and other componentsare zero.
k-step MCMC corresponds to
vO = py® O = py@ L.y pykD
v — pky©
The Perron-Frobenius theorem says that

imv® =limP*v® =w,  where Pw=w.

k—o0 K—o0

The convergence to the fixed distribution is usually exponential. After
many MCMC step the distribution is almost identical to the maximum
eigen vector w.

If s has the desired distribution we can generate the desired sequence.



Markov Chain Monte Carlo (MCMC) cont’d
— (1) Generate initial state.

— (2) If the system is in the j-th state, generate i-th state with
the probability P;
— (3) Add the new state to the ensemble.
— (4) Goto (2)
Where we assumed that the state is discrete and countable, P is a positive
matrix.

Extension to Non-negative matrixes, and continuum state is also possible.

The property that the existence of a unique real maximam eigenvalue and
positive eigenvector of the theorem still holds, but some special properties
are required on P. Here | omit the details of the extension. (irreducible,...)

Now the problem to the path-integral is

— How to construct P(#|4') so that the maximum
eigen vector is w(¢) =Cexp(—8(¢')) ?

2011/3/14
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2-5 Detailed Balance Condition

 How to construct Transition probability P(¢|¢') to make a
desired distribution W(¢7) =Cexp (_ S(¢7)) ?
 One sufficient condition is the so called detailed balance

condition.

* Recalling that the fixed point distribution is a eigenvector of the transition
probability with real unit eigenvalue.

Eigen equation for transition probability matrix P
Pw=w<& Z Pw, =w, for discrete statespace

or jd¢'P(¢ |4 YW(g') =w(g) for continuous statespace

* The detailed balance condition requires
[Pw, =Pw or  P(F|§)w(g")=P(F| §)w(d)|

This is a sufficient condition for eigenvector w with unit eivenvalue.
In this case, P is a reversible Markov chain (w is a simultaneous left and right evec).

(Problem-1)

Asian School on Lattice Field Theory
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* Some MCMC examples that satisfies the
detailed balance condition.
* (1) Metropolis-Hastings algorithm
(Metropolis et al. 1953, Hasitings 1970)
(step0) Given initial state j”,t=0
(setpl) Generate a canditate state 1 with probability G-
(step 2) Take next state |V as

) I with probablity Py
= i with probablity 1~

(step3)t <t +1, gotostepl.

* Where _ W;
L5 = min 1,W and @; =q;



* This algorithm is equivalent to the following
transition probability

(Problem-2)
Pi = 0;0; + (1- r; )5ij ,
. W.
Pij = mm[l, Jj, I = Zpqukj
Wi K

* This transition probability matrix satisfies the detailed balance
condition.

A More concrete example for Metropolis algorithm.

— Ising model with 2 spins.

S(o) = po,o, T T
+1

2(i)= Y. ep[-5(6)+7i-6] G:{ _{+1
1 _102—

01=i1,0'1:il _1
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Ising model with 2 spins.

S(G)=poo, 2= Dewp[-S(6)+7j-5]
o=tl,01=%1
To compute the spin average and spin correlation

1 o, +0, o]
<G>_Z((—j) Ul:il%lzﬂ 2 eXp[ S(O-)] O

1 =N
<O'10'2> = ﬁ Gl_ﬂglillgz EXp [_ S (O')] =—tanh(p)

We generate the ensemble {5©,59,6@,...,6™ | with the

distribution . ]
Z®) (5)

Then we can estimate the squared spin average by

w(o) =

)

N )
@ 2ESTe (e Dol
)=




* We have only 4 states.

State # 1 State # 2

T T o =(+1+1) T 1 o =(+1-1)
State # 3 State #4

l l & =(-1-1) 1 T & =(-1+1)

e The Welght(probablllty) is calculable (Cis the normalization const = Z(0))

w

w(#l) =Cexp[- 8]  w(#2)=Cexp[+ ]
w(#3) =Cexp[- ]  w(#4) =Cexp+ ]

Distribution/
Population/

Weight

#H1  #2 #3 HA
space
* We can generate this distribution with the Metropolis
Algorithm
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 Metropolis algorithm for the Ising model with
2-spins.

(step 0) Randomly choose initial state " ,t =0
(setpl) Generate a canditate state S with probability Gy = 1/4

(step 2) Computethe weight p = min(1, exp [— S(3) + 8(5“))])
(Step 3) Generate a random real number U from [0,1).
(step4) Take next state"*" as
(1) _ S when U < p (Accept)
5" otherwise (Reject)

(stepb)t <t +1, gotostepl for desired sample numbers. N
* Then we obtain ensemble: Metropolis test
{5(0) Mokl 5(2),...,5('\')} Metropolis accept/reject step

* Corresponding Fortran Program:
— [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SitelsingMetropolis.tar.gz]

Asian School on Lattice Field Theory

2011/3/14 2011@TIFR

27



&

use ising module
implicit none

integer :: NTHERM ! first NTHERM samples are dropped
integer NSAMPLE ! measured sample number
integer, allocatable :: seed(:)

integer iseed, rand_size

integer s0(2) ! previous state (2-spins)
integer sl (2) ! current state (2-spins)
integer :: jO ! previous state index
integer j1 ! current state index
integer :: istep

real (DP) rand_num

real (DP) beta

real (DP) rho,w0,wl, hO,hl

real (DP) spinave, spincorr

integer iout

iout=99

open (iout, file="ISING_PARAM",K status='o0ld’,6 form='formatted’)
read (iout, *)beta

read (iout, *) iseed

read (iout, *) NTHERM, NSAMPLE

close (iout)

!

! Set up pseudo-random number generator
!

call RANDOM SEED (size=rand size)
allocate (seed(rand_size))

seed(:) = iseed

call RANDOM_SEED (put=seed)

write (*,’ ("# BETA=",ES24.15)’) beta

write (*,’ ("# ISEED=",I10," NTHERM=",6I10," NSAMPLE=",6I10)’) &
& iseed, NTHERM, NSAMPLE

write(*,’ ("# sample}} state index spin state",&
10X, "spin ave", 14X, "spin corr")’)

!

! Generate initial state at randem
!

call RANDOM NUMBER (rand_num)

j0 = get state_ index(rand num)
call set_state(s0, jO)

do istep=1, NTHERM+NSAMPLE

Candidate generation

jl = get_state_index(rand_num)
call set_ state(sl, j1)

!
! Compute Metropolis test weight
]

ho

= hamil (beta, s0)
hl = hamil (beta, sl)
w0 = exp(-h0)
wl = exp(-hl)
rho = MIN(1.0_DP,wl/w0)

!

! Metropolis test Accept Reject step
!

call RANDOM NUMBER (rand_num)

if (rand num <= rho) then

| accept sl as the new state
continue
else

| reject sl. s0 is the new state

sl(:) = s0(:)
i1 =30
endif

Metropolis test

if (istep > NTHERM) then

!

| store current state in the ensemble
| and measure observables
!

! shift history
!

s0(:) = sl1(:)
jo =3J1
enddo

!

| Generate candidate state at random
!

call RANDOM NUMBER (rand_num)

deallocate (seed)
stop
end program

spinave = (sl1(l1) + s1(2))*0.5_DP
spincorr = sl(1)*sl(2)
write(*,’ (I10,I10,SP,6X,"(",I12,",",I2,")",2ES24.15)")&
& istep, j1,s1(1),sl(2), spinave, spincorr
endif
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population

Results

— Weight histogram

State Histogram Ising model with 2-spins

2011/3/14

3 4

state #
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T 0.5
f=0.1 ;
B=0.2 mmm
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B=0.8 wemm—

B=1.0
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3 dependence of

— Beta dependence of Weight

weight Ising model with 2-spins

[ e

o w(#1)

W(#2) B
ffffff e™P/4/CoshB o
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,’,”/’
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_____
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W(#2) = exp[+ 8]/ 4/ Cosh(p)
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* Results B 4 (D)
O, + O 5
— Spin average ensemble history 2
Spin average sample history (Ising model with 2-spins) Spin average sample history (Ising model with 2-spins)
B [3:0'_1 e B=1'.6
1 1
o o [
¢ &' é
+ + |
) )
g_ %.O I3
(9] (9]
o o :
> g !
@ o |
[ Q |
z z |
- -1 & o & =)
0 100 200 300 400 500 0 100 200 300 400 500

Sample number

Sample number

Spin average sample history (Ising model with 2-spins)

®First 500 samples are plotted.

®Random walking in the state space (4states)
®Spin average can take one of the values (-1,0,1)
®(spin average)=0 can occur for state #2 and #4.

@ (spin average)=+1 occurs for state #1.

@®(spin average)=-1 occurs for state #3.

. ®As increasing beta, the state stays at state #2
or #4. spin average = 0 states.

Asian School on Lattice Field Theory 30

B=1.0
1 T o= T - ne
I\ I | b !
"
°)
+
£
%_O
(]
ke
D
(=]
® P
() o
> i
z ‘
-1 [ ] = [T ] - o
0 100 200 300 400 500
Sample number
2011/3/14

2011@TIFR



e Results

— Spin correlation ensemble history 1 2
Spin correlation sample history (Ising model with 2-spins) Spin correlation sample history (Ising model with 2-spins)
5 B=0.1 ' ' ' o B=1.6
1 1 F 9 ? o ? =
o °)
) )
5 5
To0 0
o o
8 8
£ £
Q. [o}
(%) %)
18 1
0 100 200 300 400 500 0 100 200 300 400 500
Sample number Sample number

Spin correlation sample history (Ising model with 2-spins)

®First 500 samples are plotted.

®Random walking in the state space (4states)
®Spin corr. can take +1 or -1.

®(spin corr.)=+1 can occur for state #1 and #3.
@®(spin corr)= -1 occurs for state #2 and #4.

® At small beta population of +1 and -1 is almost
same.

| | | | ®As increasing beta, state with (spin corr.)=-1

° 190 200 500 400 % dominates. (state #2 and #4)

Sample number

B=1.0

—_
-2

- mE Im oW om . n = om - . = mm -

Spin correlation (c05)
o

-
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e Results

— Spin average expectation value

B dependence of spin average (Ising model with 2-spins)

0.1

Spin average {(c,+05)/2)
o
11
+
1+

o 0 O‘.2 O..4 OI.6 0‘.8 1 1I.2 1'.4 1I.6 1I.8 2
B
Averaging the history data we obtain zero. This is consistent with the

theoretical one.

(1)
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e Results

— Spin correration expectation value

B dependence of spin correlation (Ising model with 2-spins)

o

o o o

w o o=
T
bt

Spin correlation (6,05)

2 0 0o o o o
- © o N o o
- ,

0 02 04 06 08 1 1.2 14 16 1.8 2
B

Averaging the history data we obtain —Tanh(Beta). This is consistent with
the theoretical one.

+e/—e” +e/ —e”’
(010) =

1 oy
:_Tanh ~ G(J)G(J)
4Coshp PEN JZ:;‘ b
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* Difficulties in (Naive) Metropolis Algorithm

As seen before the new candidate state(configuration) is really added when
the Metropolis test accept.

In Statistical Mechanics (Canonical ensemble), the exponent of the weight is
the energy of the target system.

The acceptance ratio is governed by the Energy difference
AS = S([Candidate State]) — S([Previous State])

p = min(1, exp[- S([Candidate State]) + S([Previous State]) )
= min(L,exp[-AS])
When AS is negative, Metropolis test always accept the candidate (p=1).
When AS is positive, the acceptance probability decreases
as p=exp(-AS)<1.
When the target system has a huge number of d.o.f., the random sampling
method to generate the candidate state almost always large positive number

for AS . This is typical in statistical mechanics and huge multiple dimension
integration.

Candidate generation method with small energy difference is important.
See also 2D-Ising model. (Heat-bath (Gibbs sampler) algorithm)



* Most of MCMC algorithms make use of the
Metropolis algorithm and its extension.

— For LQCD, the system has continuous variables (states).
— Naive Metropoils algorithm may fail due to the large energy differece.

e (2)Hybrid Monte Carlo (HMC) algorithm

(Scalatar, Scalapino, Sugar, PRB34(1986); Duane, Kennedy Pendleton, Roweth,
PL195B(1987))

— This algorithm is useful when the variables are continuous.

— This is an extension of the Metropolis algorithm with
better candidate generation.

— The HMC algorithm is a de fact standard algorithm for
LQCD with dynamical quarks.

— In the next lecture | will describe the details of the HMC
algorithm.



All programs are NO WARRANTY.

Problems

(1) Check that the detailed balance condition is a sufficient condition of the
eigenvector (stationary distribution) of the transition matrix. [page 22]

(2) Check that the transition matrix for the Metropolis algorithm satisfies the
detailed balance condition. [page 24].

(3) Complete the transition matrix for the Ising model with 2-spins in a 4x4
matrix form and Check the eigenvector. [page 24-33]

[y
N

S0 40 0 [0

.U ;0 U .,T
N

wU U U U
w

w

4

[
N
w

4
4

1 2 4 4

(4) Get and compile the Ising model with 2-spins program. Check the result
numerically. [page 24-33] (this needs gfortran and gnuplot on Linux)

(5) Evaluate the averaged acceptance rate of the Metropolis test when the
energy difference is a random variable from the Gaussian distribution with
mean=u and variance= 02 = 2,u . [Hint: Complementary error function]

(6) [Advanced] Consider a N-sites 1D Ising model with periodic boundary
condition.
2011/3/14
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Backup (2-site Scalar model)

 For a continuous state model. | show the 2-site scalar model.
(a toy model for lattice scalar field theories)

B <1
) SZ+SZ —0 < S <00
Z(ﬁ):j_ d§exp{—(ﬂslsz+ L ; 2 ]+ﬁ-§}

S, +5, L 1 g eSitSs s,” +5,°
= S exp| —| 5,8, + =0
< 2 > Z(0) = 2 Xp{ Lﬂ“ 2

R S _ S12"'522 __ p
<5152>—Z (6) J‘wds(slsz)exf{ [:lesz"‘ 5 ﬂ
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* Metropolis algorithm

(step0) initial state $™,t=0 from Gaussian Distribution N[0, var]
(setpl) Generate a canditate state § from Gaussian Distribution N[5, var]

This correspondstoq(S|S") =———exp| — .
27 var 2var

(step 2) Computethe weight p = min(1, exp [— S(3) + S(§(”)])
(Step 3) Generate a random real number U from [0,1).
(step 4) Take next states™™ as
<D :{ s when U < p (Accept)
s otherwise (Reject)
(stepb)t <t +1, gotostepl for desired sample numbers.

We do not have a finite distribution at beta=1 with this model.
We can not use uniform sampling for candidate generation because —00<§ <00



* Fortran program:
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarMetropolis.tar.gz]

— 10,000,000 samples are generated. But we save 10,000 samples with interval 100. We
use var=1 for candidate generation.

« State weight/histogram generated via Metropolis algorithm

Measured Theoretical
State Histogram 2-site scalar model (f=0.1) State Histogram 2-site scalar model (=0.1)
3
0.16 0.16
2 0.14 0.14
0.12 0.12
1
0.1 0.1
0 0.08 0.08
’ 0.06 0.06
0.04 0.04
-2
0.02 0.02
0 0
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» State weight/histogram generated via Metropolis algorithm

State Histogram 2-site scalar model (p=0.2) State Histogram 2-site scalar model (p=0.2)
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» State weight/histogram generated via Metropolis algorithm

State Histogram 2-site scalar model (p=0.4) State Histogram 2-site scalar model (p=0.4)

* 4
3 0.14 5 o1a
2 0.12 5 o1
1 0.1 1 .
0 0.08 S o 0.08
(1]
B 0.06 1 0.06
2 0.04 2 0.04
° 0.02 3 0.02
-4 . ) O
4 -3 0 3 4 4 3 2 A 0 1 s 3 4
s(1) o)
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» State weight/histogram generated via Metropolis algorithm

State Histogram 2-site scalar model (p=0.7) State Histogram 2-site scalar model (p=0.7)
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5(2)

QO =~ N W P 00 OO N @

State weight/histogram generated via Metropolis algorithm

State Histogram 2-site scalar model (p=0.9)

8 -7 -6 -5 -4 -3 -2

-1

s(1)

1

2 3 45 6 7 8

0.07

0.06

0.05

0.04

0.03

0.02

0.01

QO =~ N W P 00 OO N @

s(2)

|
—_

State Histogram 2-site scalar model (p=0.9)

8 -7 -6 -5 -4 -3 -2

b

-1

s(1)

1

2 3 45 6 7 8

0.07

0.06

0.05

0.04

0.03

0.02

0.01



e Spin average and Spin correlation history generated via Metropolis
algorithm

Spin average

2-site scalar average sample history (2-site scalar model) 2-site scalar average sample history (2-site scalar model) 2-site scalar average sample history (2-site scalar model)

e B0 ' +p=04

n
n
-——-m
n

—_
-
T
-
T

-
-
-
T

2-site scalar average (o, + 6,)/2
o

, 2-site scalar average (o, + c,)/2
o

, 2-site scalar average (o, + c,)/2
o

2 2 r . 2
0 10000 20000 30000 40000 5000C 0 10000 20000 30000 40000 5000C 0 10000 20000 30000 40000 50000
Sample number Sample number Sample number

Spin correlation

2-site scalar correlation sample history (2-site scalar model) 2-site scalar correlation sample history (2-site scalar model) 2-site scalar correlation sample history (2-site scalar model)
4 T T T 3 T T T T T 2
e B=0.1 7 ) - p=0.4 . { I

=3 S T I ‘ . Uil 1t
& S -m r T &2
g2 Y q"‘ ¥ jh--'h'-' % i s
= 20+ |“ = L4t
= 51 " m‘.. r m ,«u -“‘ '-‘% 4l .ﬂx 5 ’g r
§1 E !i . | ‘ -l ' ‘n L -:.. i E :7 F
g oo | 2% % & (TH ‘ - L e g @ -8t
8° Sgl + % "ttt : P S
5, E Ls oEE
g g1 i §iE L
o2 o5 i " gldr
@ Bl Rty
o o o

-3 17 F

7| -18 i i
19 RN i P
-4 1 1 1 il -8 1 1 L il -20 H i TIPS i A !
0 10000 20000 30000 40000 5000C 0 10000 20000 30000 40000 5000C 0 10000 20000 30000 40000 50000
Sample number Sample number Sample number
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2-site scalar average {(6,+06,)/2)

* Beta dependence of Spin average and Spin corr.

B dependence of 2-site scalar average (2-site scalar model)

Spin average Spin correlation

B dependence of 2-site scalar correlation (2-site scalar model)

01 O RES AR T T T T 5
e T -p/(1-B%)
oo -
by
> .
9
T-2F E
Q
ot 3 e = + S i 5
Q
I3 ;
]
a
o
a4t :
< x
'01 L L L 1 _5 1 1 | I "w
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p
All programs are NO WARRANTY.
: Lattice Fi
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* Metropolis algorithm transition probability for S'— S
P(5]5")=p(5,5)a(5|5")+(1-r(5')5(5-5")

p(§,§'):mln(l,eXp[—S(§)+S(§')])’q(§|§'): 1 exp|:_ (§—§') :|

2 var 2var

rs)=| dsp(s,5)a(5|s")
0(5) = Delta function



Problem answers

¢ (1) ZF’UWJ.:ZPJ.iwi—>Zl3ijwj:wiZPji

J
- Z P,w; =w;, because Z P, =1
) j

* (2)

e —minl 1Y% | Z ot _ i )W

- Wj fij = log( Wj)—>,0ij mm[L WJ} ®(fu)+®( f”)Wj
Py =min ,Wi - fy=-1;
and qij - qji PiWj = ®(fij)+®(_ fi )% Wi :Wj®(fij)+®(_ f )"Vi
J
W. W.
= Wij@(fij)—l_ ®(_ fij) W; :(W:®(_ fji)+ ®(fji)jwi
=PV,

e Simila ry P,w; = P;w,



* (3) I show beta>0 case only.

1y 1 'y
o 11 3-2y 1 1
41y 1y
1 1 1 3-2y
* Eigenpairs
y
1 i
W, , = , with 1=1.
Yy 12(2+Y) 0
1 -1
W, = ,
Desired distribution ’ 0
1

with y=e?* (for g >0)

-1
W = 1
BT_q )

1

* Thus MCMC converges to the desired distribution.
- N
imP v=w,_

N —o0

with 4, =0

The convergence rate is governed by the difference between 1 and next largest eigenvalue.
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(5)

* (complementary) error functions:

2 x e :
erf(x)_ﬁj‘oe dt error function.

erfc(x) =1— erf(x) = % j “e¥dt complementary error function.
T X

* Averaging acceptance probability:

<Pacc> = on min(1, e ) ie 4u —erfe E
b Vamu 2



