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1. Lattice Field Theory?
• For example:
• Standard Model

– QCD:  Strong interaction, Hadrons <= quarks, gluons
– Glashow-Weinberg-Salam: Electroweak

• QED:      electromagnetic interaction:  charged particles, photon
• Weak interaction:   Z,W bosons, leptons,…
• Higgs mechanism

• These are based on Quantum field theory (QFT).
– Perturbative analysis using the coupling constant 

expansion.
– Rely on the smallness of the coupling.

• QCD: at low-energy, coupling expansion fails.
– Non-preturbative analysis is required.
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• To understand the nature of the strong 
interaction among Hadrons from the dynamics of 
quarks and gluons, Quantum Chromodynamics
(QCD) has been introduced and investigated.

• QCD is well under stood in the high-energy 
experiments where the asymptotic-free nature of 
the coupling constant of QCD enables us the 
perturbative expansion analysis.

• Howerver, at low-energy, the perturbative
analysis fails due to the large coupling constant.
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• The lattice field theory is one of the non-
preturbative analysis method.

• Lattice QCD has been used and developed to 
understand the low-energy nature of Hadrons.

• The various technique for lattice field theory is 
common and also has been used in LQCD.

• In this lecture I would like to give some lattice 
technique and numerical algorithms for LQCD 
as an example of lattice field theories. 
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2. Path integral and lattice field theory

• Feynman's path integral quantization is a 
fundamental basis for lattice field theory.

• Euclidean field is also required to introduce 
well defined (numerically calculable) path 
integral formulation.

• Lattice QCD is based on SU(3) gauge theory 
defined on a Euclidean 4Dim lattice universe.
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2-1 Feynman’s path integral quantization
• A quantum field theory :

– :  Action.

– : Field to be quantized (real scalar for simplicity). 

– : space-time corrdinate.

• Feynman’s path integral quantization.
– Generating functional for Green’s functions (correlation func.)

– N-point Green’s function of the theory.

– We can extract various information from  Green’s functions basically….
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• However, the analytic integration of the path-integral is 
not always available except for free field theories.

• The integral also has a difficulty  in Minkowski metric.  
The integral is a kind of Fresnel integrals and the 
integrant oscillates.  This may prevents us to evaluate it 
numerically….

• In order to evaluate this integral:
– Introduce Euclidean path integral

• Needs validation : Minkowski Euclid relation. 
Experimentally or constructive field theory, 
Osterwalder-Schrader axioms…

– Discretize Space-Time =>  Lattice space-time
• Needs validation: lattice spacing error

• Here we assume:  
– there is a Euclidean field theory for a target Minkowski field theory.
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2-2 Euclidean path integral
– : Euclidean action.

– :  Euclidean field.   Real valued.

– : Euclidean 4D coordinate.
• They are usually obtained from Minkowski versions after Wick’s rotation. 

• Generating functional for Euclidean Green’s functions.

– If the Euclidean action is real valued, the integral has a better property than the 
Mikowski version.  A chance to evaluate them by numerical integration?

– The physics information can be obtained from Euclidean Green’s functions by inverse 
Wick’s rotation or  investigating the tau dependence. 
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2-3 Euclidean path integral and lattice

• Path integral measure
– Integration by field shape (configuration)

– Euclidean space time,                     is continuous. Difficult to 
maintain               for numerical evaluation. This will cause 
UV divergences. The renormalization and regularization is 
required.

– Introduce the lattice discretization:
• As a regularization.

• As a well defined integration measure.
– Degree of Freedom (DoF) is still finite. IR regulator by limiting system size 

(finite volume).
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• Lattice

• Lattice regularized path integral
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• Lattice regularized path integral

• How to evaluate this integral?
– Similar to Canonical partition function in statistical mechanics.

– Dimension of          is very large. For real scalar on a 4D lattice with the size 
(16x16x16x16),  

– If the weight  exp(…) is real and non-negative, we can evaluate it using 
Monte Carlo Methods.

– Note:  Lattice action should be designed appropriately. (based on Symmetry, spectrum, 
relation Minkowski Euclid, …..)

– When no real and non-negative weight is derived,  we encounter the sign problem in the 
Monte Carlo method.  Ex. System in finite density.
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2-4 Integration using Monte Carlo 
Methods.

• Monte Carlo
– Ex. Integration with a single variable.

– Rectangular integration
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• Random sampling
(1) Pick up a number                  from the interval             randomly.

(2) Evaluate function  as                        .

(3) Repeat (1)-(2)           times, then we get   samples                               .  

We can estimate the integral as 

The random number sequence                              has a uniform 
distribution in [a,b].   This means that the random variable x has the 
following  probability density: 

Thus the statistical averaging for                          means
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• A defect and inefficient property of the simple 
rectangular and random sampling integration.
– If the target function f(x) has a keen peak with narrow width W,  

The integration may fail until

is satisfied. 

One sample in the peak.

Most of samples are unimportant.

sample ratio =  1/N.

– In multi dimensional integrations,  the situation becomes more worse.

– D-dimension
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• Importance Sampling (Monte Carlo)
– As seen before uniform sampling is not effective if the integrant has 

keen peaks.

– Euclidean Path-integral is a kind of huge-multi dimensional integration.

– The integral has narrow peaks in general, and the highest peak 
corresponds to the classical solution of the system.

– In the classical limit (h->0), the dominant contribution to the integral 
comes from:

– This corresponds to the stationary (or minimum) solution of action:

– We know that the classical solution gives a narrow peak for exp(-S)
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• Importance Sampling (Monte Carlo) cont’d

• To integrate this function f(x): 
– If we can generate a sequence / ensemble {x} so that the statistical 

histogram/distribution of {x}  is w(x).

– We have

– The error behaves as 1/Sqrt(N)

– The error is minimized when f(x)=w(x).

– The error behaves as 1/Sqrt(N) even for the multi-dimensional 
integrations.
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• Importance sampling for Euclidean path-
integrals.
– For the two-point correlation function:

– Generate a sequence/ensemble:

– So that the sample has the distribition :

– The two-point correlation function can be estimated as:

– The error behaves as 1/Sqrt(N).

– Note: the dimension of the integral/      is
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• Markov Chain Monte Carlo (MCMC)                      
(general description)

• A simple random sampling generation is not effective as seen before.

• A non-random generation is required.

– MCMC  Set up.  There exisit

– MCMC adds a new sample to the sequence as

Then add the new sample to the sequence.

Where 
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• Markov Chain Monte Carlo (MCMC)  cont’d

• How to generate the desired distribution from the transition P?

– Perron-Frobenius theorem.
• P(φ|φ’) transition probability can be treated as a matrix element 

which index takes a value of state number.  

• The matrix P satisfies 

• P is called a positive matrix.

– Perron-Frobenius theorem:
• Any positive real matrix has a unique and largest eigenvalue (with 

=1), and associated eigenvector with positive components.
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• Markov Chain Monte Carlo (MCMC)  cont’d

• Using Perron-Frobenius theorem, we have
– For a given initial state:

– k-step MCMC corresponds to

– The Perron-Frobenius theorem says that

– The convergence to the fixed distribution is usually exponential. After 
many MCMC step the distribution is almost identical to the maximum 
eigen vector w.

– If s has the desired distribution we can generate the desired sequence.
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• Markov Chain Monte Carlo (MCMC)  cont’d

– (1)  Generate initial state.

– (2)  If the system is in the j-th state,  generate i-th state with 
the probability Pij

– (3)  Add the new state to the ensemble.

– (4)  Goto (2)
• Where we assumed that the state is discrete and countable,  P is a positive 

matrix.

• Extension to Non-negative matrixes, and continuum state is also possible.

• The property that the existence of  a unique real maximam eigenvalue and 
positive eigenvector of  the theorem still holds, but some special properties 
are required on P. Here I omit the details of the extension.  (irreducible,…)

• Now the problem to the path-integral is 

– How to construct                   so that the maximum 
eigen vector is                                ? 
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2-5 Detailed Balance Condition
• How to construct  Transition probability                 to make a 

desired distribution                                      ?

• One sufficient condition is the so called detailed balance 
condition.
• Recalling that the fixed point distribution is a eigenvector of the transition 

probability with real unit eigenvalue.

• The detailed balance condition requires
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• Some MCMC examples that satisfies the 
detailed balance condition.

• (1) Metropolis-Hastings algorithm                      
(Metropolis et al. 1953, Hasitings 1970)

• Where
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• This algorithm is equivalent to the following 
transition probability

• This transition probability matrix satisfies the detailed balance 
condition.

• A More concrete example for Metropolis algorithm.

– Ising model with 2 spins.
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• Ising model with 2 spins.

• To compute the spin average and spin correlation

• We generate the ensemble                                           with the 
distribution

• Then we can estimate the squared spin average by
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• We have only 4 states.

• The weight(probability) is calculable (C is the normalization const = Z(0))

• We can generate this distribution with the Metropolis 
Algorithm
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• Metropolis algorithm for the Ising model with 
2-spins.

• Then we obtain ensemble: 

• Corresponding Fortran Program: 
– [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteIsingMetropolis.tar.gz]
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• Corresponding Fortran Program
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Metropolis test

Candidate generation



• Results
– Weight histogram
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– Beta dependence of Weight
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• Results
– Spin average ensemble history
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First 500 samples are plotted.
Random walking in the state space (4states)
Spin average can take one of the values (-1,0,1)
(spin average)=0 can occur for state #2 and #4.
(spin average)=+1 occurs for state #1.
(spin average)=-1  occurs for state #3.
As increasing beta,  the state stays at state #2 
or #4. spin average = 0 states.
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• Results
– Spin correlation ensemble history
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First 500 samples are plotted.
Random walking in the state space (4states)
Spin corr. can take +1 or -1.
(spin corr.)=+1 can occur for state #1 and #3.
(spin corr)= -1 occurs for state #2 and #4.
At small beta population of +1 and -1 is almost 
same.
As increasing beta,  state with (spin corr.)=-1 
dominates.  (state #2 and #4)



• Results
– Spin average expectation value
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Averaging the history data we obtain zero. This is consistent with the 
theoretical one.
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• Results
– Spin correration expectation value
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Averaging the history data we obtain –Tanh(Beta). This is consistent with 
the theoretical one.
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• Difficulties in (Naive) Metropolis Algorithm
– As seen before the new candidate state(configuration) is really added when 

the Metropolis test accept.

– In Statistical Mechanics  (Canonical ensemble),  the exponent of the weight is 
the energy of the target system.

– The acceptance ratio is governed by the Energy difference

– When          is negative, Metropolis test always accept the candidate  (        ). 

– When          is positive, the acceptance probability decreases 
as                                 .

– When the target system has a huge number of d.o.f., the random sampling 
method to generate the candidate state almost always large positive number 
for        .  This is typical in statistical mechanics and huge multiple dimension 
integration.     

– Candidate generation method with small energy difference is important.

– See also 2D-Ising model. (Heat-bath (Gibbs sampler) algorithm)
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• Most of MCMC algorithms make use of the 
Metropolis algorithm and its extension.
– For LQCD, the system has continuous variables (states).

– Naïve Metropoils algorithm may fail due to the large energy differece.

• (2)Hybrid Monte Carlo (HMC) algorithm                        
(Scalatar, Scalapino, Sugar, PRB34(1986); Duane, Kennedy Pendleton, Roweth, 
PL195B(1987))

– This algorithm is useful when the variables are continuous.

– This is an extension of the Metropolis algorithm with 
better candidate generation.

– The HMC algorithm is a de fact standard algorithm for 
LQCD with dynamical quarks.

– In the next lecture I will describe the details of the HMC 
algorithm.
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Problems
(1) Check that the detailed balance condition is a sufficient condition of the 

eigenvector (stationary distribution) of the transition matrix.  [page 22] 

(2) Check that the transition matrix for the Metropolis algorithm satisfies the 
detailed balance condition. [page 24].

(3) Complete the transition matrix for  the Ising model with 2-spins in a 4x4 
matrix form and Check the eigenvector. [page 24-33]

(4) Get and compile the Ising model with 2-spins program.  Check the result 
numerically. [page 24-33]  (this needs gfortran and gnuplot on Linux)

(5) Evaluate the averaged acceptance rate of the Metropolis test when the 
energy difference is a random variable from the Gaussian distribution with 
mean=     and variance=                  . [Hint: Complementary error function]

(6) [Advanced] Consider a N-sites 1D Ising model with periodic boundary 
condition.
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Backup (2-site Scalar model)
• For a continuous state model. I show the 2-site scalar model. 

(a toy model for lattice scalar field theories)
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• Metropolis algorithm

• We do not have a finite distribution at beta=1 with this model.

• We can not use uniform sampling for candidate generation because                           .
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• Fortran program: 
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarMetropolis.tar.gz]

– 10,000,000 samples are generated.  But we save 10,000 samples with interval 100.  We 
use var=1 for candidate generation.

• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• State weight/histogram generated via Metropolis algorithm
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• Spin average and Spin correlation history generated via Metropolis 
algorithm
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• Beta dependence of Spin average and Spin corr.
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• Metropolis algorithm transition probability for  
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Problem answers

• (1)

• (2)

• Similary
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• (3)  I show beta>0 case only.

• Eigenpairs

• Thus MCMC converges to the desired distribution.
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The convergence rate is governed by the difference between 1 and next largest eigenvalue. 



• (5)

• (complementary) error functions:

• Averaging acceptance probability:
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