Lecture#1 Path integral and Mote Carlo simulations

Ken-Ichi Ishikawa Hiroshima Univ.

I express deep sympathy and condolence to those who received serious damages from and died in the disasters caused by the Northeast pacific e earthquake in Japan. It is highly appreciate that there are many offers for supporting and rescuing from overseas.

1. Lattice Field Theory?

- For example:
- Standard Model
 - QCD: Strong interaction, Hadrons <= quarks, gluons
 - Glashow-Weinberg-Salam: Electroweak
 - QED: electromagnetic interaction: charged particles, photon
 - Weak interaction: Z,W bosons, leptons,...
 - Higgs mechanism
- These are based on Quantum field theory (QFT).
 - Perturbative analysis using the coupling constant expansion.
 - Rely on the smallness of the coupling.
- QCD: at low-energy, coupling expansion fails.
 - Non-preturbative analysis is required.

- To understand the nature of the strong interaction among Hadrons from the dynamics of quarks and gluons, Quantum Chromodynamics (QCD) has been introduced and investigated.
- QCD is well under stood in the high-energy experiments where the asymptotic-free nature of the coupling constant of QCD enables us the perturbative expansion analysis.
- Howerver, at low-energy, the perturbative analysis fails due to the large coupling constant.

- The lattice field theory is one of the nonpreturbative analysis method.
- Lattice QCD has been used and developed to understand the low-energy nature of Hadrons.
- The various technique for lattice field theory is common and also has been used in LQCD.
- In this lecture I would like to give some lattice technique and numerical algorithms for LQCD as an example of lattice field theories.

2. Path integral and lattice field theory

- Feynman's path integral quantization is a fundamental basis for lattice field theory.
- Euclidean field is also required to introduce well defined (numerically calculable) path integral formulation.
- Lattice QCD is based on SU(3) gauge theory defined on a Euclidean 4Dim lattice universe.

2-1 Feynman's path integral quantization

- A quantum field theory :
 - $S[\phi]$: Action.
 - $\phi(x)$: Field to be quantized (real scalar for simplicity).
 - x : space-time corrdinate.
- Feynman's path integral quantization.
 - Generating functional for Green's functions (correlation func.)

$$Z[\eta] = \int D\phi \exp \left[\frac{i}{\hbar} \left(S[\phi] + \eta \cdot \phi \right) \right]$$

N-point Green's function of the theory.

$$\left\langle T[\hat{\phi}(x_1)\hat{\phi}(x_2)\cdots\hat{\phi}(x_n)]\right\rangle = \frac{\hbar^n}{i^n Z[0]} \frac{\delta^n Z[\eta]}{\delta \eta(x_1)\delta \eta(x_2)\cdots\delta \eta(x_n)}\bigg|_{\eta=0}$$
$$= \frac{1}{Z[0]} \int D\phi(\phi(x_1)\phi(x_2)\cdots\phi(x_n)) \exp\left[\frac{i}{\hbar}S[\phi]\right]$$

We can extract various information from Green's functions basically....

- However, the analytic integration of the path-integral is not always available except for free field theories.
- The integral also has a difficulty in Minkowski metric.
 The integral is a kind of Fresnel integrals and the integrant oscillates. This may prevents us to evaluate it numerically....
- In order to evaluate this integral:
 - Introduce Euclidean path integral
 - Needs validation: Minkowski
 ⇔ Euclid relation.
 Experimentally or constructive field theory,
 Osterwalder-Schrader axioms...
 - Discretize Space-Time => Lattice space-time
 - Needs validation: lattice spacing error

- Here we assume:
 - there is a Euclidean field theory for a target Minkowski field theory.

2-2 Euclidean path integral

- $S_E[\phi_E]$: Euclidean action.
- $\phi_E(x_E)$: Euclidean field. Real valued.
- $-x_E = (x, y, z, \tau)$: Euclidean 4D coordinate.
 - They are usually obtained from Minkowski versions after Wick's rotation. $t=i\, au$
- Generating functional for Euclidean Green's functions.

$$Z_{E}[\eta] = \int D\phi_{E} \exp\left[-\frac{1}{\hbar} \left(S_{E}[\phi_{E}] - \eta \cdot \phi_{E}\right)\right]$$

- If the Euclidean action is real valued, the integral has a better property than the Mikowski version. A chance to evaluate them by numerical integration?
- The physics information can be obtained from Euclidean Green's functions by inverse
 Wick's rotation or investigating the tau dependence.

$$\begin{split} \left\langle \phi_E(\vec{x},\tau)\phi_E(\vec{0},0)\right\rangle &= \frac{1}{Z_E[0]} \frac{\delta^2 Z_E[\eta]}{\delta \eta(\vec{x},\tau)\delta \eta(\vec{0},0)} \bigg|_{\eta=0} = \frac{1}{Z_E[0]} \int D\phi_E(\phi_E(\vec{x},\tau)\phi_E(\vec{0},0)) \exp\left[-S_E[\phi_E]/\hbar\right] \\ &\int d\vec{x} \left\langle \phi_E(\vec{x},\tau)\phi_E(\vec{0},0)\right\rangle e^{-i\vec{p}\cdot\vec{x}} \xrightarrow[\tau\to+\infty]{} Ce^{-E(\vec{p})\tau} \\ &E(\vec{p}): \text{lowest energy in this channel (intermediate state)}. \end{split}$$

2-3 Euclidean path integral and lattice

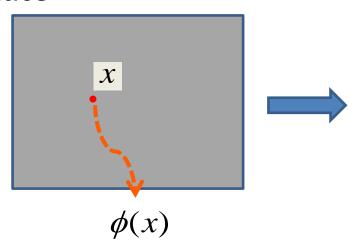
• Path integral measure $\int D\phi_E$

- Integration by field shape (configuration)

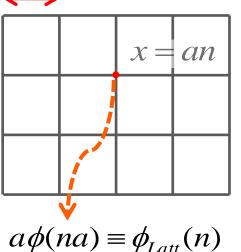
$$\int D\phi_E \approx + + + + + \cdots$$
 sum over field shape

- Euclidean space time, $x_E = (x, y, z, \tau)$ is continuous. Difficult to maintain $\int D\phi_E$ for numerical evaluation. This will cause UV divergences. The renormalization and regularization is required.
- Introduce the lattice discretization:
 - As a regularization.
 - As a well defined integration measure.
 - Degree of Freedom (DoF) is still finite. IR regulator by limiting system size (finite volume).

Lattice



 \mathcal{A} Lattice spacing



Lattice regularized path integral

$$n = (n_x, n_y, n_z, n_\tau) \in \mathbb{Z}^4$$

$$Z_{E}[\eta] = \int D\phi_{E} \exp\left[-\frac{1}{\hbar} \left(S_{E}[\phi_{E}] - \eta \cdot \phi_{E}\right)\right]$$

$$Z_{Latt}[\eta] = \int D\phi_{Latt} \exp\left[-\frac{1}{\hbar} \left(S_{Latt}[\phi_{Latt}] - \eta \cdot \phi_{Latt}\right)\right]$$

$$\int D\phi_{Latt} \equiv \prod_{n} \int d\phi_{Latt}(n) = + + + + + + + + \dots$$
sum over lattice field shape

Multiple integration on the vector $\vec{\phi} = (\cdots \phi_{Latt}(n_1), \phi_{Latt}(n_2), \phi_{Latt}(n_3), \cdots)^T$

Lattice regularized path integral

$$Z_{Latt}[\eta] = \int D\phi_{Latt} \exp \left[-\frac{1}{\hbar} \left(S_{Latt}[\phi_{Latt}] - \eta \cdot \phi_{Latt} \right) \right] \qquad n = (n_x, n_y, n_z, n_\tau) \in \mathbb{Z}^4$$

$$Z(\vec{\eta}) = \int d\vec{\phi} \exp\left[-\left(S(\vec{\phi}) - \vec{\eta} \cdot \vec{\phi}\right)\right]$$

Multiple integration on the vector

$$\vec{\phi} = (\cdots \phi_{Latt}(n_1), \phi_{Latt}(n_2), \phi_{Latt}(n_3), \cdots)^T$$

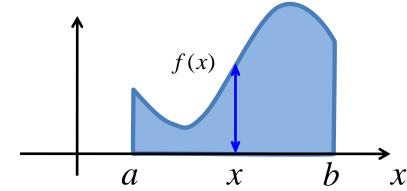
- How to evaluate this integral?
 - Similar to Canonical partition function in statistical mechanics.
 - Dimension of $\vec{\phi}$ is very large. For real scalar on a 4D lattice with the size $\dim(\vec{\phi}) = 16^4 = 65{,}536$
 - If the weight exp(...) is real and non-negative, we can evaluate it using Monte Carlo Methods.
 - Note: Lattice action should be designed appropriately. (based on Symmetry, spectrum, relation Minkowski ⇔ Euclid,)
 - When no real and non-negative weight is derived, we encounter the sign problem in the Monte Carlo method. Ex. System in finite density.

2-4 Integration using Monte Carlo Methods.

Monte Carlo

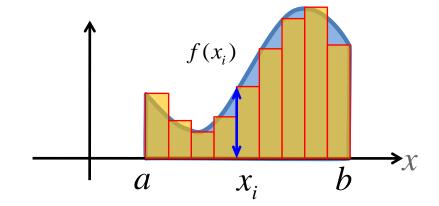
Ex. Integration with a single variable.

$$I = \int_{a}^{b} f(x)dx$$
$$f(x) \ge 0, \text{ and real valued.}$$



Rectangular integration

$$I = \lim_{N \to \infty} f(x_i) \Delta x,$$
$$\Delta x = (b - a) / N$$



Random sampling

- (1) Pick up a number $x_i = x$ from the interval [a,b] randomly.
- (2) Evaluate function as $f_i = f(x_i)$.
- (3) Repeat (1)-(2) N times, then we get samples $\{f_1, f_2, \cdots, f_N\}$. We can estimate the integral as

$$I \approx \frac{b-a}{N} \sum_{i=1}^{N} f_i$$

The random number sequence $\{x_1, x_2, \dots, x_N\}$ has a uniform distribution in [a,b]. This means that the random variable x has the following probability density: $(Const \quad x \in [a,b])$

 $P(x) = \begin{cases} Const & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$

Thus the statistical averaging for $f_i = f(x_i)$ means

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f_i = \int_{-\infty}^{\infty} f(x) P(x) dx / \int_{-\infty}^{\infty} P(x) dx$$

Denominator is for the probability normalization.

- A defect and inefficient property of the simple rectangular and random sampling integration.
 - If the target function f(x) has a keen peak with narrow width W,

The integration may fail until

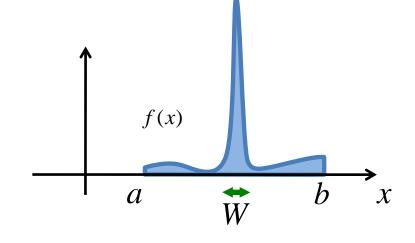
$$(a-b)/N \ll W$$

is satisfied.

One sample in the peak.

Most of samples are unimportant.

sample ratio = 1/N.



- In multi dimensional integrations, the situation becomes more worse.
- D-dimension $I = \iiint ... \iint f(\vec{x}) d^D \vec{x}$ $(a-b)_i / N_i << W_i \quad \text{for} \quad i \text{-th direction}$

Total Sample Number =
$$\prod_{i=1}^{D} N_i \approx N^D$$

Only one sample is in the peak. Ratio = $1/N^D$ << 1.

Importance Sampling (Monte Carlo)

- As seen before uniform sampling is not effective if the integrant has keen peaks.
- Euclidean Path-integral is a kind of huge-multi dimensional integration.
- The integral has narrow peaks in general, and the highest peak corresponds to the classical solution of the system.

$$\left\langle \phi_{Latt}(x)\phi_{Latt}(y)\right\rangle = \frac{1}{Z_{Latt}[0]} \int D\phi_{Latt}(\phi_{Latt}(x)\phi_{Latt}(y)) \exp\left[-\frac{S_{Latt}[\phi_{Latt}]}{\hbar}\right]$$

In the classical limit (h->0), the dominant contribution to the integral comes from:

A solution
$$\phi_{Latt}^*$$
 which gives the highest peak of $\exp \left[-\frac{S_{Latt}[\phi_{Latt}^*]}{\hbar} \right]$.

— This corresponds to the stationary (or minimum) solution of action:

$$S_{Latt}[\phi_{Latt}^* + \Delta] \approx 0$$
 for any variation Δ . ϕ_{Latt}^* : classical solution.

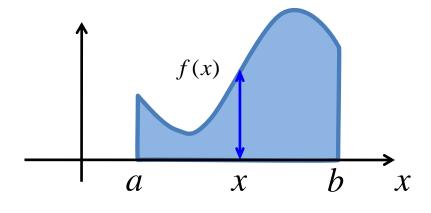
We know that the classical solution gives a narrow peak for exp(-S)

Uniform sampling for ϕ is not effective to evaluate path integrals.

Importance Sampling (Monte Carlo) cont'd

$$I = \int_{a}^{b} f(x) dx$$

 $f(x) \ge 0$, and real valued.



- To integrate this function f(x):
 - If we can generate a sequence / ensemble $\{x\}$ so that the statistical histogram/distribution of $\{x\}$ is w(x).
 - We have $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(N)}\}$ Distribution of $\{x\}$: w(x)

$$I = \int_a^b f(x)dx = \int_a^b \frac{f(x)}{w(x)} w(x)dx = \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^N \frac{f(x^{(i)})}{w(x^{(i)})} = \left\langle \frac{f(x)}{w(x)} \right\rangle : \text{statistical averaging.}$$

The error behaves as 1/Sqrt(N)

$$I = \int_{a}^{b} f(x)dx \approx \left\langle \frac{f(x)}{w(x)} \right\rangle \pm \sqrt{\frac{\left\langle f^{2} / w^{2} \right\rangle - \left\langle f / w \right\rangle^{2}}{N}} = \left\langle \frac{f(x)}{w(x)} \right\rangle \pm O(1/\sqrt{N})$$

- The error is minimized when f(x)=w(x).
- The error behaves as 1/Sqrt(N) even for the multi-dimensional integrations.

- Importance sampling for Euclidean pathintegrals.
 - For the two-point correlation function:

$$\langle \phi_i \phi_j \rangle = \frac{1}{Z(\vec{0})} \int d\vec{\phi} (\phi_i \phi_j) \exp \left[-S(\vec{\phi}) \right]$$

Generate a sequence/ensemble:

$$\{\vec{\phi}^{(1)}, \vec{\phi}^{(2)}, \vec{\phi}^{(3)}, \dots, \vec{\phi}^{(N)}\}$$

So that the sample has the distribition :

$$w(\vec{\phi}) = C \exp\left[-S(\vec{\phi})\right]$$

— The two-point correlation function can be estimated as:

$$\left\langle \phi_i \phi_j \right\rangle \approx \frac{1}{N} \sum_{k=1}^N \phi_i^{(k)} \phi_j^{(k)}$$

- The error behaves as 1/Sqrt(N).
- Note: the dimension of the integral/ $\vec{\phi}$ is \propto (Lattice sites = 16^4 for ex.)

How to generate such an ensemble?

Markov Chain Monte Carlo (MCMC)

(general description)

- A simple random sampling generation is not effective as seen before.
- A non-random generation is required.
- MCMC Set up. There exisit

 $\vec{\phi}$: random variable

$$\{\vec{\phi}^{(1)}, \vec{\phi}^{(2)}, \vec{\phi}^{(3)}, \dots, \vec{\phi}^{(t-1)}\}$$
: t -1 step sequence generated.

MCMC adds a new sample to the sequence as

Generate $\vec{\phi}^{(t)}$ with a probability distribution $P(\vec{\phi}^{(t)} | \vec{\phi}^{(t-1)})$.

Then add the new sample to the sequence.

$$\{\vec{\phi}^{(1)}, \vec{\phi}^{(2)}, \vec{\phi}^{(3)}, \cdots, \vec{\phi}^{(t-1)}, \vec{\phi}^{(t)}\}$$
: t step sequence generated.

Where

 $P(\vec{\phi}^{(t)} | \vec{\phi}^{(t-1)})$: Transition probability $\vec{\phi}^{(t-1)} \to \vec{\phi}^{(t)}$ in MCMC.

- Markov Chain Monte Carlo (MCMC) cont'd
- How to generate the desired distribution from the transition P?
 - Perron-Frobenius theorem.
 - $P(\phi|\phi')$ transition probability can be treated as a matrix element which index takes a value of state number.

$$\vec{\phi}$$
: state $\rightarrow i: i$ - th state, $P(\vec{\phi} \mid \vec{\phi}') \rightarrow P_{ij}$

: transition probability from j-th statetoi-th state.

• The matrix P satisfies

$$P_{ii} > 0$$
,

Real positive Probability.

$$\sum_{i} P_{ij} = 1,$$

Probability conservation.

• *P* is called a positive matrix.

— Perron-Frobenius theorem:

Any positive real matrix has a unique and largest eigenvalue (with =1), and associated eigenvector with positive components.

$$Pw = w$$
,

$$w_i > 0$$

- Markov Chain Monte Carlo (MCMC) cont'd
- Using Perron-Frobenius theorem, we have
 - For a given initial state:

 $v^{(0)}$: initial distribution.

if the system is in i - th state, $v^{(0)}_{i} = 1$, and other components are zero.

k-step MCMC corresponds to

$$v^{(0)} = Pv^{(1)}, v^{(1)} = Pv^{(2)}, \dots, v^{(k)} = Pv^{(k-1)}$$

 $v^{(k)} = P^k v^{(0)}$

The Perron-Frobenius theorem says that

$$\lim_{k\to\infty} v^{(k)} = \lim_{k\to\infty} P^k v^{(0)} = w, \quad \text{where } \underline{Pw = w}.$$

- The convergence to the fixed distribution is usually exponential. After many MCMC step the distribution is almost identical to the maximum eigen vector w.
- If s has the desired distribution we can generate the desired sequence.

- Markov Chain Monte Carlo (MCMC) cont'd
 - (1) Generate initial state.
 - (2) If the system is in the j-th state, generate i-th state with the probability P_{ij}
 - (3) Add the new state to the ensemble.
 - (4) Goto (2)
- Where we assumed that the state is discrete and countable, *P* is a positive matrix.
- Extension to Non-negative matrixes, and continuum state is also possible.
- The property that the existence of a unique real maximam eigenvalue and positive eigenvector of the theorem still holds, but some special properties are required on *P*. Here I omit the details of the extension. (irreducible,...)
- Now the problem to the path-integral is
 - How to construct $P(\vec{\phi} \mid \vec{\phi}')$ so that the maximum eigen vector is $w(\vec{\phi}) = C \exp(-S(\vec{\phi}))$?

2-5 Detailed Balance Condition

- How to construct Transition probability $P(\vec{\phi} \mid \vec{\phi}')$ to make a desired distribution $w(\vec{\phi}) = C \exp(-S(\vec{\phi}))$?
- One sufficient condition is the so called detailed balance condition.
 - Recalling that the fixed point distribution is a eigenvector of the transition probability with real unit eigenvalue.

Eigen equation for transition probability matrix P

$$Pw = w \Leftrightarrow \sum_{j} P_{ij} w_{j} = w_{i}$$
 for discrete statespace

or
$$\int d\vec{\phi}' P(\vec{\phi} \mid \vec{\phi}') w(\vec{\phi}') = w(\vec{\phi})$$
 for continuous statespace

The detailed balance condition requires

(Problem-1)

$$P_{ij}w_j = P_{ji}w_i$$
 or $P(\vec{\phi} \mid \vec{\phi}')w(\vec{\phi}') = P(\vec{\phi}' \mid \vec{\phi})w(\vec{\phi})$

This is a sufficient condition for eigenvector w with unit eivenvalue. In this case, P is a reversible Markov chain (w is a simultaneous left and right evec).

- Some MCMC examples that satisfies the detailed balance condition.
- (1) Metropolis-Hastings algorithm

(Metropolis et al. 1953, Hasitings 1970)

(step 0) Given initial state $j^{(0)}, t = 0$

(setp1) Generate a canditate state i with probability q_{ii} .

(step 2) Take next state $j^{(t+1)}$ as

$$j^{(t+1)} = \begin{cases} i & \text{with probablity} \quad \rho_{ij^{(t)}} \\ j^{(t)} & \text{with probablity } 1 - \rho_{ij^{(t)}} \end{cases}$$

 $(\text{step 3}) t \Leftarrow t + 1$, goto step 1.

Where

$$\rho_{ij} = \min\left(1, \frac{w_j}{w_i}\right) \quad \text{and} \quad q_{ij} = q_{ji}$$

This algorithm is equivalent to the following transition probability

(Problem-2)

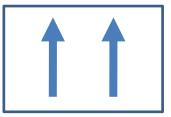
$$P_{ij} = \rho_{ij}q_{ij} + (1 - r_j)\delta_{ij},$$

$$\rho_{ij} = \min\left(1, \frac{w_j}{w_i}\right), \qquad r_j = \sum_k \rho_{kj}q_{kj}$$

- This transition probability matrix satisfies the detailed balance condition.
- A More concrete example for Metropolis algorithm.
 - Ising model with 2 spins.

$$S(\vec{\sigma}) = \beta \sigma_1 \sigma_2$$

$$Z(\vec{\eta}) = \sum_{\sigma_1 = \pm 1, \sigma_1 = \pm 1} \exp \left[-S(\vec{\sigma}) + \vec{\eta} \cdot \vec{\sigma} \right]$$



$$\sigma_1 = \begin{cases} +1 \\ -1 \end{cases} \quad \sigma_2 = \begin{cases} +1 \\ -1 \end{cases}$$

Ising model with 2 spins.

$$S(\vec{\sigma}) = \beta \sigma_1 \sigma_2 \qquad Z(\vec{\eta}) = \sum_{\sigma_1 = \pm 1, \sigma_1 = \pm 1} \exp \left[-S(\vec{\sigma}) + \vec{\eta} \cdot \vec{\sigma} \right]$$

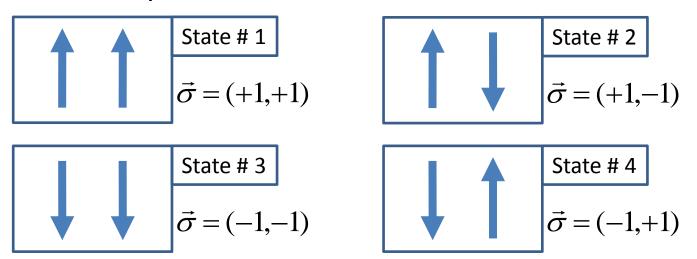
To compute the spin average and spin correlation

$$\langle \vec{\sigma} \rangle = \frac{1}{Z(\vec{0})} \sum_{\sigma_1 = \pm 1, \sigma_1 = \pm 1} \frac{\sigma_1 + \sigma_2}{2} \exp\left[-S(\vec{\sigma})\right] = 0$$
$$\langle \sigma_1 \sigma_2 \rangle = \frac{1}{Z(\vec{0})} \sum_{\sigma_1 = \pm 1, \sigma_1 = \pm 1} \sigma_1 \sigma_2 \exp\left[-S(\vec{\sigma})\right] = -\tanh(\beta)$$

- We generate the ensemble $\{\vec{\sigma}^{(0)}, \vec{\sigma}^{(1)}, \vec{\sigma}^{(2)}, \cdots, \vec{\sigma}^{(N)}\}$ with the distribution $w(\vec{\sigma}) = \frac{1}{Z(\vec{0})} \exp[-S(\vec{\sigma})]$
- Then we can estimate the squared spin average by

$$\langle \overline{\sigma} \rangle \approx \frac{1}{N} \sum_{j=1}^{N} \frac{\sigma_1^{(j)} + \sigma_2^{(j)}}{2}, \quad \langle \sigma_1 \sigma_2 \rangle \approx \frac{1}{N} \sum_{j=1}^{N} \sigma_1^{(j)} \sigma_2^{(j)}$$

We have only 4 states.



The weight(probability) is calculable (C is the normalization const = Z(0))

$$w(\#1) = C \exp[-\beta], \quad w(\#2) = C \exp[+\beta]$$
 $w(\#3) = C \exp[-\beta], \quad w(\#4) = C \exp[+\beta]$
 $w(\#4) = C \exp[+\beta]$
 $w(\#4) = C \exp[+\beta]$
 $w(\#4) = C \exp[+\beta]$
 $w(\#4) = C \exp[+\beta]$

 We can generate this distribution with the Metropolis Algorithm

Metropolis algorithm for the Ising model with 2-spins.

(step 0) Randomly choose initial state $\vec{\sigma}^{(t)}, t = 0$ (setp1) Generate a canditate state \vec{s} with probability $q_{ii^{(t)}} = 1/4$

(step 2) Compute the weight
$$\rho = \min(1, \exp\left[-S(\vec{s}) + S(\vec{\sigma}^{(t)})\right])$$

(Step 3) Generate a random real number U from [0,1).

(step 4) Take next state $\vec{\sigma}^{(t+1)}$ as

$$\vec{\sigma}^{(t+1)} = \begin{cases} \vec{s} & \text{when } U \leq \rho \text{ (Accept)} \\ \vec{\sigma}^{(t)} & \text{otherwise (Reject)} \end{cases}$$

 $(\text{step 5}) t \Leftarrow t + 1$, goto step 1 for desired sample numbers.

Then we obtain ensemble:

$$\left\{ ec{\sigma}^{(0)},ec{\sigma}^{(1)},ec{\sigma}^{(2)},\cdots,ec{\sigma}^{(N)}
ight\}$$

emple: Metropolis test $\{\vec{\sigma}^{(0)}, \vec{\sigma}^{(1)}, \vec{\sigma}^{(2)}, \cdots, \vec{\sigma}^{(N)}\}$ Metropolis accept/reject step

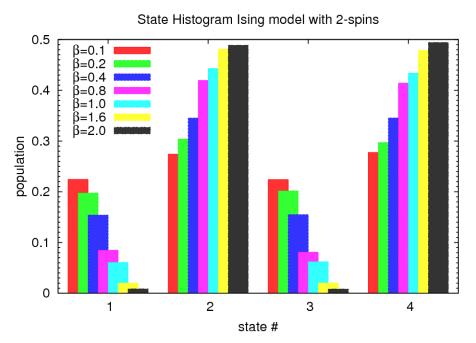
- Corresponding Fortran Program:
 - [http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteIsingMetropolis.tar.gz]

```
use ising_module
implicit none
integer :: NTHERM
                       ! first NTHERM samples are dropped
integer :: NSAMPLE
                       ! measured sample number
integer, allocatable :: seed(:)
integer :: iseed, rand_size
integer :: s0(2) ! previous state (2-spins)
integer :: s1(2) ! current state (2-spins)
integer :: j0
                  ! previous state index
integer :: j1
                  ! current state index
integer :: istep
real(DP) :: rand_num
real(DP) :: beta
real(DP) :: rho, w0, w1, h0, h1
real(DP) :: spinave, spincorr
integer :: iout
iout=99
open(iout,file="ISING_PARAM",status='old',form='formatted')
read(iout,*)beta
read(iout, *)iseed
read(iout, *)NTHERM, NSAMPLE
close (iout)
! Set up pseudo-random number generator
call RANDOM_SEED(size=rand_size)
allocate(seed(rand_size))
seed(:) = iseed
call RANDOM_SEED (put=seed)
write(*,'("# BETA=",ES24.15)') beta
write(*,'("# ISEED=",I10," NTHERM=",I10," NSAMPLE=",I10)') &
           iseed, NTHERM, NSAMPLE
write(*,'("# sample# state index spin state",&
          10X, "spin ave", 14X, "spin corr")')
! Generate initial state at random
call RANDOM NUMBER (rand num)
j0 = get_state_index(rand_num)
call set state(s0, i0)
                                    Candidate generation
do istep=1,NTHERM+NSAMPLE
  ! Generate candidate state at random
  call RANDOM_NUMBER(rand_num)
```

```
j1 = get_state_index(rand_num)
    call set_state(s1, j1)
    ! Compute Metropolis test weight
                                              Metropolis test
    h0 = hamil(beta, s0)
    h1 = hamil(beta,s1)
    w0 = \exp(-h0)
    w1 = \exp(-h1)
    rho = MIN(1.0_DP, w1/w0)
    ! Metropolis test Accept Reject step
    call RANDOM NUMBER (rand num)
    if (rand_num <= rho) then
      ! accept s1 as the new state
     continue
    else
      ! reject s1. s0 is the new state
     s1(:) = s0(:)
      i1
            = i0
    endif
    if (istep > NTHERM) then
      ! store current state in the ensemble
      ! and measure observables
      spinave = (s1(1) + s1(2))*0.5 DP
      spincorr = s1(1)*s1(2)
      write(*,'(I10,I10,SP,6X,"(",I2,",",I2,")",2ES24.15)')&
                  istep, j1, s1(1), s1(2), spinave, spincorr
    endif
    ! shift history
    s0(:) = s1(:)
    j0
        = j1
  enddo
  deallocate (seed)
  stop
end program
```

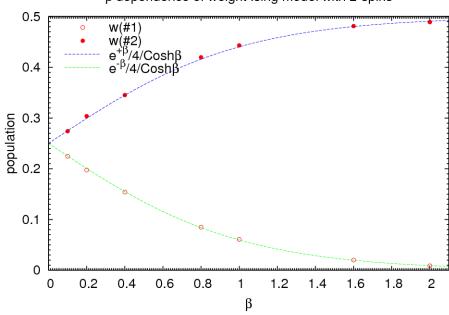
ZUII (WIII IN

Weight histogram



Beta dependence of Weight

β dependence of weight Ising model with 2-spins



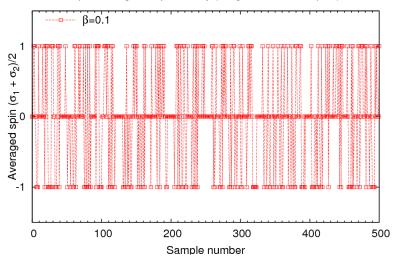
$$Z = \exp[-\beta] + \exp[+\beta] + \exp[-\beta] + \exp[+\beta] = 4\operatorname{Cosh}(\beta)$$

$$w(\#1) = \exp[-\beta]/4/\operatorname{Cosh}(\beta)$$

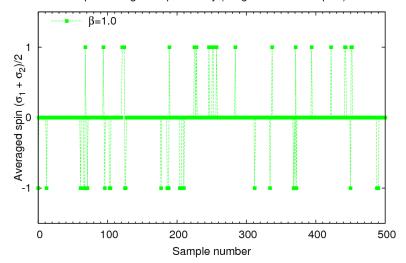
$$w(\#2) = \exp[+\beta]/4/\operatorname{Cosh}(\beta)$$

Spin average ensemble history

Spin average sample history (Ising model with 2-spins)

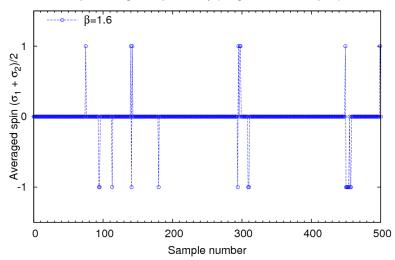


Spin average sample history (Ising model with 2-spins)



$$\frac{\sigma_1^{(j)} + \sigma_2^{(j)}}{2}$$

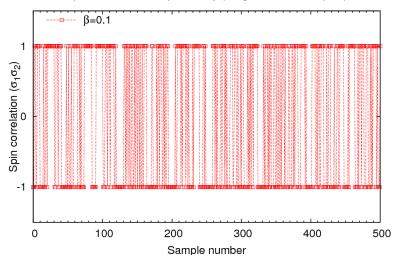
Spin average sample history (Ising model with 2-spins)

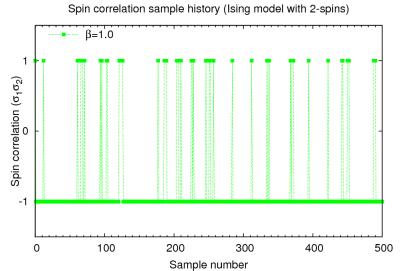


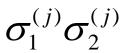
- First 500 samples are plotted.
- Random walking in the state space (4states)
- Spin average can take one of the values (-1,0,1)
- (spin average)=0 can occur for state #2 and #4.
- •(spin average)=+1 occurs for state #1.
- ●(spin average)=-1 occurs for state #3.
- As increasing beta, the state stays at state #2 or #4. spin average = 0 states.

Spin correlation ensemble history

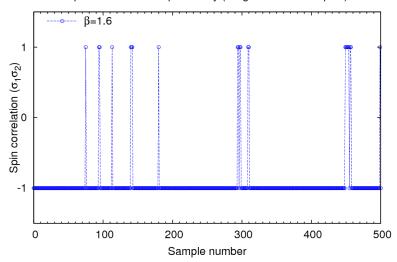
Spin correlation sample history (Ising model with 2-spins)





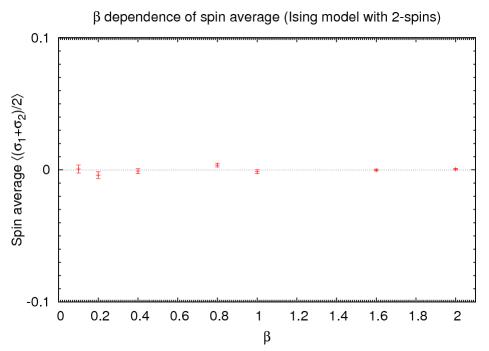


Spin correlation sample history (Ising model with 2-spins)



- First 500 samples are plotted.
- Random walking in the state space (4states)
- Spin corr. can take +1 or -1.
- •(spin corr.)=+1 can occur for state #1 and #3.
- (spin corr)= -1 occurs for state #2 and #4.
- At small beta population of +1 and -1 is almost same.
- As increasing beta, state with (spin corr.)=-1dominates. (state #2 and #4)

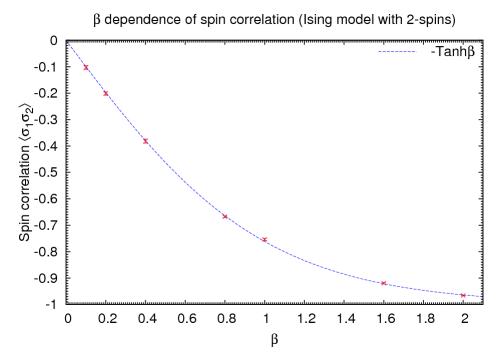
Spin average expectation value



Averaging the history data we obtain zero. This is consistent with the theoretical one.

$$\langle \overline{\sigma} \rangle \approx \frac{1}{N} \sum_{j=1}^{N} \frac{\sigma_1^{(j)} + \sigma_2^{(j)}}{2} \approx 0$$

Spin correration expectation value



Averaging the history data we obtain —Tanh(Beta). This is consistent with the theoretical one.

$$\left\langle \sigma_{1}\sigma_{2}\right\rangle = \frac{+e^{\beta} - e^{-\beta} + e^{\beta} - e^{-\beta}}{4\mathrm{Cosh}\beta} = -\mathrm{Tanh}\beta \approx \frac{1}{N} \sum_{j=1}^{N} \sigma_{1}^{(j)} \sigma_{2}^{(j)}$$

Difficulties in (Naive) Metropolis Algorithm

- As seen before the new candidate state(configuration) is really added when the Metropolis test accept.
- In Statistical Mechanics (Canonical ensemble), the exponent of the weight is the energy of the target system.
- The acceptance ratio is governed by the Energy difference

$$\Delta S = S([Candidate State]) - S([Previous State])$$

$$\rho = \min(1, \exp[-S([Candidate State]) + S([Previous State])])$$

$$= \min(1, \exp[-\Delta S])$$

- When ΔS is negative, Metropolis test always accept the candidate $(\rho = 1)$.
- When ΔS is positive, the acceptance probability decreases as $\rho = \exp(-\Delta S) < 1$.
- When the target system has a huge number of d.o.f., the random sampling method to generate the candidate state almost always large positive number for ΔS . This is typical in statistical mechanics and huge multiple dimension integration.
- Candidate generation method with small energy difference is important.
- See also 2D-Ising model. (Heat-bath (Gibbs sampler) algorithm)

- Most of MCMC algorithms make use of the Metropolis algorithm and its extension.
 - For LQCD, the system has continuous variables (states).
 - Naïve Metropoils algorithm may fail due to the large energy differece.
- (2) Hybrid Monte Carlo (HMC) algorithm

(Scalatar, Scalapino, Sugar, PRB34(1986); Duane, Kennedy Pendleton, Roweth, PL195B(1987))

- This algorithm is useful when the variables are continuous.
- This is an extension of the Metropolis algorithm with better candidate generation.
- The HMC algorithm is a de fact standard algorithm for LQCD with dynamical quarks.
- In the next lecture I will describe the details of the HMC algorithm.

Problems

- (1) Check that the detailed balance condition is a sufficient condition of the eigenvector (stationary distribution) of the transition matrix. [page 22]
- (2) Check that the transition matrix for the Metropolis algorithm satisfies the detailed balance condition. [page 24].
- (3) Complete the transition matrix for the Ising model with 2-spins in a 4x4 matrix form and Check the eigenvector. [page 24-33]

$$P = \begin{pmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{34} & P_{44} \end{pmatrix}$$

- (4) Get and compile the Ising model with 2-spins program. Check the result numerically. [page 24-33] (this needs gfortran and gnuplot on Linux)
- (5) Evaluate the averaged acceptance rate of the Metropolis test when the energy difference is a random variable from the Gaussian distribution with mean= μ and variance= $\sigma^2 = 2\mu$. [Hint: Complementary error function]

$$p(\Delta S) = \frac{1}{\sqrt{4\pi\mu}} \exp\left(-\frac{(\Delta S - \mu)^2}{4\mu}\right)$$

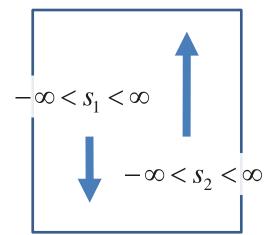
(6) [Advanced] Consider a N-sites 1D Ising model with periodic boundary condition.

Backup (2-site Scalar model)

For a continuous state model. I show the 2-site scalar model.
 (a toy model for lattice scalar field theories)

$$\beta < 1$$

$$Z(\vec{\eta}) = \int_{-\infty}^{\infty} d\vec{s} \exp\left[-\left(\beta s_1 s_2 + \frac{s_1^2 + s_2^2}{2}\right) + \vec{\eta} \cdot \vec{s}\right]$$



$$\left\langle \frac{s_1 + s_2}{2} \right\rangle = \frac{1}{Z(\vec{0})} \int_{-\infty}^{\infty} d\vec{s} \, \frac{s_1 + s_2}{2} \exp \left[-\left(\beta s_1 s_2 + \frac{{s_1}^2 + {s_2}^2}{2} \right) \right] = 0$$

$$\left\langle s_1 s_2 \right\rangle = \frac{1}{Z(\vec{0})} \int_{-\infty}^{\infty} d\vec{s} \, (s_1 s_2) \exp \left[-\left(\beta s_1 s_2 + \frac{{s_1}^2 + {s_2}^2}{2} \right) \right] = -\frac{\beta}{1 - \beta^2}$$

Metropolis algorithm

(step 0) initial state $\vec{s}^{(t)}$, t = 0 from Gaussian Distribution N[0, var]

(setp1) Generate a canditate state \vec{s} from Gaussian Distribution $N[\vec{s}^{(t)}, var]$

This corresponds to
$$q(\vec{s} \mid \vec{s}^{(t)}) = \frac{1}{2\pi \operatorname{var}} \exp \left[-\frac{(\vec{s} - \vec{s}^{(t)})^2}{2 \operatorname{var}} \right].$$

(step 2) Compute the weight $\rho = \min(1, \exp\left[-S(\vec{s}) + S(\vec{s}^{(t)})\right])$

(Step 3) Generate a random real number U from [0,1).

(step 4) Take next state $\vec{s}^{(t+1)}$ as

$$\vec{s}^{(t+1)} = \begin{cases} \vec{s} & \text{when } U \leq \rho \text{ (Accept)} \\ \vec{s}^{(t)} & \text{otherwise (Reject)} \end{cases}$$

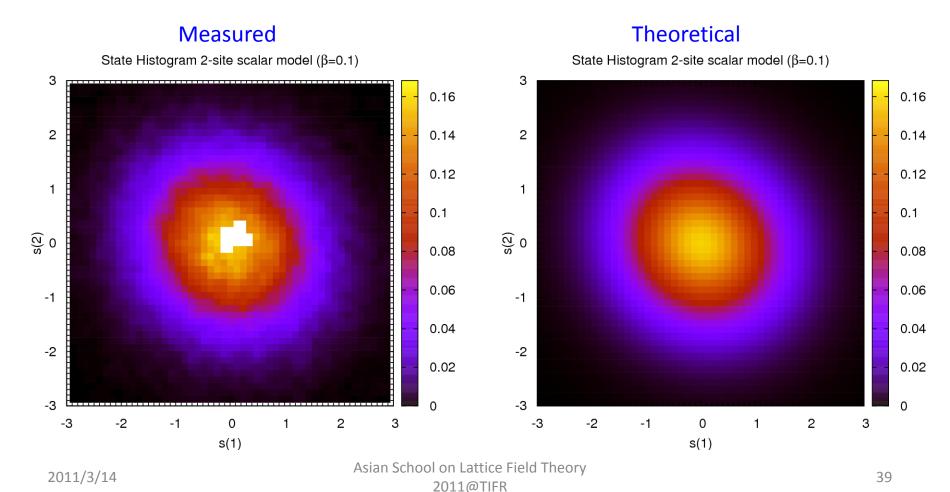
 $(\text{step 5}) t \Leftarrow t + 1$, goto step 1 for desired sample numbers.

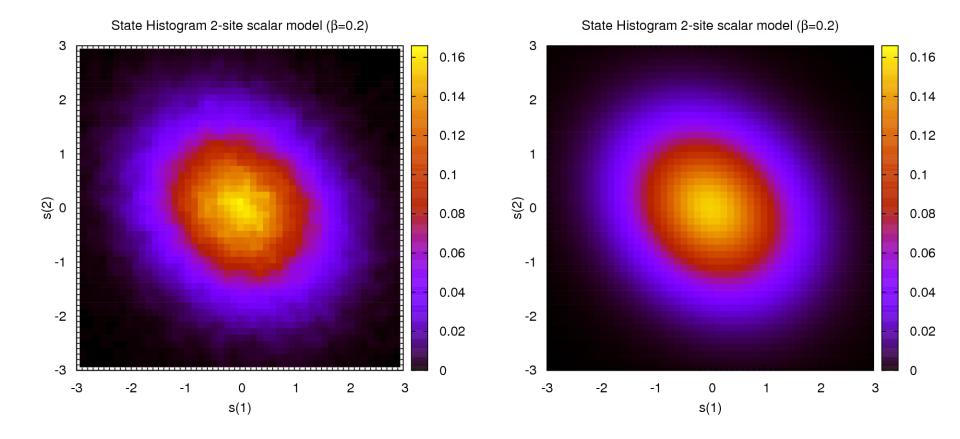
- We do not have a finite distribution at beta=1 with this model.
- We can not use uniform sampling for candidate generation because $-\infty < \vec{s} < \infty$.

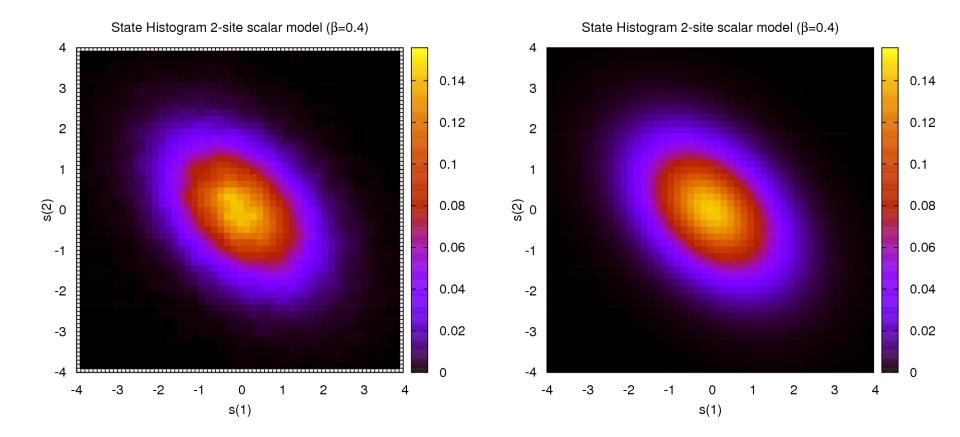
Fortran program:

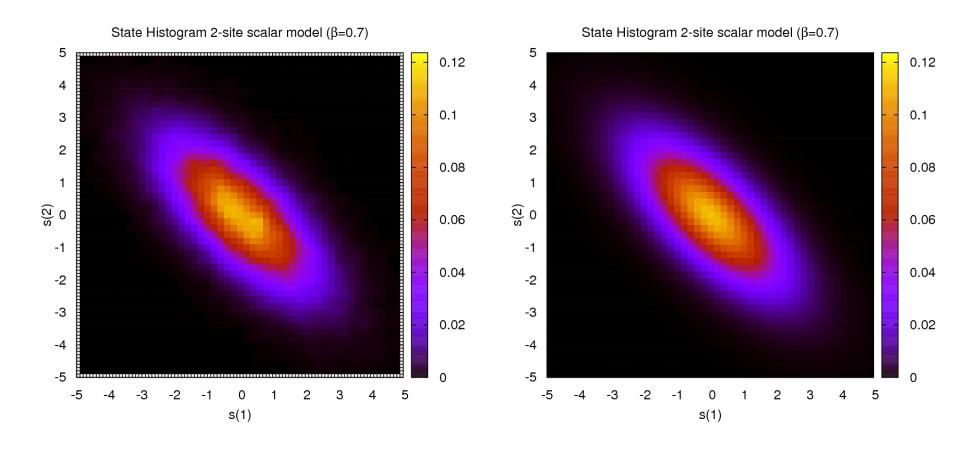
[http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/ASLFT2010/2SiteScalarMetropolis.tar.gz]

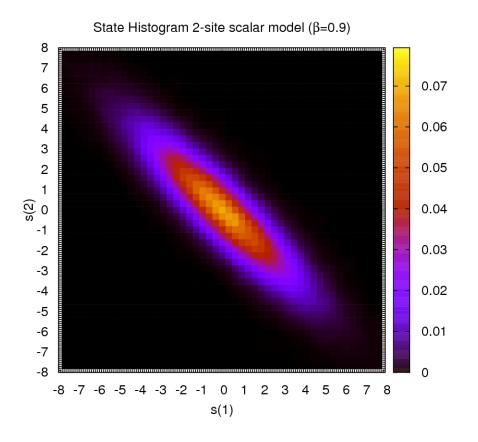
- 10,000,000 samples are generated. But we save 10,000 samples with interval 100. We use var=1 for candidate generation.
- State weight/histogram generated via Metropolis algorithm

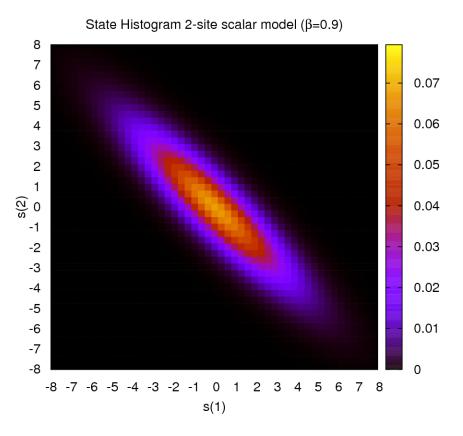






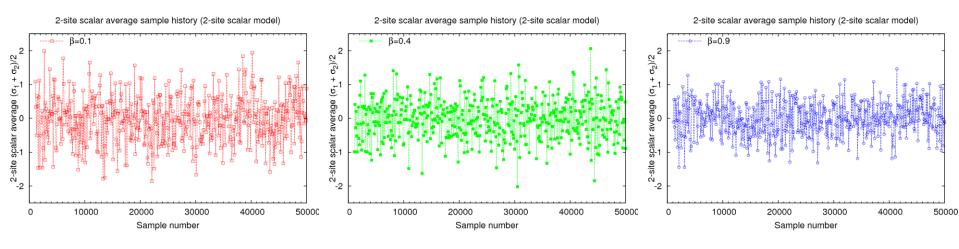




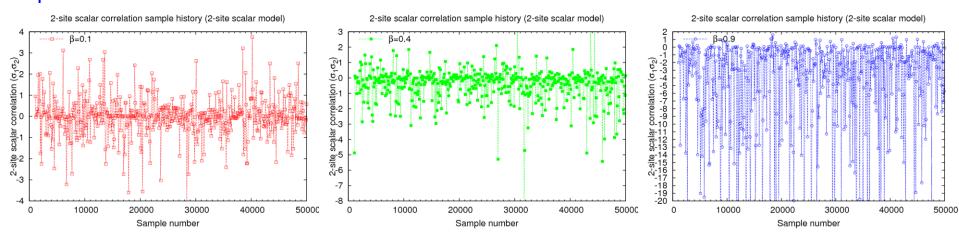


Spin average and Spin correlation history generated via Metropolis algorithm

Spin average

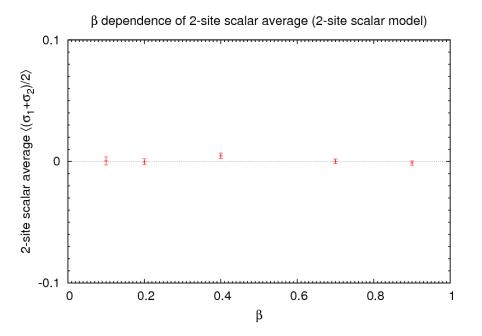


Spin correlation

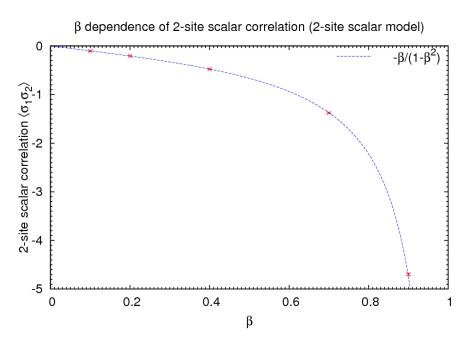


• Beta dependence of Spin average and Spin corr.

Spin average



Spin correlation



All programs are NO WARRANTY.

• Metropolis algorithm transition probability for $\vec{s}' \rightarrow \vec{s}$

$$P(\vec{s} \mid \vec{s}') = \rho(\vec{s}, \vec{s}')q(\vec{s} \mid \vec{s}') + (1 - r(\vec{s}'))\delta(\vec{s} - \vec{s}')$$

$$\rho(\vec{s}, \vec{s}') = \min(1, \exp[-S(\vec{s}) + S(\vec{s}')]), q(\vec{s} \mid \vec{s}') = \frac{1}{2\pi \operatorname{var}} \exp\left[-\frac{(\vec{s} - \vec{s}')^2}{2\operatorname{var}}\right]$$

$$r(\vec{s}') = \int_{-\infty}^{\infty} d\vec{s} \, \rho(\vec{s}, \vec{s}') q(\vec{s} \mid \vec{s}')$$

$$\delta(\vec{s})$$
 = Delta function

Problem answers

• (1)
$$\sum_{j} P_{ij} w_{j} = \sum_{j} P_{ji} w_{i} \rightarrow \sum_{j} P_{ij} w_{j} = w_{i} \sum_{j} P_{ji}$$
$$\rightarrow \sum_{j} P_{ij} w_{j} = w_{i} \quad \text{because} \quad \sum_{j} P_{ji} = 1$$

• (2)

$$\rho_{ij} = \min\left(1, \frac{w_j}{w_i}\right)$$
and $q_{ij} = q_{ji}$

$$f_{ij} \equiv \log(\frac{w_i}{w_j}) \to \rho_{ij} = \min\left(1, \frac{w_i}{w_j}\right) = \Theta(f_{ij}) + \Theta(-f_{ij}) \frac{w_i}{w_j}$$

$$\to f_{ij} = -f_{ji}$$

$$\rho_{ij} w_j = \left(\Theta(f_{ij}) + \Theta(-f_{ij}) \frac{w_i}{w_j}\right) w_j = w_j \Theta(f_{ij}) + \Theta(-f_{ij}) w_i$$

$$= \left(\frac{w_j}{w_i} \Theta(f_{ij}) + \Theta(-f_{ij})\right) w_i = \left(\frac{w_j}{w_i} \Theta(-f_{ji}) + \Theta(f_{ji})\right) w_i$$

$$= \rho_{ii} w_i$$

Similary

$$P_{ij}W_j = P_{ji}W_i$$

(3) I show beta>0 case only.

$$P = \frac{1}{4} \begin{pmatrix} 1 & y & 1 & y \\ 1 & 3 - 2y & 1 & 1 \\ 1 & y & 1 & y \\ 1 & 1 & 1 & 3 - 2y \end{pmatrix} \text{ with } y = e^{-2\beta} \text{ (for } \beta > 0)$$

Eigenpairs

$$w_{\lambda=1} = \begin{pmatrix} y \\ 1 \\ y \\ 1 \end{pmatrix} \frac{1}{2(2+y)}, \text{ with } \lambda = 1.$$

Desired distribution
$$w_{\lambda_{2}} = \begin{pmatrix} y \\ 1 \\ y \\ 1 \end{pmatrix} \frac{1}{2(2+y)}, \text{ with } \lambda = 1.$$

$$w_{\lambda_{3}} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \text{ with } \lambda_{3} = 0$$

$$w_{\lambda_{2}} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ with } \lambda_{2} = \frac{1-y}{2} < 1.$$

Thus MCMC converges to the desired distribution.

$$\lim_{N\to\infty} P^N v = w_{\lambda=1}$$

The convergence rate is governed by the difference between 1 and next largest eigenvalue.

- (5)
- (complementary) error functions:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 error function.

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$$
 complementary error function.

Averaging acceptance probability:

$$\langle P_{acc} \rangle = \int_{-\infty}^{\infty} \min(1, e^{-\Delta S}) \frac{1}{\sqrt{4\pi\mu}} e^{-\frac{(\Delta S - \mu)^2}{4\mu}} = \operatorname{erfc}\left(\frac{\sqrt{\Delta S}}{2}\right)$$