The hadron spectrum on the lattice

Mike Peardon (unfortunately, not Yoshinobu Kuramashi!) School of Mathematics, Trinity College Dublin, Ireland

Asian School on LQCD, Mumbai, 16th March 2011

Topics in lattice hadron spectroscopy

- Introduction and motivation
- A small review
- Spin on the lattice

A constituent picture of hadrons

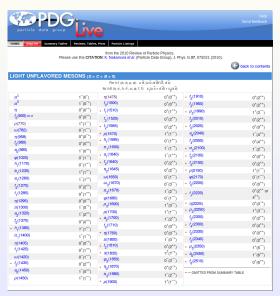
- QCD has quarks (in six flavours) and gluons
- The confinement conjecture: fields of the QCD lagrangian must be combined into colourless combinations: the mesons and baryons

A constituent model

constituents			quark model label
3 ⊗ 3	=	1 ⊕ 8	meson
3 ⊗ 3 ⊗ 3	=	1 ⊕ 8 ⊕ 8 ⊕ 10	baryon
8 & 8	=	$1 \oplus 8 \oplus 8 \oplus 10 \oplus 10$	glueball
3 ⊗ 8 ⊗ 3	=	1 ⊕ 8 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10	hybrid
		:	:

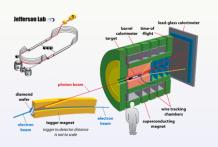
 QCD does not always respect this constituent labelling! There can be strong mixing.

The PDG view



What are these states? $\bar{q}q$ mesons?

The GlueX experiment at JLab



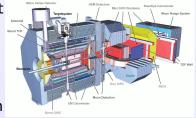
- 12 GeV upgrade to CEBAF ring
- New experimental hall: Hall D
- New experiment: GlueX
- Aim: photoproduce mesons, in particular the hybrid meson (with intrinsic gluonic excitations
- Expected to start taking data 2014

Panda@FAIR, GSI

- Extensive new construction at GSI Darmstadt
- Expected to start operation 2014

PANDA: Anti-<u>P</u>roton <u>AN</u>nihilation at <u>DA</u>rmstadt

- Anti-proton beam from FAIR on fixed-target.
- Physics goals include searches for hybrids and glueballs (as well as charm and baryon spectroscopy).



A renaissance in spectroscopy

- Early in the noughties, new narrow structures were seen by Belle and BaBar above the open-charm threshold.
- This led to substantial renewed interest in spectroscopy. Were these more quark-anti-quark states, or something more?
 - X(3872): very close to $D\bar{D}$ threshold a molecule?
 - Y(4260): a 1⁻⁻ hybrid?
 - $Z^{\pm}(4430)$: charged, can't be $\bar{c}c$.
- Very little is known and no clear picture seems to be emerging...

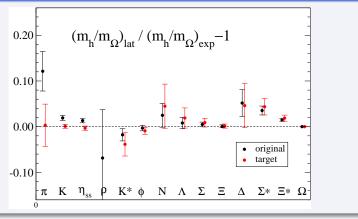
Lattice Hadron Spectroscopy

- Significant experimental effort hoping to understand light hadron and charm spectroscopy
 - Are there resonances that don't fit in the quark model?
 - Are there gluonic excitations in this spectrum?
 - What structure does confinement lead to?
 - How do resonances decay?
- To use LQCD to address these questions means:
 - identifying continuum properties of states
 - computing scattering and resonance widths
- To acheive this we need
 - Techniques that give statistical precision
 - Spin identification
 - Control over extrapolations $(m_a \to 0, V \to \infty, a \to 0.$

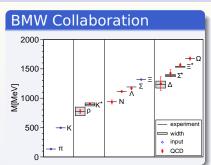
$N_f = 2 + 1$ simulations at the physical point

- First $N_f = 2 + 1$ simulations at physical quark mass parameters.
- PACS-CS computer, U Tsukuba. 14.3 Tflops peak
- Lattice spacing: a = 0.08995(40)fm (from m_{Ω}).

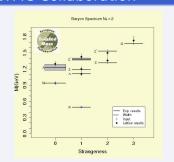
PACS-CS Collaboration [arXiv:0911.2561]



Convergence through universality

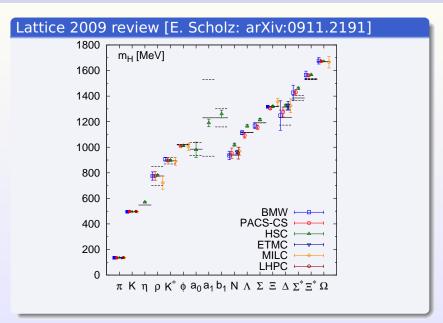


ETMC Collaboration



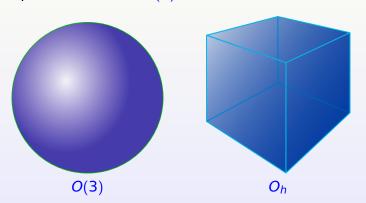
- BMW: SW-Wilson
- [Science 322:1224-1227,2008.]
- ETMC: Twisted Mass [arXiv:0910.2419,0803.3190]
- MILC: Staggered [arXiv:0903.3598]

Convergence through universality



A tale of two symmetries

 Continuum: states classified by J^P irreducible representations of O(3).



- Lattice regulator breaks O(3) → O_h
- Lattice: states classified by R^P "quantum letter" labelling irrep of O_h

Irreps of O_h

- O has 5 conjugacy classes (so O_h has 10)
- Number of conjugacy classes = number of irreps
- Schur: $24 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2$
- These irreps are labelled A₁, A₂, E, T₁, T₂

		8 <i>C</i> ₃		6C ₄	
$\overline{A_1}$	1	1	1	1	1
A_2	1	1	-1	-1	1
E	2	-1	0	0	2
T_1	3	0	-1	1 -1 0 1	-1
<i>T</i> ₂	3	0	1	-1	-1

Spin on the lattice

- O_h has 10 irreps: $\{A_1^{g,u}, A_2^{g,u}, E^{g,u}, T_1^{g,u}, T_2^{g,u}, \}$, where $\{g, u\}$ label even/odd parity.
- Link to continuum: subduce representations of O(3) into O_b

	<i>A</i> ₁	A_2	E	<i>T</i> ₁	<i>T</i> ₂
J = 0	1				
J=1				1	
J = 2			1		1
J=3		1		1	1
<i>J</i> = 4	1		1	1	1
:	:	:	:	:	:

Baryons and double-cover irreps

- For fermions, need to consider irreps of rotation group with double cover.
- This has three more conjugacy classes, so three more irreps.
- $2^2 + 2^2 + 4^2 = 24$. Labelled G_1 , G_2 and H.

J	G_1	G_2	Н
$\frac{1}{2}$	1	0	0
3 2	0	0	1
<u>5</u>	0	1	1
$\frac{7}{2}$	1	1	1
1232527292	1	0	2
:	:	÷	:

Example: $J^{PC} = 2^{++}$ meson creation operator

Need more information to discriminate spins.
 Consider continuum operator that creates a 2⁺⁺ meson:

$$\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi$$

- Lattice: Substitute gauge-covariant lattice finite-difference D_{latt} for D
- A reducible representation:

$$\begin{split} & \Phi^{T_2} = \{\Phi_{12}, \Phi_{23}, \Phi_{31}\} \\ & \Phi^E = \left\{ \frac{1}{\sqrt{2}} (\Phi_{11} - \Phi_{22}), \frac{1}{\sqrt{6}} (\Phi_{11} + \Phi_{22} - 2\Phi_{33}) \right\} \end{split}$$

Look for signature of continuum symmetry:

$$\langle 0|\Phi^{(T_2)}|2^{++(T_2)}\rangle = \langle 0|\Phi^{(E)}|2^{++(E)}\rangle$$

