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1. Introduction
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What binds protons and neutrons inside a nuclei ?

p
n

gravity: too weak
Coulomb: repulsive between pp
                no force between nn, np

1935 H. Yukawa 
introduced virtual particles (mesons) to explain the nuclear force

Yukawa potential

V (r) =
g2

4π

e−mπr

r

1949 Nobel prize

New force (nuclear force) ?
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Nuclear force is a basis for understanding ...

• Structure of ordinary and hyper nuclei

• Structure of neutron star 

• Ignition of Type II SuperNova

Λ

Nuclear Forces from Lattice QCD

Chiral  Dynamics 09,  Bern, July 7, 2009
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T. Hatsuda, Y. Ikeda, N. Ishii (Univ. Tokyo)
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NN, YN, YY, 3N

forces from LQCD

Neutron

matter

quark

Matter?

Atomic nuclei Neutron starHadrons
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Phenomenological NN potential
(~40 parameters to fit 5000 phase shift data)

IIIIII

One-pion exchangeI

II Multi-pions

III Repulsive core
Jastrow(1951)

Taketani et al.(1951)

Yiukawa(1935)
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...

Multi-pions
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Key features of the Nuclear force 

Modern high precision 
NN forces (90’s-)
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Repulsive core is important

stability of nuclei maximum mass of 
neutron star
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QCD based explanation is needed
Lattice QCD can explain ?

Note:  Pauli principle is not essential for the “RC”.
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1. Matter(nuclei) cannot be stable without the “repulsive core (RC)”.

2. Neutron star & supernova explosion cannot exist without the “RC”. 

3. QCD description should be essential for the “RC”.

4. SU(3) ? (NN ! YN ! YY) ! basis of hypernuclear physics @ J-PARC

23&,/()*,

1. What is the physical origin of the repulsion ?

2. The repulsive core is universal or channel dependent  ?

Note: RC is not related to Pauli principle

+

Origin of RC: “The most fundamental problem in Nuclear physics.”
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2. Strategy to extract 
“potential” in QCD

“Even now, it is impossible to completely describe nuclear forces beginning 

with a fundamental equation.  But since we know that nucleons themselves are 
not elementary, this is like asking if one can exactly deduce the characteristics 

of a very complex molecule starting from Schroedinger equation, a practically 
impossible task.” 

Y. Nambu, “Quarks ： Frontiers in Elementary Particle Physics”,  World Scientific  (1985)          
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2-1. Nambu-Bethe-Salpeter (NBS) wave function

consider the internal region |r| < R and define the energy-independent non-local potential U(r, r′) from
ψ(r) so that it obeys the Schrödinger type equation in a finite box. Since U(r, r′) for strong interaction
is localized in its spatial coordinates due to confinement of quarks and gluons, the potential receives
finite volume effect only weakly in a large box. Therefore, once U is determined and is appropriately
extrapolated to L → ∞, one may simply use the Schrödinger equation in the infinite space to calculate
the scattering phase shifts and bound state spectra to compare with experimental data. Further ad-
vantage of utilizing the potential is that it would be a smooth function of the quark masses so that it is
relatively easy to handle on the lattice. This is in sharp contrast to the scattering length which shows
a singular behavior around the quark mass corresponding to the formation of the NN bound state.

Since the recent progress for the study of the NN interaction by the first method has already been
published[18], the recent progress for the second method is given in this review. In Sec. 2, the strategy of
Ref. [15, 16, 17] to define the NN potential in QCD is explained in detail, and the lattice formulation is
introduced in Sec. 3. Results of lattice QCD calculations for NN potentials are given in both quenched
and full QCD in Sec. 4. Central potentials at the leading order of the velocity expansion is shown
to reproduce the qualitative feature of the NN potential such as the repulsion at short distance and
the attraction at medium to long distances. The tensor potential, which exists at the leading order,
is also extracted. Interestingly it does not have a repulsive core. Higher order contributions in the
expansion are shown to be small at low energy and low orbital angular momentum L. In Sec. 5, the
method to extract the potential is applied to the hyperon-nucleon interactions such as NΞ and NΛ
systems. Interactions between octet baryons in general are also investigated in the flavor SU(3) limit,
where up, down and strange quark masses are all equal. In Sec. 6, we also consider a recent attempt to
understand the origin of the repulsive core in the NN potential. Using the operator product expansion
and the renormalization group analysis in QCD, the potential derived from the NBS wave function in
Sec. 4 is shown to have the repulsive core, whose functional form is also theoretically predicted. In
Sec. 7, two extensions of the potential method are considered, together with explicit applications of
these extensions to hadron interactions. One is the extension of the potential method to the inelastic
scattering, in order to investigate the ΛΛ system, while the other is the extraction of the potential
from the time dependent NBS wave function in lattice QCD. With the latter method, the existence of
the H-dibaryon is investigated in the flavor SU(3) limit. In Sec. 8, applications of the method to the
three nucleon force, meson-baryon potentials and the potential in 2-color QCD are considered. Brief
concluding remarks are given in Sec. 9.

2 Strategy to extract potential in QCD

2.1 Nambu-Bethe-Salpeter (NBS) wave function and its asymptotic be-
havior

A key quantity to extract the potential from QCD is the equal time Nambu-Bethe-Salpeter wave
function, defined by

ϕW (x)e−Wt = 〈0|T{N(r + x, t)N(r, t)}|2N, W, s1s2〉, (1)

where |2N, W, s1s2〉 is an eigen-state of QCD for two nucleons with total energy W = 2
√

k2 + m2
N

and the total three-momentum P = 0, whose helicities are denoted by s1, s2. Here the local nucleon
operator is given by

Nα(x) ≡
(

pα(x)
nα(x)

)

= εabc (ua(x)Cγ5db(x)) qα(x), q(x) =

(
u(x)
d(x)

)

, (2)
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QCD eigen-state for 2 nucleons with energy W
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local nucleon operator

Below pion-production threshold

where x = (x, t), the color indices are denoted by a, b, c, and α is the spinor index. The charge
conjugation matrix in the spinor space is given by C = γ2γ4, and p, n denotes proton and neutron
operators while u, d denote up and down quark operators. Note that ϕW implicitly has two pairs of
spinor-flavor indices which come from Nα(r + x, t)Nβ(r, t) and two helicity indices s1 and s2.

The most remarkable property of the above NBS wave function is as follows. If the W is smaller
than the threshold energy for the one-pion production (i.e. W < 2mN + mπ ), its asymptotic behavior
for large |x| can be evaluated[19, 17]. The helicity component in the spin singlet channel (S = 0) is

given by |s1s2〉 = 1√
2

(
| + 1

2 , +
1
2〉 + |− 1

2 ,−
1
2〉

)
, where the relative + sign is our convention. For this

case, we have

ϕW (r)S=0 #
∑

l,lz

Z l,lz(S = 0)Yllz(Ωr)
sin(kr − lπ/2 + δl0(k))

kr
eiδl0(k) (3)

where r = |r|, k = |k|, and δlS(k) is the NN scattering phase shift in QCD with the total angular
momentum l and the total spin S, which is determined by the unitarity of S-matrix in QCD under the
inelastic threshold[17]. Here Ylm(Ωr) is the spherical harmonic function with the solid angle Ωr of r.
The coefficient Z llz(0) contains the spinor component α, β and is given by

Z llz
αβ(0) = ZDl

lz0(Ωk)Uαα̂(∇)Uββ̂(−∇)χα̂β̂(0, 0) (4)

where Z is the wave function renormalization for the nucleon operator N(x), Dl
mλ is the Wigner D-

matrix, and Uαα̂(∇) and Uββ̂(−∇) are the 4×2 matrices acting on the 2×2 matrix χα̂β̂(S, Sz). Explicitly
we have

U(∇) =
√

W + mN

(
I2×2,

−iσ ·∇
W + mN

)
(5)

χ(0, 0) =
1√
2
iσ2, χ(1, 0) =

1√
2
σ1, χ(1,±1) =

1

2
(I2×2 ± σ3). (6)

For the spin triplet channel (S = 1), the asymptotic behavior of ϕW is more involved but schematically
is written as

ϕW (r)S=1 ∝
∑

Yllz(Ωr)
sin(kr − lπ/2 + δl1(k))

kr
eiδl1(k). (7)

A more explicit form of the asymptotic behavior for the NBS wave function in the triplet channel is
given in appendix A.

The asymptotic behaviors in eqs. (3) and (7) tell us that the NBS wave function in the large
separation r describes the scattering wave of the quantum mechanics whose phase shift agrees with the
phase of the S-matrix in QCD. Moreover the NBS wave function satisfies the free Schrödinger equation
at large r as [

k2

2µ
− H0

]

ϕW (r) # 0, H0 =
−∇2

2µ
(8)

at W < 2mN + mπ, where µ = mN/2 is the reduced mass of the NN system. Note that these
properties hold without using the non-relativistic approximation/expansion. In particular, only the
upper components of the spinor indices for the NBS wave function (α = 1, 2 and β = 1, 2) is enough
to reproduce all NN scattering phase shifts δlS(k) with l = 0, 1, 2, 3, · · · and S = 0, 1. From these
properties, (the upper spinor components of) the NBS wave function can be regarded as the ”wave
function” of the NN system at W < 2mN + mπ.

It is also noted that the equal-time constraint for the NBS wave function here is not a restriction
to the extraction for physical observables such as the scattering phase shift, as evident from the fact
that all informations for the scattering phase shift are encoded in the asymptotic behavior of the equal-
time NBS wave function. Moreover, the equal-time NBS wave function with non-zero total momentum
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spin-triplet
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momentum l and the total spin S, which is determined by the unitarity of S-matrix in QCD under the
inelastic threshold[17]. Here Ylm(Ωr) is the spherical harmonic function with the solid angle Ωr of r.
The coefficient Z llz(0) contains the spinor component α, β and is given by

Z llz
αβ(0) = ZDl

lz0(Ωk)Uαα̂(∇)Uββ̂(−∇)χα̂β̂(0, 0) (4)

where Z is the wave function renormalization for the nucleon operator N(x), Dl
mλ is the Wigner D-

matrix, and Uαα̂(∇) and Uββ̂(−∇) are the 4×2 matrices acting on the 2×2 matrix χα̂β̂(S, Sz). Explicitly
we have

U(∇) =
√

W + mN

(
I2×2,

−iσ ·∇
W + mN

)
(5)

χ(0, 0) =
1√
2
iσ2, χ(1, 0) =

1√
2
σ1, χ(1,±1) =

1

2
(I2×2 ± σ3). (6)

For the spin triplet channel (S = 1), the asymptotic behavior of ϕW is more involved but schematically
is written as

ϕW (r)S=1 ∝
∑

Yllz(Ωr)
sin(kr − lπ/2 + δl1(k))

kr
eiδl1(k). (7)

A more explicit form of the asymptotic behavior for the NBS wave function in the triplet channel is
given in appendix A.

The asymptotic behaviors in eqs. (3) and (7) tell us that the NBS wave function in the large
separation r describes the scattering wave of the quantum mechanics whose phase shift agrees with the
phase of the S-matrix in QCD. Moreover the NBS wave function satisfies the free Schrödinger equation
at large r as [

k2

2µ
− H0

]

ϕW (r) # 0, H0 =
−∇2

2µ
(8)

at W < 2mN + mπ, where µ = mN/2 is the reduced mass of the NN system. Note that these
properties hold without using the non-relativistic approximation/expansion. In particular, only the
upper components of the spinor indices for the NBS wave function (α = 1, 2 and β = 1, 2) is enough
to reproduce all NN scattering phase shifts δlS(k) with l = 0, 1, 2, 3, · · · and S = 0, 1. From these
properties, (the upper spinor components of) the NBS wave function can be regarded as the ”wave
function” of the NN system at W < 2mN + mπ.

It is also noted that the equal-time constraint for the NBS wave function here is not a restriction
to the extraction for physical observables such as the scattering phase shift, as evident from the fact
that all informations for the scattering phase shift are encoded in the asymptotic behavior of the equal-
time NBS wave function. Moreover, the equal-time NBS wave function with non-zero total momentum

5
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2-2. Non-local potential from the NBS wave function

Define

(P != 0) is equivalent to the NBS wave function in the center of mass frame, which has non-zero time
separation depending on the spatial separation so that the 4-dimensional distance between two nucleon
operators is always space-like.

2.2 Non-local potential from the NBS wave function

Since the NBS wave function satisfies the free Schrödinger equation at large r, we can define short-ranged
non-local potential as

[Ek − H0] ϕ
W
αβ(x) =

∫
Uαβ;γδ(x,y)ϕW

γδ(y)d3y, Ek =
k2

2µ
. (9)

It is noted that here the spinor indices α, β, γ, δ runs from 1 to 2, since all NN scattering phase shifts can
be reproduced from the NBS wave function with α, β ∈ {1, 2} as discussed in the previous subsection.
Therefore Uαβ;γδ has 4×4 components, which can be determined from 4 components of ϕW

αβ for 4 different
combination of (s1, s2). Note that since the NBS wave function ϕW is multiplicatively renormalized,
the potential U(x,y) is finite and does not depend on the particular renormalization scheme .

We now show that the non-local function U(x,y) is energy-independent. Let Vth be the space
spanned by the wave function with W ≤ Wth ≡ 2mN + mπ: Vth = {ϕW |W ≤ Wth}. We then define the
projection operator to Vth as

PWth(x,y) =
∫

W1,2≤Wth

ρ(W1)dW1 ρ(W2)dW2 ϕW1(x)N−1(W1,W2)(ϕ
W2)∗(y)

≡
∫

W1≤Wth

ρ(W1)dW1 P (W1;x,y) (10)

where ρ(W ) is the density of states at energy W , and N−1(W1, W2) is the inverse of the hermitian
operator N(W1,W2) defined by

N(W1,W2) =
∫

ϕW1(r)†ϕW2(r) d3r, (11)

so that ∫
ρ(W )dW N(W1,W )N−1(W,W2) =

1

ρ(W1)
δ(W1 − W2). (12)

The non-local potential is then defined by

UWth(x,y) =
∫

W1,2≤Wth

ρ(W1)dW1 ρ(W2)dW2 [Ek − H0] ϕ
W1(x)N−1(W1,W2)(ϕ

W2)∗(y)

=
∫

W1≤Wth

ρ(W1)dW1 [Ek − H0] P (W1;x,y). (13)

It is easy to see that the above non-local potential satisfies eq.(9) at W ≤ Wth as follows.

∫
U(x,y)WthϕW (y) d3y =

∫

W1≤Wth

ρ(W1)dW1 [Ek − H0] ϕ
W1(x)

1

ρ(W )
δ(W1 − W )

= θ(Wth − W ) [Ek − H0] ϕ
W (x). (14)

It should be noted that the non-local potential U(x,y) which satisfied eq.( 9) at W ≤ Wth is not unique:
For example, we can add the following term

∫

W>Wth

ρ(W ) dW fW (x)P (W ;x,y) (15)
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the potential U(x,y) is finite and does not depend on the particular renormalization scheme .

We now show that the non-local function U(x,y) is energy-independent. Let Vth be the space
spanned by the wave function with W ≤ Wth ≡ 2mN + mπ: Vth = {ϕW |W ≤ Wth}. We then define the
projection operator to Vth as

PWth(x,y) =
∫

W1,2≤Wth

ρ(W1)dW1 ρ(W2)dW2 ϕW1(x)N−1(W1,W2)(ϕ
W2)∗(y)

≡
∫

W1≤Wth

ρ(W1)dW1 P (W1;x,y) (10)

where ρ(W ) is the density of states at energy W , and N−1(W1, W2) is the inverse of the hermitian
operator N(W1,W2) defined by

N(W1,W2) =
∫

ϕW1(r)†ϕW2(r) d3r, (11)

so that ∫
ρ(W )dW N(W1,W )N−1(W,W2) =

1

ρ(W1)
δ(W1 − W2). (12)

The non-local potential is then defined by

UWth(x,y) =
∫

W1,2≤Wth

ρ(W1)dW1 ρ(W2)dW2 [Ek − H0] ϕ
W1(x)N−1(W1,W2)(ϕ

W2)∗(y)

=
∫

W1≤Wth

ρ(W1)dW1 [Ek − H0] P (W1;x,y). (13)

It is easy to see that the above non-local potential satisfies eq.(9) at W ≤ Wth as follows.

∫
U(x,y)WthϕW (y) d3y =

∫

W1≤Wth

ρ(W1)dW1 [Ek − H0] ϕ
W1(x)

1

ρ(W )
δ(W1 − W )

= θ(Wth − W ) [Ek − H0] ϕ
W (x). (14)

It should be noted that the non-local potential U(x,y) which satisfied eq.( 9) at W ≤ Wth is not unique:
For example, we can add the following term

∫

W>Wth

ρ(W ) dW fW (x)P (W ;x,y) (15)

6For example

with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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2-3. Velocity expansion of the non-local potential

with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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Velocity expansion

At the lowest few orders

with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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with arbitrary functions fW (x) to the non-local potential U(x,y) without affecting eq.(9) at W ≤ Wth.
The non-local potential U(x,y) is energy independent by construction in eq. (13).

Alternatively we can define a different non-local potential by

U∞(x,y) =
∫ ∞

0
ρ(W )dW [Ek − H0] P (W ;x,y), (16)

which satisfies eq. (9) for all W . This potential, however, becomes long-ranged, due to the presence of
inelastic contributions above Wth. The extension of this method to non-elastic cases will be discussed
in Sec. 7.

In Ref. [18], it is claimed that the NBS wave function satisfies the Schrödinger equation with the
non-local and energy-dependent potential. In general this is true but, as shown here, there is a scheme
which makes the non-local potential energy-independent. This is enough for our strategy.

2.3 Velocity expansion of the non-local potential

In principle, if one knows all NBS wave functions ϕW , non-local potential U can be constructed ac-
cording to eq. (13). In practice, however, one can obtain only a few of them corresponding to the
ground state as well as a few excited states a little above the ground state in lattice QCD simulations.
Therefore, for practical applications, it is convenient to expand the non-local potential in terms of the
velocity(derivative) with local functions as

U(x,y) = V (x,∇)δ3(x − y). (17)

At the lowest few orders we have

V (r,∇) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12︸ ︷︷ ︸
LO

+ VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (18)

where r = |r|, $σi is the Pauli-matrix acting on the spin index of the i-th nucleon, S = ($σ1 +$σ2)/2 is the
total spin, L = r × p is the angular momentum, and

S12 = 3
(r · $σ1)(r · $σ2)

r2
− $σ1 · $σ2 (19)

is the tensor operator. Each coefficient function is further decomposed into its flavor components as

VX(r) = V 0
X(r) + V τ

X(r)$τ1 · $τ2, X = 0,σ, T, LS, · · · , (20)

where $τi is the Pauli-matrix acting on the flavor index of the i-th nucleon. The form of the velocity
expansion (18) agrees with the form determined by symmetries[20].

At the leading order of the velocity expansion, the local potentials is given by

V LO(r) = V0(r) + Vσ(r)$σ1 · $σ2 + VT (r)S12, (21)

which can be obtained from the NBS wave function at one value of W . Since S12 = 0 for the spin single
state, for example, we have

Vc(r, S = 0) ≡ Vc(r) − 3Vσ(r) =
[Ek − H0] ϕW (r)

ϕW (r)
. (22)
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2-4. Remarks
[Q1] Scheme/Operator dependence of the potential

• the potential depends on the definition of the wave function, in particular, on the choice of 
the nucleon operator N(x). (Scheme-dependence)

• local operator = convenient choice for reduction formula

• Moreover, the potential itself is NOT a physical observable. Therefore it is NOT unique and 
is naturally scheme-dependent. 

• Observables: scattering phase shift of NN, binding energy of deuteron

• Is the scheme-dependent potential useful ? Yes !

• useful to understand/describe physics 

• a similar example: running coupling

• Although the running coupling is scheme-dependent, it is useful to understand the deep 
inelastic scattering data (asymptotic freedom). 

• “good” scheme ?

• good convergence of the perturbative expansion for the running coupling.

• good convergence of the derivative expansion for the potential ?

•  completely local and energy-independent one is the best and must be unique if exists. 
(Inverse scattering method)
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non-locality can be determined order by order in velocity expansion  ( cf. ChPT) 

V (x,∇) = VC(r) + VT (r)S12 + VLS(r)L · S + {VD(r),∇2} + · · ·

[Q2] Energy dependence of the potential

Non-local, E-independent Local, E-dependent

VE(x)ϕE(x) =
(

E +
∇2

2m

)
ϕE(x)

(
E +

∇2

2m

)
ϕE(x) =

∫
d3y U(x,y)ϕE(y)

Later explicitly consider this problem.

If the velocity expansion is good,

“QCD” justifies the use of quantum mechanism with potential to describe the NN system.
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It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)〈0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2〉 + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus 〈0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2〉
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}J (t0)|0〉 (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2〉〈2N, Wn, s1, s2|J (t0)|0〉

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = 〈2N,Wn, s1, s2|J (0)|0〉. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn!=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.

before using the potential in nuclear physics.
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while the signal is still reasonably good. 
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3-1. Choice of source operator

Spacial symmetry in the hyper-cubic lattice SO(3,R) ⇒ SO(3,Z)
Table 1: A number of each representation of SO(3,Z) which appears in the angular momentum L
representation of SO(3,R). P = (−1)L represents an eigenvalue under parity transformation.

L P A1 A2 E T1 T2

0 (S) + 1 0 0 0 0
1 (P) − 0 0 0 1 0
2 (D) + 0 0 1 0 1
3 (F) − 0 1 0 1 1
4 (G) + 1 0 1 1 1
5 (H) − 0 0 1 2 1
6 (I) + 1 1 1 1 2

Table 2: A decomposition for a product of two irreducible representations, R1 ⊗ R2, into irreducible
representations in SO(3,Z). Note that R1 ⊗ R2 = R2 ⊗ R1 by definition.

A1 A2 E T1 T2

A1 A1 A2 E T1 T2

A2 A2 A1 E T2 T1

E E E A1 ⊕ A2 ⊕ E T1 ⊕ T2 T1 ⊕ T2

T1 T1 T2 T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2

T2 T2 T1 T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2

3.1 Choice of source operator

We can choose the source operator J̄ to fix quantum numbers of the state |2N,W, s1, s2〉 such as
(J, Jz). Since lattice QCD simulation is usually performed in the hyper-cubic lattice in the finite volume,
we consider the cubic transformation group SO(3,Z) instead of the SO(3,R) as the symmetry of 3-
dimensional space. Therefore the quantum number is classified in term of the irreducible representation
of SO(3,Z), denoted by A1, A2, E, T1, T2 whose dimensions are 1, 1, 2, 3, 3. A relation of irreducible
representations between SO(3,Z) and SO(3,R) is given in table 1 for L ≤ 6, where L represents the
angular momentum for the irreducible representation in SO(3,R). For example, the source operator
J̄ (t0) in the A1 representation with positive parity generates states with L = 0, 4, 6, · · · at t = t0, while
the operator in the T1 representation with negative parity produces states with L = 1, 3, 5, · · ·. For two
nucleons, the total spin S becomes 1/2 ⊗ 1/2 = 1 ⊕ 0, which corresponds to T1(S = 1) and A1(S = 0)
of the SO(3,Z). Therefore, the total representation J for two nucleon system is determined by the
product R1 ⊗ R2, where R1 = A1, A2, E, T1, T2 for the orbital ”angular momentum” while R2 = A1, T1

for the total spin. In table 2, the product R1 ⊗ R2 is decomposed into the direct sum of irreducible
representations.

The most of studies in this report use the wall source at t = t0 defined by

J wall(t0)αβ,fg = Nwall
α,f (t0)N

wall
β,g (t0) (27)

where α, β = 1, 2 are upper component of spinor indices while f, g are flavor indices. Here Nwall(t0) is
obtained by replacing the local quark field q(x) of N(x) by the wall quark field,

qwall(t0) ≡
∑

x

q(x, t0) (28)

with the Coulomb gauge fixing only at t = t0. Note that this gauge-dependence of the source operator
disappear for the potential. All states created by the wall source have zero total momentum. Among
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L=0 A+
1

(J,I) conserved + fermion 

them the state with zero relative momentum has the largest magnitude. The most important reason to
employ the wall source is that the ground state saturation for the potential at long distance is better
achieved for the wall source than other sources such as the smeared source.

By construction, the source operator J̄ wall(t0) has zero orbital angular momentum at t = t0,
which corresponds to A1 representation with positive parity. By the spin projection operator P (S),
e.g. P (S=0) = σ2 and P (S=1,Sz=0) = σ1, we fix the J of the source as

J (t0; J
P=+, I) = P (S)

βα J wall(t0)αβ,fg (29)

where P = ± is the parity and I = 1, 0 is the total isospin of the system. Since the nucleon is fermion,
an exchange of two nucleon operators in the source should give the minus sign. This fact fixes the total
isospin once the total spin is given: (S, I) = (0, 1) or (1, 0). (Note that S, I = 0 are antisymmetric while
S, I = 1 are symmetric under the exchange.) Since A+

1 ⊗ A1 = A+
1 for S = 0 and A+

1 ⊗ T1 = T+
1 for

S = 1, the state with either (JP , I) = (A+
1 , 1) for the spin-singlet or (JP , I) = (T+

1 , 0) for the spin-triplet
is created at t = t0 by the corresponding source operator. The NBS wave function extracted at t > t0
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at t > t0, the one with (JP , I) = (T+
1 , 0) has both L = A+

1 and L = E+ components2at t > t0, which
corresponds to L = 0 and L = 2 in the SO(3,R), respectively. Note that J or L in this report is used
to represent the total or orbital quantum number of the SO(3,Z) as well as the SO(3,R), depending
on the context. It is also noted that the total spin S is conserved at t > t0 for the two-nucleon system
with equal up and down quark masses: Under the exchange of the two particles, the constraint that
(−1)S+1+I+1P = −1 must be satisfied due to the fermionic nature of nucleon, while the parity P and
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ϕW (r; JP , I, L, S) = P (L)P (S)ϕW (r; JP , I) (30)

where ϕW (r; JP , I) is extracted from

F (r, t − t0; J
P , I) # A(JP , I)ϕW (r; JP , I)e−W (t−t0), A(JP , I) = 〈2N, W |J̄ (0; JP , I)|0〉 (31)

for large t − t0. Here we also apply the total spin projection operator P (S) but this is redundant since
the total spin S, already fixed by the source, is conserved as mentioned above. The projection operator
P (L) to an arbitrary function φ(r) is defined in general by

P (L)φ(r) ≡ dL
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for L = A1, A2, E, T1, T2, where χL denotes the character for the representation L of the cubic group
SO(3,Z), the g is one of 24 elements in SO(3,Z) and dL is the dimension of L.

3.2 Leading order potential: spin-singlet case

We present the procedure to determine potentials at the reading order(LO):

V LO(r) = V0(r) + Vσ(r)(%σ1 · %σ2) + VT (r)S12. (33)
2This can be seen from Table 2 for R2 = T1(spin-triplet), which also tells us an existence of L = T+

1 and L = T+
2

components in addition. These extra components are expected to be small since they appears as a consequence of the
violation of SO(3,R) in the finite volume.
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Table 1: A number of each representation of SO(3,Z) which appears in the angular momentum L
representation of SO(3,R). P = (−1)L represents an eigenvalue under parity transformation.

L P A1 A2 E T1 T2

0 (S) + 1 0 0 0 0
1 (P) − 0 0 0 1 0
2 (D) + 0 0 1 0 1
3 (F) − 0 1 0 1 1
4 (G) + 1 0 1 1 1
5 (H) − 0 0 1 2 1
6 (I) + 1 1 1 1 2

Table 2: A decomposition for a product of two irreducible representations, R1 ⊗ R2, into irreducible
representations in SO(3,Z). Note that R1 ⊗ R2 = R2 ⊗ R1 by definition.

A1 A2 E T1 T2

A1 A1 A2 E T1 T2

A2 A2 A1 E T2 T1

E E E A1 ⊕ A2 ⊕ E T1 ⊕ T2 T1 ⊕ T2

T1 T1 T2 T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2

T2 T2 T1 T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2

3.1 Choice of source operator

We can choose the source operator J̄ to fix quantum numbers of the state |2N,W, s1, s2〉 such as
(J, Jz). Since lattice QCD simulation is usually performed in the hyper-cubic lattice in the finite volume,
we consider the cubic transformation group SO(3,Z) instead of the SO(3,R) as the symmetry of 3-
dimensional space. Therefore the quantum number is classified in term of the irreducible representation
of SO(3,Z), denoted by A1, A2, E, T1, T2 whose dimensions are 1, 1, 2, 3, 3. A relation of irreducible
representations between SO(3,Z) and SO(3,R) is given in table 1 for L ≤ 6, where L represents the
angular momentum for the irreducible representation in SO(3,R). For example, the source operator
J̄ (t0) in the A1 representation with positive parity generates states with L = 0, 4, 6, · · · at t = t0, while
the operator in the T1 representation with negative parity produces states with L = 1, 3, 5, · · ·. For two
nucleons, the total spin S becomes 1/2 ⊗ 1/2 = 1 ⊕ 0, which corresponds to T1(S = 1) and A1(S = 0)
of the SO(3,Z). Therefore, the total representation J for two nucleon system is determined by the
product R1 ⊗ R2, where R1 = A1, A2, E, T1, T2 for the orbital ”angular momentum” while R2 = A1, T1

for the total spin. In table 2, the product R1 ⊗ R2 is decomposed into the direct sum of irreducible
representations.

The most of studies in this report use the wall source at t = t0 defined by

J wall(t0)αβ,fg = Nwall
α,f (t0)N

wall
β,g (t0) (27)

where α, β = 1, 2 are upper component of spinor indices while f, g are flavor indices. Here Nwall(t0) is
obtained by replacing the local quark field q(x) of N(x) by the wall quark field,

qwall(t0) ≡
∑

x

q(x, t0) (28)

with the Coulomb gauge fixing only at t = t0. Note that this gauge-dependence of the source operator
disappear for the potential. All states created by the wall source have zero total momentum. Among
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t > t0

them the state with zero relative momentum has the largest magnitude. The most important reason to
employ the wall source is that the ground state saturation for the potential at long distance is better
achieved for the wall source than other sources such as the smeared source.

By construction, the source operator J̄ wall(t0) has zero orbital angular momentum at t = t0,
which corresponds to A1 representation with positive parity. By the spin projection operator P (S),
e.g. P (S=0) = σ2 and P (S=1,Sz=0) = σ1, we fix the J of the source as

J (t0; J
P=+, I) = P (S)

βα J wall(t0)αβ,fg (29)

where P = ± is the parity and I = 1, 0 is the total isospin of the system. Since the nucleon is fermion,
an exchange of two nucleon operators in the source should give the minus sign. This fact fixes the total
isospin once the total spin is given: (S, I) = (0, 1) or (1, 0). (Note that S, I = 0 are antisymmetric while
S, I = 1 are symmetric under the exchange.) Since A+

1 ⊗ A1 = A+
1 for S = 0 and A+

1 ⊗ T1 = T+
1 for

S = 1, the state with either (JP , I) = (A+
1 , 1) for the spin-singlet or (JP , I) = (T+

1 , 0) for the spin-triplet
is created at t = t0 by the corresponding source operator. The NBS wave function extracted at t > t0
has the same quantum numbers as they are conserved under QCD interactions. It is noted however
that the L is not conserved in general. While the state with (JP , I) = (A+

1 , 1) always has L = A+
1 even

at t > t0, the one with (JP , I) = (T+
1 , 0) has both L = A+

1 and L = E+ components2at t > t0, which
corresponds to L = 0 and L = 2 in the SO(3,R), respectively. Note that J or L in this report is used
to represent the total or orbital quantum number of the SO(3,Z) as well as the SO(3,R), depending
on the context. It is also noted that the total spin S is conserved at t > t0 for the two-nucleon system
with equal up and down quark masses: Under the exchange of the two particles, the constraint that
(−1)S+1+I+1P = −1 must be satisfied due to the fermionic nature of nucleon, while the parity P and
the isospin I are conserved in this system. Therefore S is conserved.

The orbital angular momentum L of the NBS wave function can be fixed to the particular value by
the projection operator P (L) as

ϕW (r; JP , I, L, S) = P (L)P (S)ϕW (r; JP , I) (30)

where ϕW (r; JP , I) is extracted from

F (r, t − t0; J
P , I) # A(JP , I)ϕW (r; JP , I)e−W (t−t0), A(JP , I) = 〈2N, W |J̄ (0; JP , I)|0〉 (31)

for large t − t0. Here we also apply the total spin projection operator P (S) but this is redundant since
the total spin S, already fixed by the source, is conserved as mentioned above. The projection operator
P (L) to an arbitrary function φ(r) is defined in general by

P (L)φ(r) ≡ dL

24

∑

g∈SO(3,Z)

χL(g)φ(g−1 · r) (32)

for L = A1, A2, E, T1, T2, where χL denotes the character for the representation L of the cubic group
SO(3,Z), the g is one of 24 elements in SO(3,Z) and dL is the dimension of L.

3.2 Leading order potential: spin-singlet case

We present the procedure to determine potentials at the reading order(LO):

V LO(r) = V0(r) + Vσ(r)(%σ1 · %σ2) + VT (r)S12. (33)
2This can be seen from Table 2 for R2 = T1(spin-triplet), which also tells us an existence of L = T+

1 and L = T+
2

components in addition. These extra components are expected to be small since they appears as a consequence of the
violation of SO(3,R) in the finite volume.
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1 , 1) always has L = A+
1 even

at t > t0, the one with (JP , I) = (T+
1 , 0) has both L = A+

1 and L = E+ components2at t > t0, which
corresponds to L = 0 and L = 2 in the SO(3,R), respectively. Note that J or L in this report is used
to represent the total or orbital quantum number of the SO(3,Z) as well as the SO(3,R), depending
on the context. It is also noted that the total spin S is conserved at t > t0 for the two-nucleon system
with equal up and down quark masses: Under the exchange of the two particles, the constraint that
(−1)S+1+I+1P = −1 must be satisfied due to the fermionic nature of nucleon, while the parity P and
the isospin I are conserved in this system. Therefore S is conserved.

The orbital angular momentum L of the NBS wave function can be fixed to the particular value by
the projection operator P (L) as

ϕW (r; JP , I, L, S) = P (L)P (S)ϕW (r; JP , I) (30)

where ϕW (r; JP , I) is extracted from

F (r, t − t0; J
P , I) # A(JP , I)ϕW (r; JP , I)e−W (t−t0), A(JP , I) = 〈2N, W |J̄ (0; JP , I)|0〉 (31)

for large t − t0. Here we also apply the total spin projection operator P (S) but this is redundant since
the total spin S, already fixed by the source, is conserved as mentioned above. The projection operator
P (L) to an arbitrary function φ(r) is defined in general by

P (L)φ(r) ≡ dL

24

∑

g∈SO(3,Z)

χL(g)φ(g−1 · r) (32)

for L = A1, A2, E, T1, T2, where χL denotes the character for the representation L of the cubic group
SO(3,Z), the g is one of 24 elements in SO(3,Z) and dL is the dimension of L.

3.2 Leading order potential: spin-singlet case

We present the procedure to determine potentials at the reading order(LO):

V LO(r) = V0(r) + Vσ(r)(%σ1 · %σ2) + VT (r)S12. (33)
2This can be seen from Table 2 for R2 = T1(spin-triplet), which also tells us an existence of L = T+

1 and L = T+
2

components in addition. These extra components are expected to be small since they appears as a consequence of the
violation of SO(3,R) in the finite volume.
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LO potential

For the spin-singlet case, S12 = 0 and !σ1 · !σ2 = −3. Therefore, in the case of (JP , I) = (A+
1 , 1) state,

the LO central potential is extracted as

VC(r)(S,I)=(0,1) ≡ V I=1
0 (r) − 3V I=1

σ (r) =
[Ek − H0] ϕW (r; A+

1 , I = 1, A1, S = 0)

ϕW (r; A+
1 , I = 1, A1, S = 0)

, (34)

where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
more precise to refer it as the spin-singlet (isospin-triplet) central potential determined from the state
with J = L = A1. A possible difference of spin-singlet central potentials between this determination
and others such as the determination from J = L = E gives an estimate for contributions from higher
order terms in the velocity expansion.

3.3 Leading order potential: spin-triplet case

For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
this state becomes

[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
ϕW (r; JP = T+

1 , I = 0) = Ekϕ
W (r; JP = T+

1 , I = 0) (35)

where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
0 (r) + V I=0

σ (r), V I=0
X = V 0

X − 3V τ
X . (36)

The projections to A1 and E components read

PϕW
αβ ≡ P (A1)ϕW

αβ(r; JP = T+
1 , I = 0) (37)

QϕW
αβ ≡ P (E)ϕW

αβ(r; JP = T+
1 , I = 0) # (1 − P (A1))ϕW

αβ(r; JP = T+
1 , I = 0). (38)

The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as

VC(r)(1,0) = Ek −
1

∆(r)

(
[QS12ϕ

W ]αβ(r)H0[PϕW ]αβ(r) − [PS12ϕ
W ]αβ(r)H0[QϕW ]αβ(r)

)
(39)

VT (r) =
1

∆(r)

(
[QϕW ]αβ(r)H0[PϕW ]αβ(r) − [PϕW ]αβ(r)H0[QϕW ]αβ(r)

)
(40)

∆(r) ≡ [QS12ϕ
W ]αβ(r)[PϕW ]αβ(r) − [PS12ϕ

W ]αβ(r)[QϕW ]αβ(r). (41)

In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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1 , 1)

L = 0, 4, 6, · · ·

For the spin-singlet case, S12 = 0 and !σ1 · !σ2 = −3. Therefore, in the case of (JP , I) = (A+
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0 (r) − 3V I=1

σ (r) =
[Ek − H0] ϕW (r; A+

1 , I = 1, A1, S = 0)

ϕW (r; A+
1 , I = 1, A1, S = 0)
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where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
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and others such as the determination from J = L = E gives an estimate for contributions from higher
order terms in the velocity expansion.
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For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
this state becomes

[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
ϕW (r; JP = T+

1 , I = 0) = Ekϕ
W (r; JP = T+

1 , I = 0) (35)

where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
0 (r) + V I=0

σ (r), V I=0
X = V 0

X − 3V τ
X . (36)

The projections to A1 and E components read

PϕW
αβ ≡ P (A1)ϕW

αβ(r; JP = T+
1 , I = 0) (37)

QϕW
αβ ≡ P (E)ϕW

αβ(r; JP = T+
1 , I = 0) # (1 − P (A1))ϕW

αβ(r; JP = T+
1 , I = 0). (38)

The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as

VC(r)(1,0) = Ek −
1

∆(r)

(
[QS12ϕ

W ]αβ(r)H0[PϕW ]αβ(r) − [PS12ϕ
W ]αβ(r)H0[QϕW ]αβ(r)

)
(39)

VT (r) =
1

∆(r)

(
[QϕW ]αβ(r)H0[PϕW ]αβ(r) − [PϕW ]αβ(r)H0[QϕW ]αβ(r)

)
(40)

∆(r) ≡ [QS12ϕ
W ]αβ(r)[PϕW ]αβ(r) − [PS12ϕ

W ]αβ(r)[QϕW ]αβ(r). (41)

In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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3-3. Leading order potential: spin-triplet

For the spin-singlet case, S12 = 0 and !σ1 · !σ2 = −3. Therefore, in the case of (JP , I) = (A+
1 , 1) state,

the LO central potential is extracted as

VC(r)(S,I)=(0,1) ≡ V I=1
0 (r) − 3V I=1

σ (r) =
[Ek − H0] ϕW (r; A+

1 , I = 1, A1, S = 0)

ϕW (r; A+
1 , I = 1, A1, S = 0)

, (34)

where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
more precise to refer it as the spin-singlet (isospin-triplet) central potential determined from the state
with J = L = A1. A possible difference of spin-singlet central potentials between this determination
and others such as the determination from J = L = E gives an estimate for contributions from higher
order terms in the velocity expansion.

3.3 Leading order potential: spin-triplet case

For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
this state becomes

[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
ϕW (r; JP = T+

1 , I = 0) = Ekϕ
W (r; JP = T+

1 , I = 0) (35)

where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
0 (r) + V I=0

σ (r), V I=0
X = V 0

X − 3V τ
X . (36)

The projections to A1 and E components read

PϕW
αβ ≡ P (A1)ϕW

αβ(r; JP = T+
1 , I = 0) (37)

QϕW
αβ ≡ P (E)ϕW

αβ(r; JP = T+
1 , I = 0) # (1 − P (A1))ϕW

αβ(r; JP = T+
1 , I = 0). (38)

The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as

VC(r)(1,0) = Ek −
1

∆(r)

(
[QS12ϕ

W ]αβ(r)H0[PϕW ]αβ(r) − [PS12ϕ
W ]αβ(r)H0[QϕW ]αβ(r)

)
(39)

VT (r) =
1

∆(r)

(
[QϕW ]αβ(r)H0[PϕW ]αβ(r) − [PϕW ]αβ(r)H0[QϕW ]αβ(r)

)
(40)

∆(r) ≡ [QS12ϕ
W ]αβ(r)[PϕW ]αβ(r) − [PS12ϕ

W ]αβ(r)[QϕW ]αβ(r). (41)

In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
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For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
this state becomes

[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
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where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
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αβ ≡ P (E)ϕW
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The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as
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1
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(
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(
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In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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A+
1 (L = ”0”)

non A+
1 (L = ”2”)

For the spin-singlet case, S12 = 0 and !σ1 · !σ2 = −3. Therefore, in the case of (JP , I) = (A+
1 , 1) state,

the LO central potential is extracted as
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1 , I = 1, A1, S = 0)

, (34)

where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
more precise to refer it as the spin-singlet (isospin-triplet) central potential determined from the state
with J = L = A1. A possible difference of spin-singlet central potentials between this determination
and others such as the determination from J = L = E gives an estimate for contributions from higher
order terms in the velocity expansion.

3.3 Leading order potential: spin-triplet case

For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
this state becomes

[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
ϕW (r; JP = T+

1 , I = 0) = Ekϕ
W (r; JP = T+

1 , I = 0) (35)

where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
0 (r) + V I=0

σ (r), V I=0
X = V 0

X − 3V τ
X . (36)

The projections to A1 and E components read

PϕW
αβ ≡ P (A1)ϕW

αβ(r; JP = T+
1 , I = 0) (37)

QϕW
αβ ≡ P (E)ϕW

αβ(r; JP = T+
1 , I = 0) # (1 − P (A1))ϕW

αβ(r; JP = T+
1 , I = 0). (38)

The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as

VC(r)(1,0) = Ek −
1

∆(r)

(
[QS12ϕ

W ]αβ(r)H0[PϕW ]αβ(r) − [PS12ϕ
W ]αβ(r)H0[QϕW ]αβ(r)

)
(39)

VT (r) =
1

∆(r)

(
[QϕW ]αβ(r)H0[PϕW ]αβ(r) − [PϕW ]αβ(r)H0[QϕW ]αβ(r)

)
(40)

∆(r) ≡ [QS12ϕ
W ]αβ(r)[PϕW ]αβ(r) − [PS12ϕ

W ]αβ(r)[QϕW ]αβ(r). (41)

In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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1 , 1) state,

the LO central potential is extracted as
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1 , I = 1, A1, S = 0)

ϕW (r; A+
1 , I = 1, A1, S = 0)

, (34)

where V I=1
X = V 0

X + V τ
X in the isospin space. The potential VC(r)(S,I)=(0,1) in the above is sometimes

referred as the central potential for the 1S0 state, where the notation 2S+1LJ represents the orbital
angular momentum L (see table 1), the total spin S and the total angular momentum J of J = L+S. It
is noted, however, that within the leading order in the velocity expansion, the potential does not depend
on the quantum number of the state J = L = A1. Moreover the A1 state may contain L = 4, 6, · · ·
components other than L = 0, though the L = 0 component may dominate in the state. Therefore it is
more precise to refer it as the spin-singlet (isospin-triplet) central potential determined from the state
with J = L = A1. A possible difference of spin-singlet central potentials between this determination
and others such as the determination from J = L = E gives an estimate for contributions from higher
order terms in the velocity expansion.

3.3 Leading order potential: spin-triplet case

For the spin-triplet case, we have to determine the tensor potential VT as well as the central potential
VC . Let us consider the determination from the (JP , I) = (T+

1 , 0) state. The Scrödinger equation for
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[
H0 + VC(r)(S,I)=(1,0) + VT (r)S12

]
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1 , I = 0) = Ekϕ
W (r; JP = T+

1 , I = 0) (35)

where the spin-triplet central potential is given by

VC(r)(S,I)=(1,0) ≡ V I=0
0 (r) + V I=0

σ (r), V I=0
X = V 0

X − 3V τ
X . (36)

The projections to A1 and E components read

PϕW
αβ ≡ P (A1)ϕW
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1 , I = 0) (37)

QϕW
αβ ≡ P (E)ϕW
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1 , I = 0) # (1 − P (A1))ϕW
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1 , I = 0). (38)

The last quantity of the second line is an approximation of the first line and a difference comes from
T1 and T2 components, which are expected to be small. This approximated representation for Q is
employed in numerical simulations.

Using these projections, we can extract VC and VT as

VC(r)(1,0) = Ek −
1

∆(r)

(
[QS12ϕ

W ]αβ(r)H0[PϕW ]αβ(r) − [PS12ϕ
W ]αβ(r)H0[QϕW ]αβ(r)

)
(39)

VT (r) =
1

∆(r)

(
[QϕW ]αβ(r)H0[PϕW ]αβ(r) − [PϕW ]αβ(r)H0[QϕW ]αβ(r)

)
(40)

∆(r) ≡ [QS12ϕ
W ]αβ(r)[PϕW ]αβ(r) − [PS12ϕ

W ]αβ(r)[QϕW ]αβ(r). (41)

In numerical simulations, (α, β) = (2, 1) is mainly used.
If we neglect VT by putting VT = 0 in the above, we obtain the effective central potential for the

spin-triplet (isospin-singlet) state as

V eff
C (r)(1,0) =

[Ek − H0]PϕW
αβ(r)

PϕW
αβ(r)

. (42)

The difference between VC and V eff
C is expected to be O(V 2

T ) form the second order perturbation for
small VT .
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3-4. A comparison with the finite volume method

• the local potential gives correct phase shift at 

• but it gives approximated phase shift at other k 

• the finite size correction yo the potential is expected to be small 

• the quark mass dependence of the potential is much smaller that that of the phase shift

• at the leading order, contaminations from L=4,6,... do not cause problems for the potential.

3.4 A comparison with the finite volume method in lattice QCD

In this subsection we briefly compare the potential method with the direct calculation of the phase shift
via the finite volume method in lattice QCD.

First of all, by construction, the potential method gives the correct phase shift at k =
√

W 2/4 − m2
N

where W is the total energy of the state from which the NBS wave function is defined, while phase
shifts at other values of k are approximated ones obtained in the velocity expansion of the non-local
potential.

Secondly, the finite size correction to the potential is expected to be small. Indeed the finite volume
method for the extraction of the phase shift in lattice QCD assume that there is no finite size correction
to the potential as long as the volume is large so that the interaction range of the potential is smaller
than the half of the lattice extension, L/2. Under this condition, there exists an asymptotic region in
the periodic box where the scattering wave satisfies the free Scrödinger equation with a specific value
of the energy, from which we can determine the phase shift at the certain values of k in the infinite
volume. This is the Lüscher’s finite volume formula for the phase shift[14].

Thirdly, we also expect that the quark mass dependence of the potential is much milder than that
of the physical observables such as the scattering length. While the scattering length is almost zero
at the heavy quark mass region, it diverges when the bound state is formed at the lighter quark mass
region. In this situation, the scattering length varies from zero to infinity as the quark mass changes[27].
Such a drastic change of the scattering length can easily realized by a small change to the shape of the
potential as a function of the quark mass.

Let us assume that higher order terms in the velocity expansion give negligible contributions at
low energy so that the leading order local potential well reproduces the scattering phase shift. In
this situation, some problems of the finite size method can be avoided by using the potential method.
To extract the phase shift in the finite size method in lattice QCD, we have to assume that one
particular angular momentum gives a dominate contribution among possible angular momenta in a
given representation of the cubic group. For example, although a state in the A1 representation contains
not only an L = 0 contribution but also L = 4, 6, · · · contributions, one usually assumes that the L = 0
contribution dominates so that the energy shift in the finite volume is related to the scattering phase
for the L = 0 state. In the case of the potential, on the other hand, such an assumption is unnecessary.
One can determine the local potential in the velocity expansion from the A1 state without specifying the
dominant angular momentum. Once the potential is obtained, one can calculate the scattering phase
shift for an arbitrary L by solving the Schrödinger equation in the infinite volume with the potential.
Furthermore, one can check the assumption made for the finite size method by comparing sizes of the
scattering phases among different L’s.

4 Results for nuclear potentials from lattice QCD

.

4.1 Quenched QCD results for (effective) central potentials

Let us show results in the quenched QCD, where creations and annihilations of quark-antiquark pairs
are all neglected. For the simulations, the standard plaquette gauge action is employed on a 324 lattice
at the bare gauge coupling constant β = 6/g2 = 5.7, which corresponds to the lattice spacing a " 0.137
fm (1/a = 1.44(2) GeV), determined from the ρ meson mass in the chiral limit, and the physical size of
the lattice L " 4.4 fm[15]. As for the quark action, the standard Wilson fermion action is employed at
three different values of the quark mass corresponding to the pion mass mπ " 731, 529, 380 MeV and
the nucleon mass mN = 1560, 1330, 1200 MeV, respectively.
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• plaquette gauge action at β=5.7(quenched) on 324 lattice

• a=0.137 fm from ρ meson mass ⇒ physical size: (4.4 fm)4  

• Wilson quark action

• 3 quark masses 
mπ = 370 MeV(2000 conf), mπ = 527 MeV (2000 conf)

mπ = 732 MeV(1000 conf)

4-1. Quenched QCD results for (effective) central potentials

Blue Gene/L @ KEK(stop operating in this January)
10 racks,  57.3 TFlops peak

34-48 % of peak performance

about 4000 hours of 
512 Node(half-rack, 2.87TFlops)
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NN wave function mπ ! 0.53 GeV
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NN (effective) central potentials mπ ! 0.53 GeV

t − ts = 6

  0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0

V
C
(
r
)
 
[
M
e
V
]

r [fm]

-50

  0

 50

100

0.0 0.5 1.0 1.5 2.0

1
S03
S1

OPEP

strong repulsive core !

weak attraction

Yukawa potential g2
πN
4π ! 14.0

mπ ! 0.53 GeV, mN ! 1.34 GeV
2011年3月15日火曜日



Ground state saturation 1S0

Yukawa potential
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Quark mass dependence

stronger repulsive core at short distance 
a little stronger attraction at intermediate distance

1S0

as quark mass decreases
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Figure 3: (Left) The fit of the NN wave functions at mπ ! 529 MeV for the spin-singlet channel in the
orbital A+

1 representation using the Green’s function in the fit range 11 ≤ r/a ≤ 15. (Right) A similar
fit for the spin-triplet channel. Taken from Ref. [17].

Table 3: Effective center of mass energies E obtained from the asymptotic momenta and the scattering
length a0 at different pion masses. Taken from Ref. [17].

E[MeV] a0[fm]
mπ[MeV] spin-singlet spin-triplet 1S0

3S1

731.1(4) -0.40(8) -0.48(10) 0.12(3) 0.14(3)
529.0(4) -0.51(9) -0.56(11) 0.13(3) 0.14(3)
379.7(9) -0.68(26) -0.97(37) 0.15(7) 0.23(10)

16a ! 2.2 fm using the above form at mπ = 529 MeV. This leads to the values of the effective energy
E ≡ k2/mN , which can be translated to the scattering length a0 by the Lüscher’s formula (44).

In Fig.4, we compare the NN central potentials in the spin-singlet channel for three different pion
masses. As the pion mass decreases, the repulsion at short distance and the attraction at medium
distance are enhanced simultaneously. In table 3, we give values of E and the S-wave scattering length
a0, which show a net attraction of the NN interactions in both channels at these pion masses, though
the absolute magnitudes of the scattering length a0 are much smaller than the experimental values at
the physical pion mass mπ ! 140 MeV: a(exp)

0 = (1S0) ∼ 20 fm and a(exp)
0 = (3S1) ∼ −5 fm.

The above discrepancy is partly caused by the heavier pion masses and the absence of the dynamical
quarks in quenched simulations. If we get closer to the physical pion mass in full QCD simulations, there
should arise the ”unitary region” where the NN scattering length shows the singularity associated with
the formation of the di-nucleon bound state, so that a0 changes sign[27]. Therefore the NN scattering
length must becomes non-linear function of the pion mass in this region. Unlike the scattering length,
on the other hand, the NN potential does not necessarily have singular behavior in the unitary region,
as demonstrated in the well-known quantum mechanical examples such as the low-energy scattering
between ultracold atoms. To check this in QCD, it is of course important to study the NN potential
in the full QCD simulations at lighter pion masses.

In addition to the above reasoning, there is a possibility that extracted values of k2 have large
systematic uncertainties caused by the contamination of the excite states at large distance for the wave
functions.
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Figure 2: (Left)The NN wave function for the spin-singlet and spin-triplet channels in the orbital A+
1

representation at mπ ! 529 MeV and a ! 0.137 fm in quenched QCD. The insert is a three-dimensional
plot of the spin-singlet wave function ϕW (x, y, z = 0). (Right) The NN (effective) central potential for
the spin-singlet (spin-triplet) channel determined from the orbital A+

1 wave function. Both figures are
taken from Ref. [17].

Fig. 2(Left) shows the NBS wave functions for the spin-singlet and the spin-triplet channels in the
orbital A1 representation at mπ ! 529 MeV. These wave functions are normalized to be 1 at the largest
spatial point r ! 2.2 fm.

The central potential in the spin-singlet channel and the effective central potential in the spin-
triplet channel reconstructed from the wave functions at mπ ! 529 MeV are shown in Fig. 2(Right).
These potentials reproduce the qualitative features of the phenomenological NN potentials, namely the
repulsive core at short distance surrounded by the attraction well at medium and long distances. From
this figure one observes that the interaction range of the potential is smaller than 1.5 fm. Therefore the
box size L ! 4.4 fm is large enough to extract the phase shift by the finite size method, and furthermore
the finite size corrections to the potentials themselves are expected to be small. Labels 1S0 and 3S1 of
the potentials in the figure represents the fact that potentials are determined from A1 wave functions,
which are dominated by S wave components.

Instead of the calculating the energy shift due to the finite size, one can extract the asymptotic
momentum k, by fitting the the NBS wave function ϕ(r) at large distance with the Green’s function
G(r; k2) in a finite and periodic box for the Helmholtz equation (∇2 +k2)G(r; k2) = −δlat(r) with δlat(r)
being the periodic delta-function. Explicitly it is given by

G(r; k2) =
1

L3

∑

n∈Z3

ei(2π/L)n·r

(2π/L)2n2 − k2
. (43)

The asymptotic momentum k is related to the scattering phase shift δ0(k) or the scattering length a0

for the S-states3 as

k cot δ0(k) =
2√
πL

Z00(1; q2) =
1

a0
+ O(k2), (44)

where Z00(1, q2) with q = kL
2π is (the analytic continuation of) the generalized zeta-function Z00(s, q2) =

1√
4π

∑

n∈Z3

(n2 − q2)−s. Fig. 3 shows the fits of the wave functions at the interval 11a ! 1.5 fm ≤ r ≤

3We here assume that the the dominant component of the scattering wave in A1 representation has L = 0.

14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0

N
N

 w
av

e 
fu

nc
tio

n 
ψ

(r
)

r [fm]

1S03S1

-2 -1 0 1 2 -2
-1

0
1

2
0.5

1.0

1.5
ψ(x,y,z=0;1S0)

x[fm]     
y[fm]

ψ(x,y,z=0;1S0)

  0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0

V
C

ef
f (r

) [
M

eV
]

r [fm]

-50

  0

 50

100

0.0 0.5 1.0 1.5 2.0

1S03S1

Figure 2: (Left)The NN wave function for the spin-singlet and spin-triplet channels in the orbital A+
1

representation at mπ ! 529 MeV and a ! 0.137 fm in quenched QCD. The insert is a three-dimensional
plot of the spin-singlet wave function ϕW (x, y, z = 0). (Right) The NN (effective) central potential for
the spin-singlet (spin-triplet) channel determined from the orbital A+

1 wave function. Both figures are
taken from Ref. [17].

Fig. 2(Left) shows the NBS wave functions for the spin-singlet and the spin-triplet channels in the
orbital A1 representation at mπ ! 529 MeV. These wave functions are normalized to be 1 at the largest
spatial point r ! 2.2 fm.

The central potential in the spin-singlet channel and the effective central potential in the spin-
triplet channel reconstructed from the wave functions at mπ ! 529 MeV are shown in Fig. 2(Right).
These potentials reproduce the qualitative features of the phenomenological NN potentials, namely the
repulsive core at short distance surrounded by the attraction well at medium and long distances. From
this figure one observes that the interaction range of the potential is smaller than 1.5 fm. Therefore the
box size L ! 4.4 fm is large enough to extract the phase shift by the finite size method, and furthermore
the finite size corrections to the potentials themselves are expected to be small. Labels 1S0 and 3S1 of
the potentials in the figure represents the fact that potentials are determined from A1 wave functions,
which are dominated by S wave components.

Instead of the calculating the energy shift due to the finite size, one can extract the asymptotic
momentum k, by fitting the the NBS wave function ϕ(r) at large distance with the Green’s function
G(r; k2) in a finite and periodic box for the Helmholtz equation (∇2 +k2)G(r; k2) = −δlat(r) with δlat(r)
being the periodic delta-function. Explicitly it is given by

G(r; k2) =
1

L3

∑

n∈Z3

ei(2π/L)n·r

(2π/L)2n2 − k2
. (43)

The asymptotic momentum k is related to the scattering phase shift δ0(k) or the scattering length a0

for the S-states3 as

k cot δ0(k) =
2√
πL

Z00(1; q2) =
1

a0
+ O(k2), (44)

where Z00(1, q2) with q = kL
2π is (the analytic continuation of) the generalized zeta-function Z00(s, q2) =

1√
4π

∑

n∈Z3

(n2 − q2)−s. Fig. 3 shows the fits of the wave functions at the interval 11a ! 1.5 fm ≤ r ≤

3We here assume that the the dominant component of the scattering wave in A1 representation has L = 0.
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Figure 3: (Left) The fit of the NN wave functions at mπ ! 529 MeV for the spin-singlet channel in the
orbital A+

1 representation using the Green’s function in the fit range 11 ≤ r/a ≤ 15. (Right) A similar
fit for the spin-triplet channel. Taken from Ref. [17].

Table 3: Effective center of mass energies E obtained from the asymptotic momenta and the scattering
length a0 at different pion masses. Taken from Ref. [17].

E[MeV] a0[fm]
mπ[MeV] spin-singlet spin-triplet 1S0

3S1

731.1(4) -0.40(8) -0.48(10) 0.12(3) 0.14(3)
529.0(4) -0.51(9) -0.56(11) 0.13(3) 0.14(3)
379.7(9) -0.68(26) -0.97(37) 0.15(7) 0.23(10)

16a ! 2.2 fm using the above form at mπ = 529 MeV. This leads to the values of the effective energy
E ≡ k2/mN , which can be translated to the scattering length a0 by the Lüscher’s formula (44).

In Fig.4, we compare the NN central potentials in the spin-singlet channel for three different pion
masses. As the pion mass decreases, the repulsion at short distance and the attraction at medium
distance are enhanced simultaneously. In table 3, we give values of E and the S-wave scattering length
a0, which show a net attraction of the NN interactions in both channels at these pion masses, though
the absolute magnitudes of the scattering length a0 are much smaller than the experimental values at
the physical pion mass mπ ! 140 MeV: a(exp)

0 = (1S0) ∼ 20 fm and a(exp)
0 = (3S1) ∼ −5 fm.

The above discrepancy is partly caused by the heavier pion masses and the absence of the dynamical
quarks in quenched simulations. If we get closer to the physical pion mass in full QCD simulations, there
should arise the ”unitary region” where the NN scattering length shows the singularity associated with
the formation of the di-nucleon bound state, so that a0 changes sign[27]. Therefore the NN scattering
length must becomes non-linear function of the pion mass in this region. Unlike the scattering length,
on the other hand, the NN potential does not necessarily have singular behavior in the unitary region,
as demonstrated in the well-known quantum mechanical examples such as the low-energy scattering
between ultracold atoms. To check this in QCD, it is of course important to study the NN potential
in the full QCD simulations at lighter pion masses.

In addition to the above reasoning, there is a possibility that extracted values of k2 have large
systematic uncertainties caused by the contamination of the excite states at large distance for the wave
functions.

15

net attractions

2011年3月15日火曜日



4-2. Tensor potential
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Figure 4: The central potentials for the spin-singlet channel from the orbital A+
1 representation at three

different pion masses in quenched QCD. Taken from Ref. [17].
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1 wave functions from JP = T+
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(and Jz = Sz = 0) states at mπ ! 529 MeV. (Right) The same wave functions but the spherical
harmonics components are removed from the non-A+

1 part. Taken from Ref. [17].

4.2 Tensor potential

In Fig. 5(Left), we show the A1 and non-A1 components of the NBS wave function obtained from the
JP = T+

1 (and Jz = Sz = 0) states at mπ ! 529 MeV, according to eqs. (37) and (38). The A1 wave
function is mulitvalued as a function of r due to its angular dependence. For example, (α, β) = (2, 1)
spin component of the L = 2 part of the non-A1 wave function is proportional to the spherical harmonics
Y20(θ, φ) ∝ 3 cos2 θ−1. Fig. 5(Right) shows non-A1 component divided by Y20(θ,φ). It is clear that the
multivaluedness is mostly removed, showing that the non-A1 component is dominated by the D (L = 2)
state.

Shown in Fig. 6 (Left) are the central potential VC(r)(1,0) and tensor potential VT (r) together with
effective central potential V eff

C (r)(1,0), at the leading order of the velocity expansion as given in eqs. (39),
(40) and (42), respectively.

Note that V eff
C (r) contains the effect of VT (r) implicitly as higher order effects through the process

such as 3S1 → 3D1 → 3S1. At the physical pion mass, V eff
C (r) is expected to obtain sufficient attraction

from the tensor potential, which causes an appearance of bound deuteron in the spin-triplet (and flavor-
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Potentials

central

effective 
central

• no repulsive core in the tensor potential.

•  the central potential is roughly equal to the effective central potential.

• the tensor potential is still small.

• the tensor potential increases as the pion mass decreases.

• manifestation of one-pion-exchange ?

• the fit below works well.
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Figure 6: (Left) The central potential VC(r)(1,0) and the tensor potential VT (r) obtained from the
JP = T+

1 NBS wave function, together with the effective central potential V eff
C (r)(1,0), at mπ ! 529

MeV. (Right) Pion mass dependence of the tensor potential. The lines are the four-parameter fit using
one-pion-exchange + one-rho-exchange with Gaussian form factor. Taken from Ref. [17].

singlet) channel while an absence of the bound dineutron in the spin-singlet (and flavor-triplet) channel.
The difference between VC(r)(1,0) and V eff

C (r) in Fig. 6 (Left) is still small in this quenched simulation
due to relatively large pion mass. This is also consistent with the small scattering length in the previous
subsection.

The tensor potential in Fig. 6 (Left) is negative for the whole range of r within statistical errors
and has a minimum around 0.4 fm. If the tensor potential receives a significant contribution from the
one-pion exchange as expected from the meson theory, VT (r) is rather sensitive to the change of the pion
mass. As shown in Fig. 6 (Right), it is indeed the case: Attraction of VT (r) is substantially enhanced
as the pion mass decreases.

The central and tensor potentials obtained from lattice QCD are given at discrete data points. For
practical applications to nuclear physics, however, it is more convenient to parameterize the lattice
results by known functions. We have tried such a fit for VT (r) using the form of the one-pion-exchange
+ one-rho-exchange with Gaussian form factors:

VT (r) = b1(1 − e−b2r2
)2

(

1 +
3

mρr
+

3

(mρr)2

)
e−mρr

r
+ b3(1 − e−b4r2

)2

(

1 +
3

mπr
+

3

(mπr)2

)
e−mπr

r
,

(45)

where b1,2,3,4 are the fitting parameters while mπ (mρ) is taken to be the pion mass (the rho meson
mass) calculated at each pion mass. The fit line for each pion mass is drawn in Fig. 6 (Right). It may
be worth mentioning that the pion-nucleon coupling constant extracted from the parameter b3 in the
case of the lightest pion mass (mπ = 380 MeV) gives g2

πN/(4π) = 12.1(2.7), which is encouragingly close
to the empirical value.

4.3 Convergence of the velocity expansion

The potentials are derived so far at the leading order of the velocity expansion. It is therefore important
to investigate the convergence of the velocity expansion: How good is the leading order approximation
? How small are higher order contributions ? If the non-locality of the NN potentials were absent, the
leading order approximation for the potentials would give exact results at all energies. The non-locality
of the potentials therefore becomes manifest in the energy dependence of the potentials.
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The difference between VC(r)(1,0) and V eff

C (r) in Fig. 6 (Left) is still small in this quenched simulation
due to relatively large pion mass. This is also consistent with the small scattering length in the previous
subsection.

The tensor potential in Fig. 6 (Left) is negative for the whole range of r within statistical errors
and has a minimum around 0.4 fm. If the tensor potential receives a significant contribution from the
one-pion exchange as expected from the meson theory, VT (r) is rather sensitive to the change of the pion
mass. As shown in Fig. 6 (Right), it is indeed the case: Attraction of VT (r) is substantially enhanced
as the pion mass decreases.

The central and tensor potentials obtained from lattice QCD are given at discrete data points. For
practical applications to nuclear physics, however, it is more convenient to parameterize the lattice
results by known functions. We have tried such a fit for VT (r) using the form of the one-pion-exchange
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where b1,2,3,4 are the fitting parameters while mπ (mρ) is taken to be the pion mass (the rho meson
mass) calculated at each pion mass. The fit line for each pion mass is drawn in Fig. 6 (Right). It may
be worth mentioning that the pion-nucleon coupling constant extracted from the parameter b3 in the
case of the lightest pion mass (mπ = 380 MeV) gives g2

πN/(4π) = 12.1(2.7), which is encouragingly close
to the empirical value.

4.3 Convergence of the velocity expansion

The potentials are derived so far at the leading order of the velocity expansion. It is therefore important
to investigate the convergence of the velocity expansion: How good is the leading order approximation
? How small are higher order contributions ? If the non-locality of the NN potentials were absent, the
leading order approximation for the potentials would give exact results at all energies. The non-locality
of the potentials therefore becomes manifest in the energy dependence of the potentials.
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4-3. Convergence of the velocity expansion

mπ ! 0.53 GeV

a=0.137fm
K. Murano, N. Ishii, S. Aoki, T. Hatsuda 

arXiv:1103.0619[hep-lat]
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Numerical check in quenched QCD
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Nucleon-Nucleon Potential for Finite Energy Scattering in Lattice QCD 11
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Fig. 6. (Left) The LO central potential V (LO)
C,s (r) for the spin-singlet and the orbital A+

1 channel
as a function of r at E ! 0 45 MeV (red solid circles) and at E ! 0 MeV (blue open circles).
(Right) The LO central potential V (LO)

C,s (r) for the spin-singlet channel as a function of r at E !
45 MeV , determined from the orbital A+

1 representation (red open circles) and from the T+
2

representation (cray solid circles).
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Fig. 7. (Left) The LO central potential V (LO)
C,t (r) for the spin-triplet and the orbital 3S1 −3 D1

coupled channel as a function of r. (Right) The LO tensor potential V (LO)
T (r) for the spin-

triplet and the orbital 3S1 −3 D1 coupled channel as a function of r. Symbols are same as in
Fig. 6.

It is therefore important to increase E or decrease mπ and check the point where
NLO contributions become significant.

4.4. LO potentials for different orbital angular momentum
As mentioned in Sec.3, source functions in Eq. (3.12) for the APBC generate not

only the orbital A+
1 but also the orbital T+

2 components. Combining these sources
appropriately, one can construct the NBS wave function for the spin-singlet and the
orbital T+

2 channel (!1 D2 state). Therefore the LO central potential V (LO)
C,s (r) can

be extracted also from this wave function.
In Fig. 6(Right), V (LO)

C,s (r) obtained from the orbital T+
2 channel is compared

with the same potential determined from the orbital A+
1 channel at E ! 45 MeV.

Although statistical errors are large, we observe that the two determinations give
consistent result. Assuming that the orbital A+

1 and T+
2 representations are domi-

nated by ! = 0 and ! = 2 waves, respectively, we here conclude that the LO potential
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It is therefore important to increase E or decrease mπ and check the point where
NLO contributions become significant.

4.4. LO potentials for different orbital angular momentum
As mentioned in Sec.3, source functions in Eq. (3.12) for the APBC generate not

only the orbital A+
1 but also the orbital T+

2 components. Combining these sources
appropriately, one can construct the NBS wave function for the spin-singlet and the
orbital T+

2 channel (!1 D2 state). Therefore the LO central potential V (LO)
C,s (r) can

be extracted also from this wave function.
In Fig. 6(Right), V (LO)

C,s (r) obtained from the orbital T+
2 channel is compared

with the same potential determined from the orbital A+
1 channel at E ! 45 MeV.

Although statistical errors are large, we observe that the two determinations give
consistent result. Assuming that the orbital A+

1 and T+
2 representations are domi-

nated by ! = 0 and ! = 2 waves, respectively, we here conclude that the LO potential

Spin-singlet

Spin-triplet

E-dep.

E-dep. E-dep.

L-dep. at E=46 MeV

tensorcentral

central central

Non-locality turns out to 
be small in this setup.

A1(L = 0)
T2(L = 2)
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PACS-CS gauge configurations(2+1 flavors)
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L = 2.9 fm
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π = 156 MeV mπL = 2.3

We are almost on the “physical point”.

Calculations with L=5.8 fm and                          
are on-going.

mπL > 4

“Real QCD”

mπ ! 140 MeV

4-4. Full QCD results
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Figure 8: (Left) The spin-triplet central potential VC(r)(1,0) obtained from the orbital A+
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2 coupled
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Figure 9: (Left) 2+1 flavor QCD results for the central potential and tensor potentials at mπ " 701
MeV. (Right) Quenched results for the same potentials at mπ " 731 MeV. Taken from Ref. [33].

4.4 Full QCD results

Needless to say, it is important to repeat calculations of NN potentials in full QCD on larger volumes
at lighter pion masses. The PACS-CS collaboration is performing 2 + 1 flavor QD simulations, which
cover the physical pion mass[31, 32]. Gauge configurations are generated with the Iwasaki gauge action
and non-perturbatively O(a)-improved Wilson quark action on a 323 × 64 lattice. The lattice spacing a
is determined from mπ, mK and mΩ as a " 0.091 fm, leading to L " 2.9 fm. Three ensembles of gauge
configurations are used to calculate NN potentials at (mπ,mN) "(701 MeV, 1583 MeV), (570 MeV,
1412 MeV) and (411 MeV,1215 MeV )[33] .

Fig. 9(Left) shows the NN local potentials obtained from the PACS-CS configurations at E " 0
and mπ = 701 MeV, which is compared with the previous quenched results at comparable pion mass
mπ " 731 MeV but at a " 0.137 fm, given in Fig. 9(Right). Both the repulsive core at short distance
and the tensor potential become significantly enhanced in full QCD. The attraction at medium distance
tends to be shifted to outer region, while its magnitude remains almost unchanged. These differences
may be caused by dynamical quark effects. For more definite conclusion on this point, a more controlled

19

• both repulsive core at short distance and the tensor potential are enhanced in full QCD.

• the attraction at medium distance is shifted to outer region, while the magnitude remains 
almost unchanged.

• these differences may be caused by dynamical quark effects.

• a more controlled comparison is needed.

full QCD quenched QCD

a ! 0.091 fm a ! 0.137 fmL ! 2.9 fm L ! 4.4 fm
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Figure 10: (Left) 2+1 flavor QCD results for the spin-singlet central potential from the orbital A+
1

channel at three values of the pion mass. (Right) Scattering phase shifts in 1S0 channel from the
corresponding lattice potential given in (Left), together with the empirical one. Taken from Ref. [33].
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Figure 11: (Right) 2+1 flavor QCD results for the spin-triplet central potential VC(r)(1,0) from the
orbital A+

1 − T+
2 coupled channel at three values of the pion mass. (Left) The tensor potential VT (r) at

three values of the pion mass. Taken from Ref. [33].

comparison at the similar lattice spacing is needed.
In Fig. 10(Left), the spin-singlet central potential VC(r)(0,1) determined from the orbital A1 channel

is plotted at three pion masses, while the spin-triplet central potential VC(r)(1,0) and the tensor potential
VT (r) from the orbital A+

1 − T+
2 couple channel are given in Fig. 11. As in the quenched QCD, the

repulsive cores at short distance, the attractive pocket at medium distance and the strength of the
tensor potential are all enhanced as pion mass decreases.

The phase shifts of the NN scattering for 1S0 obtained from the above VC(r)(0,1) are given in
Fig. 10(Right). At low energy, the phase shift increases due to the attraction at medium distance,
while at high energy it decreases as a consequence of the repulsive core at short distance. The shape
of the scattering phase shift as the function of energy is qualitatively similar to but is much smaller in
magnitude than the experimental one, plotted by the black solid line in Fig. 10(Right). As discussed
before, the pion mass dependence is so large for the scattering phase shift that full QCD simulations at
physical pion mass are needed to reproduce the experimental behavior.

It is noted here that the ground state saturation has to be achieved to an accuracy of around 1
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comparison at the similar lattice spacing is needed.
In Fig. 10(Left), the spin-singlet central potential VC(r)(0,1) determined from the orbital A1 channel

is plotted at three pion masses, while the spin-triplet central potential VC(r)(1,0) and the tensor potential
VT (r) from the orbital A+

1 − T+
2 couple channel are given in Fig. 11. As in the quenched QCD, the

repulsive cores at short distance, the attractive pocket at medium distance and the strength of the
tensor potential are all enhanced as pion mass decreases.

The phase shifts of the NN scattering for 1S0 obtained from the above VC(r)(0,1) are given in
Fig. 10(Right). At low energy, the phase shift increases due to the attraction at medium distance,
while at high energy it decreases as a consequence of the repulsive core at short distance. The shape
of the scattering phase shift as the function of energy is qualitatively similar to but is much smaller in
magnitude than the experimental one, plotted by the black solid line in Fig. 10(Right). As discussed
before, the pion mass dependence is so large for the scattering phase shift that full QCD simulations at
physical pion mass are needed to reproduce the experimental behavior.

It is noted here that the ground state saturation has to be achieved to an accuracy of around 1
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tensor

central

central

phase shift

• both repulsive core and attractive pocket in the central increase as the pion mass decrease.

• the tensor potential also increases as the pion mass decreases.

• the phase shift is qualitatively similar in shape to but is much smaller in magnitude than 
experimental one. 

• simulations at physical point are needed.
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Octet Baryon interactions 
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• no phase shift available for  
  YN and YY scattering
• plenty of hyper-nucleus data will be
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5-1. Quenched result for NΞ potential
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Figure 12: (Left) The spin-singlet central potential for pΞ0 obtained from the orbital A+
1 channel at

mπ ! 368 MeV (circle) and mπ ! 511 MeV (box). The central part of the OPEP (F/(F +D) = 0.36) in
Eq. (48) is also given by solid line. (Right) The spin-triplet effective central potential from the orbital
A+

1 channel at mπ ! 368 MeV (triangle) and mπ ! 511 MeV (diamond), together with the OPEP (solid
line). Taken from Ref. [39].

MeV, which is about 0.05 % of the total mass of the two-nucleon system, in order to determine the
shift of the potential (E = k2/mN) at the same accuracy. The value of E has a strong influence on
the value of the scattering length. Such a high precision is not yet attained in full QCD calculations,
since significantly larger t and, accordingly, larger statistics are required. In Sec. 7 another method to
overcome this difficulty is considered.

5 Hyperon Interactions

Hyperon(Y ) potentials (hyperon-nucleon and hyperon-hyperon) serve as the starting point in studying
the hyper-nuclei physics. Properties of these potentials can also determine structures in the core of
neutron stars. In spite of their importance, only a limited knowledge for hyperon potentials is available
so far, since experimental data such as scattering phase shifts are difficult to obtain, due to the short
life time of hyperons. Therefore it is important to calculate hyperon potentials in lattice QCD by using
the potential method.

5.1 Quenched result for NΞ potentials

Since all octet-baryons and decuplet Ω are stable in the strong interaction, there are many hyperon
potentials in 2 + 1 flavor QCD. The method for the NN potentials can be straightforwardly applied to
the I = 1 NΞ channel, since pΞ is simply obtained from pn by replacing d-quark in the neutron with the
s-quark and it does not have strong decay into other channels. Unstable channels such as the I = 0 NΞ,
which can decay into ΛΛ in the strong interaction, will be discussed later. In addition, experimentally,
not much information has been available on the NΞ interaction except for a few studies: a recent report
gives the upper limit of elastic and inelastic cross sections[34] while earlier publications suggest weak
attractions of Ξ− nuclear interactions[35, 36, 37]. The Ξ−nucleus interactions will be soon studied as
one of the day-one experiments at J-PARC[38] via (K−, K+) reaction with nuclear target.

Ref. [39] gives the first quenched result for I = 1 NΞ potentials. Lattice parameters are same
as the quenched NN potential. In addition to two values of the light quark mass, the quenched
strange quark is introduced and is fixed to one value. The potential is calculated at (mπ,mN ,mΞ) =
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Figure 13: (Left) The spin-singlet central potential for NΛ obtained from the orbital A+
1 channel in 2+1

flavor QCD at mπ ! 414 MeV (red) and 699 MeV (green). (Right) The spin-triplet central potential
and the tensor potential for NΛ obtained from the orbital A+

1 −T+
2 coupled channel in 2+1 flavor QCD

at mπ ! 414 MeV (red and blue) and 699 MeV (green and magenta). Taken from Ref. [41].

(511(1)MeV, 1300(4)MeV, 1419(4)MeV) (from 1000 configurations) and (368(1)MeV, 1167(7)MeV, 1383(6)MeV)
(from 1283 configurations), using the NBS wave function with the interpolation operators defined by

pα(x) = εabc(u
a(x)Cγ5d

b(x))uc
α(x), Ξ0

α(x) = εabc(u
a(x)Cγ5s

b(x))sc
α(x). (47)

Since both p and Ξ0 have (I, Iz) = 1/2, 1/2, pΞ0 system has I = 1 with the strange S = −2.
The left (right) of Fig. 12 gives the (effective) central potential of the pΞ0 system obtained from the

L = A1 representation for the spin-singlet (triplet) at mπ = 511 MeV and 368 MeV. Potentials in the
I = 1 NΞ system for both channels show a repulsive core at r ≤ 0.5 fm surrounded by an attractive
well, similar to the NN systems. In contrast to the NN case, however, the repulsive core of the pΞ0

potential in the spin-singlet channel is substantially stronger than in the triplet channel. The attraction
in the medium to long distance region( 0.6 fm ≤ r ≤ 1.2 fm ) is similar in both channels. The hight
of the repulsive core increases as the light quark mass decreases, while the significant difference is not
seen for the attraction in the medium to long distance within statistical errors. Potentials in Fig. 12
are weakly attractive on the whole in both spin channels at both pion masses, in spite of the repulsive
core at short distance, though the attraction in the triplet is a little stronger than that in the singlet.

The solid lines in Fig. 12 are the one-pion exchange potential (OPEP), given by

V π
C = −(1 − 2α)

g2
πNN

4π

(%τN · %τΞ)(%σN · %σΞ)

3

(
mπ

2mN

)2 e−mπr

r
(48)

with (mπ, mN) = (368MeV, 1167MeV), where the pseudo-vector πΞΞ coupling fπΞΞ is related with the
πNN coupling as fπΞΞ = −fπNN(1 − 2α) with the parameter α = F/(F + D), and gπNN = fπNN

mπ
2mN

.
The empirical vales, α ! 0.36 and gπNN/(4π) ! 14.0, are used for the plot. Unlike the NN potential,
the OPEP in the present case has opposite sign between spin-singlet channel and spin-triplet channel.
In addition, the absolute magnitude is smaller due to the factor 1−2α. No clear signature of the OPEP
at long distance (r ≥ 1.2 fm) is observed in Fig. 12 within statistical errors. Furthermore, there is
clear departure from the OPEP at medium distance (0.6 fm ≤ r ≤ 1.2 fm) in both channels. These
observations may suggest an existence of state-independent attraction.

5.2 Full and quenched QCD results for NΛ potentials

Spectroscopic studies of the Λ and Σ hypernuclei, carried out both experimentally and theoretically,
suggest that the Λ-nucleus interaction is attractive while the Σ-nucleus interaction is repulsive. If this
is the case, the Λ particle would be the first strange baryon instead of Σ− to appear in the core of

22

• clear spin dependence

• quark mass dependence is weaker than NN.

• No clear signature of one-pion exchange 

• state-independent attraction ?

Spin-singlet Spin-triplet

2011年3月15日火曜日



5-2. Full and quenched QCD result for NΛ potential
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Figure 13: (Left) The spin-singlet central potential for NΛ obtained from the orbital A+
1 channel in 2+1

flavor QCD at mπ ! 414 MeV (red) and 699 MeV (green). (Right) The spin-triplet central potential
and the tensor potential for NΛ obtained from the orbital A+

1 −T+
2 coupled channel in 2+1 flavor QCD

at mπ ! 414 MeV (red and blue) and 699 MeV (green and magenta). Taken from Ref. [41].

(511(1)MeV, 1300(4)MeV, 1419(4)MeV) (from 1000 configurations) and (368(1)MeV, 1167(7)MeV, 1383(6)MeV)
(from 1283 configurations), using the NBS wave function with the interpolation operators defined by

pα(x) = εabc(u
a(x)Cγ5d

b(x))uc
α(x), Ξ0

α(x) = εabc(u
a(x)Cγ5s

b(x))sc
α(x). (47)

Since both p and Ξ0 have (I, Iz) = 1/2, 1/2, pΞ0 system has I = 1 with the strange S = −2.
The left (right) of Fig. 12 gives the (effective) central potential of the pΞ0 system obtained from the

L = A1 representation for the spin-singlet (triplet) at mπ = 511 MeV and 368 MeV. Potentials in the
I = 1 NΞ system for both channels show a repulsive core at r ≤ 0.5 fm surrounded by an attractive
well, similar to the NN systems. In contrast to the NN case, however, the repulsive core of the pΞ0

potential in the spin-singlet channel is substantially stronger than in the triplet channel. The attraction
in the medium to long distance region( 0.6 fm ≤ r ≤ 1.2 fm ) is similar in both channels. The hight
of the repulsive core increases as the light quark mass decreases, while the significant difference is not
seen for the attraction in the medium to long distance within statistical errors. Potentials in Fig. 12
are weakly attractive on the whole in both spin channels at both pion masses, in spite of the repulsive
core at short distance, though the attraction in the triplet is a little stronger than that in the singlet.

The solid lines in Fig. 12 are the one-pion exchange potential (OPEP), given by

V π
C = −(1 − 2α)

g2
πNN

4π

(%τN · %τΞ)(%σN · %σΞ)

3

(
mπ

2mN

)2 e−mπr

r
(48)

with (mπ, mN) = (368MeV, 1167MeV), where the pseudo-vector πΞΞ coupling fπΞΞ is related with the
πNN coupling as fπΞΞ = −fπNN(1 − 2α) with the parameter α = F/(F + D), and gπNN = fπNN

mπ
2mN

.
The empirical vales, α ! 0.36 and gπNN/(4π) ! 14.0, are used for the plot. Unlike the NN potential,
the OPEP in the present case has opposite sign between spin-singlet channel and spin-triplet channel.
In addition, the absolute magnitude is smaller due to the factor 1−2α. No clear signature of the OPEP
at long distance (r ≥ 1.2 fm) is observed in Fig. 12 within statistical errors. Furthermore, there is
clear departure from the OPEP at medium distance (0.6 fm ≤ r ≤ 1.2 fm) in both channels. These
observations may suggest an existence of state-independent attraction.

5.2 Full and quenched QCD results for NΛ potentials

Spectroscopic studies of the Λ and Σ hypernuclei, carried out both experimentally and theoretically,
suggest that the Λ-nucleus interaction is attractive while the Σ-nucleus interaction is repulsive. If this
is the case, the Λ particle would be the first strange baryon instead of Σ− to appear in the core of
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Figure 14: (Left) The spin-singlet central potential for NΛ obtained from the orbital A+
1 channel in

quenched QCD at mπ ! 407 MeV (red) and 512 MeV (green). (Right) The spin-triplet central potential
and the tensor potential for NΛ obtained from the orbital A+

1 − T+
2 coupled channel in quenched QCD

at mπ ! 407 MeV (red and blue) and 512 MeV (green and magenta). Taken from Ref. [41].

the neutron stars[40]. It is therefore interesting and important to investigate the nature of the NΛ
interaction in lattice QCD, by calculating the NΛ potential in the method of this report. Since the Λ
is the lightest hyperon, the NΛ potential can be calculated as in the case of NN potentials.

In Ref. [41], the NΛ potentials are calculated in both full and quenched QCD. The 2+1 flavor full
QCD gauge configurations generated by the PACS-CS collaboration are employed for the calculations of
the potentials on a 323×64 lattice at a = 0.091(1) fm, while in the quenched calculation, the potentials
are obtained on a 323 × 48 lattice at a = 0142(1) fm. Numerical values for some hadron masses for
these calculation are given in Table 4, together with some lattice parameters.

Fig. 13 shows the NΛ potentials obtained from 2+1 flavor QCD calculations as a function of r at
mπ ! 699 MeV and 414 MeV. The spin-singlet central potential obtained from the J = A1 channel is
plotted in the left, while the spin-triplet central potential and the tensor potential obtained from the
J = T+

1 channel are given in the right. The central potential multiplied by volume factor (r2VC(r)) is
also shown in the left panel in addition to the VC(r) itself in the right panel, in order to compare the
strength of the repulsion between two quark masses.

As can be seen in Fig. 13, the attractive well of the central potentials moves to outer region as the
light quark mass decreases, while the depth of these attractive pockets does not change so much. The
present results show that the tensor force is weaker than the NN case in Fig.9. Moreover the quark
mass dependence of the tensor force seems small. Both repulsive and attractive parts of the central
potentials increase in magnitude as the light quark mass decreases.

Fig. 14 shows the NΛ potentials in quenched QCD calculations at mπ ! 512 MeV and 407 MeV.
The central potential in the spin-singlet channel from J = A1 is in the left, while the central and
the tensor potential in the triplet channel from J = T1 are in the right. Qualitative features of these
potentials are more or less similar to those in full QCD: the attractive pocket of the central potentials
moves to longer distance region as the quark mass decreases while the quark mass dependence of the
tensor potential is small.

5.3 Flavor SU(3) limit

In order to unravel the nature of the various channels in the hyperon interactions, it is more convenient
to consider an idealized flavor SU(3) symmetric world, where u, d and s quarks are all degenerate with
a common finite mass. In the flavor SU(3) limit, one may capture essential features of the interaction,
in particular, the short range force without contamination from the quark mass difference. Calculations
in the SU(3) limit allow us to extract potentials for irreducible flavor multiplets: Potentials between
asymptotic baryon states are obtained by the recombination of the multiplets with suitable Clebsh-
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full QCD

quenched QCD

Spin-singlet Spin-tripleta ! 0.091 fm

a ! 0.137 fm

L ! 2.9 fm

L ! 4.4 fm

• attractive well moves to outer region but depth remains the same as pion mass decreases.

• tensor force: weaker than NN. quark mass dependence is also weak.

• repulsive core and the attractive well increase as pion mass decreases. Net attractions.

• full and quenched QCD are more or less similar.

2011年3月15日火曜日



5-3. Flavor SU(3) limit mu = md = ms

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)
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Potentials in full QCD
a=0.12 fm, L=2 fm

Inoue et al. (HAL QCD Coll.), PTP124(2010)591 
BG/L@KEK
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27, 10*: channels NN belongs to
same behaviors as NN potentials

Spin-triplet

flavor multiplet baryon pair (isospin)
27 {NN}(I=1), {NΣ}(I=3/2), {ΣΣ}(I=2),

{ΣΞ}(I=3/2), {ΞΞ}(I=1)
8s none
1 none

10∗ [NN](I=0), [ΣΞ](I=3/2)
10 [NΣ](I=3/2), [ΞΞ](I=0)
8a [NΞ](I=0)

Table 5: Baryon pairs in an irreducible flavor SU(3) representation, where {BB′} and [BB′] denotes
BB′ + B′B and BB′ − B′B, respectively.

respectively. Both have a repulsive core at short distance with an attractive pocket around 0.6 fm. These
qualtative features are consistent with the previous results found for the NN potential in both quenched
and full QCD. The upper-right panel of Fig. 16 shows that V (10)(r) has a stronger repulsive core and
a weaker attractive pocket than V (27,10)(r). Furthermore V (8s)(r) in the upper-left panel of Fig. 16 has
a very strong repulsive core among all 6 channels, while V (8a(r) in the lower-right panel has a very
weak repulsive core. In contrast to all other cases, V (1)(r) shows attraction instead of repulsion at all
distances, as shown in the lower-left panel.

Above features are consistent with what has been observed in phenomenological quark model[44]. In
particular, the potential in the 8s channel in quark model becomes strongly repulsive at short distance
since the six quarks cannot occupy the same orbital state due to the Pauli exclusion for quarks. On
the other hand, the potential in the 1 channel does not suffer from the quark Pauli exclusion and can
become attractive due to the short-range gluon exchange. Such agreements between the lattice data
and the phenomenological model suggest that the quark Pauli exclusion plays an essential role for the
repulsive core in BB systems.

The BB potentials in the baryon basis can be obtained from those in the SU(3) basis by the unitary
rotation as

Vij(r) =
∑

X

UiXV (X)(r)U †
Xj (52)

where U is an unitary matrix which rotate the flavor basis |X〉 to baryon basis |i〉, i.e. |i〉 = UiX |X〉.
The explicit forms of the unitary matrix U in terms of the CG coefficients are given in Appendix B.

In Fig. 17, as characteristic examples, let us show the spin-singlet potentials for S=−2, I=0 channel
determined from the orbital A+

1 representation at mπ = 835 MeV. To obtain Vij(r), the potentials in
the SU(3) basis are fitted by the following form with five parameters b1,2,3,4,5,

V (r) = b1e
−b2 r2

+ b3(1 − e−b4 r2
)

(
e−b5 r

r

)2

. (53)

Then the right hand side of Eq. (52) is used to obtain the potentials in the baryon basis. The left panel
of Fig. 17 shows the diagonal part of the potentials. The strong repulsion in the 8s channel is reflected
most in the ΣΣ(I=0) potential due to its largest CG coefficient among three channels. The strong
attraction in the 1 channel is reflected most in the NΞ(I=0) potential due to its largest CG coefficient.
Nevertheless, all three diagonal potentials have repulsive core originating from the 8s component. The
right panel of Fig. 17 shows the off-diagonal part of the potentials which are comparable in magnitude
to the diagonal ones. Since the off-diagonal parts are not negligible in the baryon basis, full coupled
channel analysis is necessary to study observables. A similar situation holds even in (2+1)-flavors where
the strange quark is heavier than up and down quarks: The SU(3) basis with approximately diagonal

26
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Figure 17: BB potentials in baryon basis for S=−2, I=0, 1S0 sector. Three diagonal(off-diagonal)
potentials are shown in left(right) panel. Taken from Ref. [43].

potentials is useful for obtaining essential features of the BB interactions, while the baryon basis with
substantial magnitude of the off-diagonal potentials is necessary for practical applications.

Other potentials in baryon basis are given in Ref. [43]. Since the 8s state does not couple to the
spin-triplet channel, the repulsive cores in the spin-triplet channel are relatively small. The off-diagonal
potentials are not generally small: For example, the NΛ-NΣ potential in the spin-triplet channel
is comparable in magnitude at short distances with the diagonal NΛ-NΛ and NΣ-NΣ potentials.
Although all quark masses of 3 flavors are degenerate and rather heavy in these simulations, the coupled
channel potentials in the baryon basis may give useful hints for the behavior of hyperons (Λ, Σ and Ξ)
in hyper-nuclei and in neutron stars [45, 46].

The flavor singlet channel has attraction for all distances, which might produce the bound state, the
H-dibaryon, in this channel. The present data, however, are not sufficient to make a definite conclusion
on the H-dibaryon, since the single lattice with small extension L " 2 fm is employed. In order to
investigate whether the H-dibaryon exists or not in the flavor SU(3) limit, data on several different
volumes are needed. Such a study on the H-dibaryon will be discussed in Sec. 7.

In order to extend the study in the flavor SU(3) limit to the real world where the strange quark is
much heavier than light quarks, the potential method used so far has to be extended to more general
cases, which will also be considered in Sec. 7.
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flavor multiplet baryon pair (isospin)
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{ΣΞ}(I=3/2), {ΞΞ}(I=1)
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1 none

10∗ [NN](I=0), [ΣΞ](I=3/2)
10 [NΣ](I=3/2), [ΞΞ](I=0)
8a [NΞ](I=0)

Table 5: Baryon pairs in an irreducible flavor SU(3) representation, where {BB′} and [BB′] denotes
BB′ + B′B and BB′ − B′B, respectively.

respectively. Both have a repulsive core at short distance with an attractive pocket around 0.6 fm. These
qualtative features are consistent with the previous results found for the NN potential in both quenched
and full QCD. The upper-right panel of Fig. 16 shows that V (10)(r) has a stronger repulsive core and
a weaker attractive pocket than V (27,10)(r). Furthermore V (8s)(r) in the upper-left panel of Fig. 16 has
a very strong repulsive core among all 6 channels, while V (8a(r) in the lower-right panel has a very
weak repulsive core. In contrast to all other cases, V (1)(r) shows attraction instead of repulsion at all
distances, as shown in the lower-left panel.

Above features are consistent with what has been observed in phenomenological quark model[44]. In
particular, the potential in the 8s channel in quark model becomes strongly repulsive at short distance
since the six quarks cannot occupy the same orbital state due to the Pauli exclusion for quarks. On
the other hand, the potential in the 1 channel does not suffer from the quark Pauli exclusion and can
become attractive due to the short-range gluon exchange. Such agreements between the lattice data
and the phenomenological model suggest that the quark Pauli exclusion plays an essential role for the
repulsive core in BB systems.

The BB potentials in the baryon basis can be obtained from those in the SU(3) basis by the unitary
rotation as

Vij(r) =
∑

X

UiXV (X)(r)U †
Xj (52)

where U is an unitary matrix which rotate the flavor basis |X〉 to baryon basis |i〉, i.e. |i〉 = UiX |X〉.
The explicit forms of the unitary matrix U in terms of the CG coefficients are given in Appendix B.

In Fig. 17, as characteristic examples, let us show the spin-singlet potentials for S=−2, I=0 channel
determined from the orbital A+

1 representation at mπ = 835 MeV. To obtain Vij(r), the potentials in
the SU(3) basis are fitted by the following form with five parameters b1,2,3,4,5,

V (r) = b1e
−b2 r2

+ b3(1 − e−b4 r2
)

(
e−b5 r

r

)2

. (53)

Then the right hand side of Eq. (52) is used to obtain the potentials in the baryon basis. The left panel
of Fig. 17 shows the diagonal part of the potentials. The strong repulsion in the 8s channel is reflected
most in the ΣΣ(I=0) potential due to its largest CG coefficient among three channels. The strong
attraction in the 1 channel is reflected most in the NΞ(I=0) potential due to its largest CG coefficient.
Nevertheless, all three diagonal potentials have repulsive core originating from the 8s component. The
right panel of Fig. 17 shows the off-diagonal part of the potentials which are comparable in magnitude
to the diagonal ones. Since the off-diagonal parts are not negligible in the baryon basis, full coupled
channel analysis is necessary to study observables. A similar situation holds even in (2+1)-flavors where
the strange quark is heavier than up and down quarks: The SU(3) basis with approximately diagonal
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3. S=−2, I=0, spin-singlet.
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4. S=−2, I=1, spin-singlet.
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5. S=−2, I=1, spin-triplet.
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6. S=−3, I=1/2, spin-singlet.
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7. S=−3, I=1/2, spin-triplet.
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6-1. Operator Product Expansion(OPE) and repulsive core
6.1 OPE and repulsive core

Let us first explain the basic idea. We consider the equal time NBS wave function defined by

ϕE
AB(r) = 〈0|T{OA(r/2, 0)OB(−r/2, 0)}|E〉, (54)

where |E〉 is some eigenstate of a certain system with total energy E, and OA, OB are some operators
of this system. (We suppress other quantum numbers of the state |E〉 for simplicity.) The OPE reads

OA(r/2, 0)OB(−r/2, 0) $
∑

C

DC
AB(r)OC(0, 0), (55)

Suppose that the coefficient function of the OPE behaves in the small r(= |r|) limit as

DC
AB(r) $ rαC (− log r)βCfC(θ,φ), (56)

where θ,φ are the angles of r, the NBS wave function becomes

ϕE
AB(r) $

∑

C

rαC (− log r)βCfC(θ,φ)DC(E), (57)

where

DC(E) = 〈0|OC(0, 0)|E〉. (58)

The potential at short distances can be calculated from this expression. For example, in the case of the
Ising field theory in two dimensions, the OPE for the spin field σ is given by

σ(x, 0)σ(0, 0) $ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (59)

where O1(x) (=: ψ̄ψ(x) : in terms of free fermion fields) is an operator of dimension one. This leads to

ϕ(r, E) $ r3/4D(E) + O(r7/4), D(E) = c〈0|O1(0)|E〉, (60)

where |E〉 is a two-particle state with energy E = 2
√

k2 + m2. From this expression the potential
becomes

V (r) =
ϕ′′(r, E) + k2ϕ(r, E)

mϕ(r, E)
$ − 3

16

1

mr2
(61)

in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short distance but
also its coefficient −3/16. Furthermore the potential at short distance does not depend on the energy
of the state in this example[28, 50].

In QCD the dominant terms at short distance have αC = 0. Among these terms, we assume that
C has the largest contribution such that βC > βC′ for ∀C ′ (= C. Since such dominant operators with
αC = 0 mainly couple to the zero angular momentum (L = 0) state, let us consider the NBS wave
function with L = 0. Applying ∇2 to this wave function, we obtain the following classification of the
short distance behavior of the potential.

(1) βC (= 0: The potential at short distance is energy independent and becomes

V (r) $ − βC

mr2(− log r)
, (62)

which is attractive for βC > 0 and repulsive for βC < 0.
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ex: Ising field theory in 2-dim.
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Ising field theory in two dimensions, the OPE for the spin field σ is given by

σ(x, 0)σ(0, 0) $ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (59)

where O1(x) (=: ψ̄ψ(x) : in terms of free fermion fields) is an operator of dimension one. This leads to

ϕ(r, E) $ r3/4D(E) + O(r7/4), D(E) = c〈0|O1(0)|E〉, (60)

where |E〉 is a two-particle state with energy E = 2
√

k2 + m2. From this expression the potential
becomes

V (r) =
ϕ′′(r, E) + k2ϕ(r, E)

mϕ(r, E)
$ − 3
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in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short distance but
also its coefficient −3/16. Furthermore the potential at short distance does not depend on the energy
of the state in this example[28, 50].

In QCD the dominant terms at short distance have αC = 0. Among these terms, we assume that
C has the largest contribution such that βC > βC′ for ∀C ′ (= C. Since such dominant operators with
αC = 0 mainly couple to the zero angular momentum (L = 0) state, let us consider the NBS wave
function with L = 0. Applying ∇2 to this wave function, we obtain the following classification of the
short distance behavior of the potential.

(1) βC (= 0: The potential at short distance is energy independent and becomes

V (r) $ − βC

mr2(− log r)
, (62)

which is attractive for βC > 0 and repulsive for βC < 0.
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Let us first explain the basic idea. We consider the equal time NBS wave function defined by
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AB(r) = 〈0|T{OA(r/2, 0)OB(−r/2, 0)}|E〉, (54)

where |E〉 is some eigenstate of a certain system with total energy E, and OA, OB are some operators
of this system. (We suppress other quantum numbers of the state |E〉 for simplicity.) The OPE reads
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DC
AB(r) $ rαC (− log r)βCfC(θ,φ), (56)
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where
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The potential at short distances can be calculated from this expression. For example, in the case of the
Ising field theory in two dimensions, the OPE for the spin field σ is given by

σ(x, 0)σ(0, 0) $ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (59)

where O1(x) (=: ψ̄ψ(x) : in terms of free fermion fields) is an operator of dimension one. This leads to

ϕ(r, E) $ r3/4D(E) + O(r7/4), D(E) = c〈0|O1(0)|E〉, (60)

where |E〉 is a two-particle state with energy E = 2
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in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short distance but
also its coefficient −3/16. Furthermore the potential at short distance does not depend on the energy
of the state in this example[28, 50].

In QCD the dominant terms at short distance have αC = 0. Among these terms, we assume that
C has the largest contribution such that βC > βC′ for ∀C ′ (= C. Since such dominant operators with
αC = 0 mainly couple to the zero angular momentum (L = 0) state, let us consider the NBS wave
function with L = 0. Applying ∇2 to this wave function, we obtain the following classification of the
short distance behavior of the potential.

(1) βC (= 0: The potential at short distance is energy independent and becomes

V (r) $ − βC

mr2(− log r)
, (62)

which is attractive for βC > 0 and repulsive for βC < 0.
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where |E〉 is some eigenstate of a certain system with total energy E, and OA, OB are some operators
of this system. (We suppress other quantum numbers of the state |E〉 for simplicity.) The OPE reads
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DC
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rαC (− log r)βCfC(θ,φ)DC(E), (57)

where

DC(E) = 〈0|OC(0, 0)|E〉. (58)

The potential at short distances can be calculated from this expression. For example, in the case of the
Ising field theory in two dimensions, the OPE for the spin field σ is given by

σ(x, 0)σ(0, 0) $ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (59)

where O1(x) (=: ψ̄ψ(x) : in terms of free fermion fields) is an operator of dimension one. This leads to

ϕ(r, E) $ r3/4D(E) + O(r7/4), D(E) = c〈0|O1(0)|E〉, (60)

where |E〉 is a two-particle state with energy E = 2
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k2 + m2. From this expression the potential
becomes

V (r) =
ϕ′′(r, E) + k2ϕ(r, E)
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$ − 3
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in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short distance but
also its coefficient −3/16. Furthermore the potential at short distance does not depend on the energy
of the state in this example[28, 50].

In QCD the dominant terms at short distance have αC = 0. Among these terms, we assume that
C has the largest contribution such that βC > βC′ for ∀C ′ (= C. Since such dominant operators with
αC = 0 mainly couple to the zero angular momentum (L = 0) state, let us consider the NBS wave
function with L = 0. Applying ∇2 to this wave function, we obtain the following classification of the
short distance behavior of the potential.

(1) βC (= 0: The potential at short distance is energy independent and becomes

V (r) $ − βC

mr2(− log r)
, (62)

which is attractive for βC > 0 and repulsive for βC < 0.
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QCD case αC = 0 consider L=0 case

Take βC > βC′ for ∀C ′ "= C

(1) βC >!= 0

6.1 OPE and repulsive core

Let us first explain the basic idea. We consider the equal time NBS wave function defined by

ϕE
AB(r) = 〈0|T{OA(r/2, 0)OB(−r/2, 0)}|E〉, (54)

where |E〉 is some eigenstate of a certain system with total energy E, and OA, OB are some operators
of this system. (We suppress other quantum numbers of the state |E〉 for simplicity.) The OPE reads

OA(r/2, 0)OB(−r/2, 0) $
∑

C

DC
AB(r)OC(0, 0), (55)

Suppose that the coefficient function of the OPE behaves in the small r(= |r|) limit as

DC
AB(r) $ rαC (− log r)βCfC(θ,φ), (56)

where θ,φ are the angles of r, the NBS wave function becomes

ϕE
AB(r) $

∑

C

rαC (− log r)βCfC(θ,φ)DC(E), (57)

where

DC(E) = 〈0|OC(0, 0)|E〉. (58)

The potential at short distances can be calculated from this expression. For example, in the case of the
Ising field theory in two dimensions, the OPE for the spin field σ is given by

σ(x, 0)σ(0, 0) $ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (59)

where O1(x) (=: ψ̄ψ(x) : in terms of free fermion fields) is an operator of dimension one. This leads to

ϕ(r, E) $ r3/4D(E) + O(r7/4), D(E) = c〈0|O1(0)|E〉, (60)

where |E〉 is a two-particle state with energy E = 2
√

k2 + m2. From this expression the potential
becomes

V (r) =
ϕ′′(r, E) + k2ϕ(r, E)

mϕ(r, E)
$ − 3

16

1

mr2
(61)

in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short distance but
also its coefficient −3/16. Furthermore the potential at short distance does not depend on the energy
of the state in this example[28, 50].

In QCD the dominant terms at short distance have αC = 0. Among these terms, we assume that
C has the largest contribution such that βC > βC′ for ∀C ′ (= C. Since such dominant operators with
αC = 0 mainly couple to the zero angular momentum (L = 0) state, let us consider the NBS wave
function with L = 0. Applying ∇2 to this wave function, we obtain the following classification of the
short distance behavior of the potential.

(1) βC (= 0: The potential at short distance is energy independent and becomes

V (r) $ − βC

mr2(− log r)
, (62)

which is attractive for βC > 0 and repulsive for βC < 0.

28

universal at short distance

attractive for βC > 0

repulsive for βC < 0

largest

(2) βC = 0(2) βC = 0: In this case the potential becomes

V (r) ! DC′(E)

DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
AB(R, 0, 0, µ), (65)

where β(1) =
1

16π2

(
11 − 2Nf

3

)
is the QCD beta-function at 1-loop, and

γC,(1)
AB = γ(1)

C − γ(1)
A − γ(1)

B ≡ 1

48π2
γ. (66)

Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above

expression, βC is given by βC =
γC,(1)

AB

2β(1)
.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)

29

the second largest βC′

universalE-dependent
non-universal

Note that the potential does not diverge even at r=0 due to the lattice artifact in lattice QCD.
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6-2. Renormalization Group and perturbation theory

1-loop calculation becomes exact at short distance in QCD due to the asymptotic freedom.

OPE

(2) βC = 0: In this case the potential becomes

V (r) ! DC′(E)

DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
AB(R, 0, 0, µ), (65)

where β(1) =
1
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(
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3

)
is the QCD beta-function at 1-loop, and

γC,(1)
AB = γ(1)

C − γ(1)
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B ≡ 1

48π2
γ. (66)

Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above

expression, βC is given by βC =
γC,(1)

AB

2β(1)
.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)
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(2) βC = 0: In this case the potential becomes
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DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
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DC
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where β(1) =
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Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC
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in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above
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γC,(1)
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.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by
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33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)
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where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
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Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above
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.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)

29

beta function

anomalous dimensions

(2) βC = 0: In this case the potential becomes
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DC(E)

−βC′
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(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
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1
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Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above

expression, βC is given by βC =
γC,(1)
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2β(1)
.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)
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(2) βC = 0: In this case the potential becomes
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DC(E)

−βC′
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(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
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where β(1) =
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is the QCD beta-function at 1-loop, and

γC,(1)
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A − γ(1)

B ≡ 1
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γ. (66)

Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC
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in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above
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.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as
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C (r) ! DC′(E)
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−βS
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, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)
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6-3. Results

2-flavors

3-flavors

(2) βC = 0: In this case the potential becomes

V (r) ! DC′(E)

DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
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in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above
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βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)

29

(2) βC = 0

Spin-singlet Spin-triplet

(2) βC = 0: In this case the potential becomes

V (r) ! DC′(E)

DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
AB(R, 0, 0, µ), (65)

where β(1) =
1

16π2

(
11 − 2Nf

3

)
is the QCD beta-function at 1-loop, and

γC,(1)
AB = γ(1)

C − γ(1)
A − γ(1)

B ≡ 1

48π2
γ. (66)

Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above

expression, βC is given by βC =
γC,(1)

AB

2β(1)
.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)

29

(2) βC = 0: In this case the potential becomes

V (r) ! DC′(E)

DC(E)

−βC′

mr2
(− log r)βC′−1 , (63)

where βC′ < 0 is the second largest exponent. The sign of the potential at short distance depends
on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at short distance. The
above classification hold at a # r # 1/ΛQCD, while the potential becomes finite even at r = 0 on the
lattice.

Since QCD is the asymptotic free theory, the 1-loop calculation for anomalous dimensions becomes
exact at short distance. The OPE in QCD is written as

OA(y/2)OB(−y/2) =
∑

C

DC
AB(r, g,m, µ)OC(0) (64)

where g (m) is the renormalized coupling constant (quark mass) at scale µ. In the limit that r = |y| =
e−tR → 0 ( t → ∞ with fixed R), the renormalization group analysis leads to

lim
r→0

DC
AB(r, g,m, µ) = (−2β(1)g2 log r)γC,(1)

AB /(2β(1))DC
AB(R, 0, 0, µ), (65)

where β(1) =
1

16π2

(
11 − 2Nf

3

)
is the QCD beta-function at 1-loop, and

γC,(1)
AB = γ(1)

C − γ(1)
A − γ(1)

B ≡ 1

48π2
γ. (66)

Here γ(1)
X is the 1-loop anomalous dimension of the operator OX . An appearance of DC

AB(R, 0, 0, µ)
in the right-hand side tells us that it is enough to know the OPE only at tree level. From the above

expression, βC is given by βC =
γC,(1)

AB

2β(1)
.

6.2 Two flavor case

We first consider the OPE for Nf = 2 QCD[47]. The 1-loop calculations show that the largest value of
βC is always zero for both spin-singlet and spin-triplet channels for Nf = 2 QCD and that the second
largest value of βC′ is given by

βS=0
C′ = − 6

33 − 2Nf
, βS=1

C′ = − 2

33 − 2Nf
, (67)

where S = 0, 1 denotes the total spin. This corresponds to the case (2) in the previous subsection.
Therefore the OPE and renormalization group analysis in QCD predicts the universal functional from
of the NN central potential at short distance as

V S
C (r) ! DC′(E)

DC(E)

−βS
C′(− log r)βS

C′−1

mNr2
, r → 0, (68)

which is a little weaker than 1/r2 singularity, while for the tensor potential we have

VT (r) ! 0 (69)

29

no divergence 
in tensor

X 27 8s 1 10 10 8a

γ(X) 0 6 12 0 0 4
Non-relativistic op. yes no yes yes yes yes

Table 6: The largest value of βC in unite of 1/(33 − 2Nf ) of 3-flavor QCD for each representation.
The last line indicates that the operator corresponding to the largest value of βC exists or not in the
non-relativistic limit.

at the 1-loop order.
The OPE, however, can not tell whether the potential at short distance is repulsive or attractive,

which is determined by the sign of the coefficient. If DX(E) and DY (E) are evaluated by the non-
relativistic quark model at the leading order, we obtain

DC′(E)

DC(E)
(S = 0) " DC′(E)

DC(E)
(S = 1) " 2. (70)

For both cases, the ratio has positive sign, which gives repulsion at short distance, the repulsive core.

6.3 Extension to three flavors

The above calculation has been extended to Nf = 3 QCD[49]. In the 3-flavor case, some channel may
become attractive at short distance since the Pauli exclusion principle is less significant than in the 2-
flavor case. Indeed the lattice QCD calculations in the flavor SU(3) limit shows the attractive potential
for the singlet channel, as seen in the previous section.

The largest value of βC is given for each X representation of the flavor SU(3) in unit of 1/(33−2Nf )
in the table 6, where we define

βC =
γ(X)

33 − 2Nf
. (71)

From the table, we observe that the largest value of βC is zero in the 27, 10 and 10 channels. This
is consistent with the nucleon case in the previous subsection, which belong to 27 (spin-singlet) and
10(spin-triplet). These three channels correspond to the case (2), so that the potentials are given by
eq. (63). On the other hand, the largest value of βC becomes positive in the 8s, 8a and 1 channels,
which correspond to the case (1). Therefore the (effective) central potential becomes attractive at short
distance as

V (X)
C (r) " − γ(X)

(33 − 2Nf )

1

mBr2(− log r)
, (72)

where mB is the octet baryon mass.
The attractive core of the potential in the flavor singlet channel agrees with the behavior of the

potential found for the numerical simulation of lattice QCD in the previous section, while for other two
channels, 8s and 8a, the prediction by the OPE disagrees with the lattice QCD results: The potential
in the 8s channel is most repulsive among 6 channels and the potential in the 8a channel still has
a repulsive core, which is however weaker than others. The disagreement between the OPE and the
lattice QCD result for the 8s channel may be understood by the fact that the no local 6 quark operator
exists for this channel in the non-relativistic limit, as shown in the table 6: the 8s operator with the
largest positive βC has a very small coefficient at low energy, so that the other operators with zero or
negative βC may still dominate at distance scale comparable to the lattice spacing a = 0.1 − 0.2 fm.
For the 8a case, the weakest repulsive core in the lattice QCD simulation suggests that the attraction

30
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7-1. Inelastic scatterings

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

inelastic due to the change of particle species

QCD eigenstate

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

NBS wave functions

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

from the leading operator with the positive βC may be cancelled by other contributions from the sub-
leading operators with zero or negative βC at the distance scale comparable to the lattice spacing of
the simulations. It is therefore important to confirm the prediction from the OPE, by investigating the
behavior of the repulsive core for each channel in the flavor SU(3) limit at finer lattice spacings and
hopefully in the continuum limit.

7 Extensions

In this section, recent extensions of the potential method are reviewed.

7.1 Inelastic scattering

The potential method discussed so far is shown to be quiet successful in order to describe elastic hadron
interactions. Hadron interactions in general, however, lead to inelastic scatterings as the total energy of
the system increases. In order to extract hadron interactions which describe such inelastic scatterings
from lattice QCD, the extension of the potential method is considered in this subsection.

Let us first discuss the case that A + B → C + D scattering where A,B,C, D represent some 1-
particle state. This is a simplified version of the octet baryon scattering in the strangeness S = −2 and
isospin I = 0 channel, where ΛΛ, NΞ and ΣΣ appear as asymptotic states of the strong interaction if
the total energy is larger than 2mΣ.

We here assume mA +mB < mC +mD < W , where W = EA
k +EB

k is the total energy of the system.

Here we define EX
k =

√
m2

X + k2. In this situation, the QCD eigen-state with the quantum number of
AB state and the center of mass energy W is expressed in general as

|W 〉 = cAB|AB, W 〉 + cCD|CD,W 〉 + · · · (73)

|AB, W 〉 = |A,k〉in ⊗ |B,−k〉in, |CD,W 〉 = |C, q〉in ⊗ |D,−q〉in, (74)

where W = EA
k + EB

k = EC
q + ED

q . We define the following NBS wave functions,

ϕAB(r, k)e−Wt = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|W 〉, (75)

ϕCD(r, q)e−Wt = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|W 〉. (76)

Using the partial wave decomposition such that4

ϕXY (r,k) = 4π
∑

l,m

ilϕ!
XY (r, k)Ylm(Ωr)Ylm(Ωk), (77)

the NBS wave function of the 2-channel system behaves for large r as

(
ϕ!

AB(r, k)
ϕ!

CD(r, q)

)

&
(

jl(kr) 0
0 jl(qr)

) (
cAB

cCD

)

+

(
nl(kr) + ijl(kr) 0
0 nl(qr) + ijl(qr)

)

× O(W )

(
eiδ1

l (W ) sin δ1
l (W ) 0

0 eiδ2
l (W ) sin δ2

l (W )

)

O−1(W )

(
cAB

cCD

)

, (78)

O(W ) =

(
cos θ(W ) − sin θ(W )
sin θ(W ) cos θ(W )

)

, (79)

4Here we ignore spins for simplicity.

31

partial wave decomposition

where δi
l(W ) is the scattering phase shift , whereas θ(W ) is the mixing angle. This expression shows

that the NBS wave function for large r agree with scattering waves described by two scattering phases
δi
l(W ) (i = 1, 2) and one mixing angle θ(W ). Because of this property, these wave functions satisfy

(∇2 + k2)ϕAB(r, k) = 0, (∇2 + q2)ϕCD(r, q) = 0 (80)

for r → ∞.
Let us now consider QCD in the finite volume V . In the finite volume, |AB,W 〉 and |CD, W 〉

are no longer eigen-states of the hamiltonian. True eigenvalues are shifted from W to Wi = W +
O(V −1) (i = 1, 2). By diagonalization method in lattice QCD simulations, it is relatively easy to
determine W1 and W2. With these values the Lüscher’s finite volume formula gives two conditions,
which, however, are insufficient to determine three observables, δ1

l , δ2
l and θ. An alternative approach

to extract three observables, δ1
l , δ2

l and θ, has been proposed in lattice QCD through the above NBS
wave functions[51, 52]. We consider the NBS wave functions at two different values of energy, W1 and
W2, in the finite volume:

ϕAB(r,ki)e
−Wit = 〈0|T{ϕA(x + r, t)ϕB(x, t)}|Wi〉 (81)

ϕCD(r, qi)e
−Wit = 〈0|T{ϕC(x + r, t)ϕD(x, t)}|Wi〉, i = 1, 2. (82)

We then define the coupled channel non-local potentials from the coupled channel Schrödinger equation
as

[
k2

i

2µAB
− H0

]

ϕAB(x,ki) =
∫

d3y UAB,AB(x; y) ϕAB(y,ki) +
∫

d3y UAB,CD(x; y) ϕCD(y, qi)

(83)
[

q2
i

2µCD
− H0

]

ϕCD(x,ki) =
∫

d3y UCD,AB(x; y) ϕAB(y,ki) +
∫

d3y UCD,CD(x; y) ϕCD(y, qi)

(84)

for i = 1, 2. As before the velocity expansion is introduce as

UXY,V Z(x; y) = VXY,V Z(x,∇)δ3(x − y) = [VXY,V Z(x) + O(∇)] δ3(x − y) (85)

and at the leading order of the expansion, we have

KAB(x, ki) ≡
[

k2
i

2µAB
− H0

]

ϕAB(x,ki) = VAB,AB(x) ϕAB(x,ki) + VAB,CD(x) ϕCD(x, qi)

(86)

KCD(x, qi) ≡
[

q2
i

2µCD
− H0

]

ϕCD(x,ki) = VCD,AB(x) ϕAB(x,ki) + VCD,CD(x) ϕCD(x, qi).

(87)

These equations for i = 1, 2 can be solved as
(

VAB,AB(x) VAB,CD(x)
VCD,AB(x) VCD,CD(x)

)

=

(
KAB(x,k1) KAB(x, k2)
KCD(x, q1) KCD(x, q2)

)

×
(

ϕAB(x,k1) ϕAB(x, k2)
ϕCD(x, q1) ϕCD(x, q2)

)−1

. (88)

Once we obtain the coupled channel local potentials VXY,V Z(x), we solve the coupled channel
Scrödinger equation in the infinite volume with some appropriate boundary condition such that the
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inelastic due to particle production

incoming wave has a definite ! and is consist of AB state only , in order to extract three observables
for each ! (δ1

l (W ), δ2
l (W ) and θ(W )) at all values of W . Of course, since VXY,V Z is the leading order

approximation in the velocity expansion of UXY,V Z(x; y), results for three observables δ1
l (W ), δ2

l (W )
and θ(W ) at W != W1,W2 are also approximated ones and might be different from the exact values.
By performing an additional extraction of VXY,V Z(x) at (W3,W4) != (W1,W2), we can test how good
the leading order approximation is.

The method considered above can be generalized to inelastic scattering where a number of particles
is not conserved. For illustration, let us consider the scattering A+B → A+B and A+B → A+B+C
where the total energy W satisfies mA + mB + mC < W < mA + mB + 2mC .

The following NBS wave functions at the center of mass system are used:

ϕW
AB(x)e−Wt = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|W 〉 (89)

ϕW
ABC(x,y)e−Wt = 〈0|T{ϕA

(
r + x +

y µBC

mC
, t

)
ϕB(r + y, t)ϕC(r, t)}|W 〉, (90)

where

|W 〉 = c1 |k〉in ⊗ |− k〉in + c2 |qx〉in ⊗
∣∣∣∣qy −

qxµBC

mC

〉

in
⊗

∣∣∣∣−qy −
qxµBC

mB

〉

in
(91)

with

W =
√

k2 + m2
A +

√
k2 + m2

B

=
√

q2
x + m2

A +

√

(qy −
qxµBC

mC
)2 + m2

B +

√

(qy +
qxµBC

mB
)2 + m2

C (92)

and 1/µAB = 1/mB + 1/mC . Here y = rB − rC is a relative coordinate between B and C with the
reduced mass µBC , while x = rA −RBC is the one between A and the center of mass of B and C with
RBC = (mBrB + mCrC)/(mB + mC).

We define the non-local potential from the coupled channel equations as

KW
AB(x) ≡

[
k2

2µAB
− HAB

0

]

ϕW
AB(x) =

∫
d3 z UAB,AB(x; z) ϕW

AB(z)

+
∫

d3 z d3 w UAB,ABC(x; z,w) ϕW
ABC(z, w) (93)

KW
ABC(x, y) ≡

[
q2

x

2µA,BC
+

q2
y

2µBC
− HA,BC

0 − HBC
0

]

ϕW
ABC(x,y) =

∫
d3 z UABC,AB(x, y; z)

× ϕW
AB(z) +

∫
d3 z d3 w UABC,ABC(x,y; z, w) ϕW

ABC(z,w)

where

HAB
0 = − ∇2

x

2µAB
, HA,BC

0 = − ∇2
x

2µA,BC
, HBC

0 = −
∇2

y

2µBC
(94)

with another reduced mass defined by 1/µA,BC = 1/mA + 1/(mB + mC).
We consider the following velocity expansions

UAB,AB(x; z) = [VAB,AB(x) + O(∇x)] δ3(x − z) (95)

UAB,ABC(x; z,w) = [VAB,ABC(x,w) + O(∇x)] δ3(x − z) (96)

UABC,AB(x,y; z) = [VAB,ABC(x,y) + O(∇x)] δ3(x − z) (97)

UABC,ABC(x,y; z,w) = [VABC,ABC(x,y) + O(∇x,∇y)] δ3(x − z)δ3(y − w), (98)
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with another reduced mass defined by 1/µA,BC = 1/mA + 1/(mB + mC).
We consider the following velocity expansions

UAB,AB(x; z) = [VAB,AB(x) + O(∇x)] δ3(x − z) (95)

UAB,ABC(x; z,w) = [VAB,ABC(x,w) + O(∇x)] δ3(x − z) (96)

UABC,AB(x,y; z) = [VAB,ABC(x,y) + O(∇x)] δ3(x − z) (97)

UABC,ABC(x,y; z,w) = [VABC,ABC(x,y) + O(∇x,∇y)] δ3(x − z)δ3(y − w), (98)
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where the unitarity of the non-local potentials gives VAB,ABC(x, y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
AB(x) = VAB,AB(x)ϕW

AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(
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)

=
(
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×
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. (101)

Using the unitarity relation that VAB,ABC(x, y) = VABC,AB(x, y), we can extract VAB,AB from the first
equation as

VAB,AB(x) =
1

ΨW
AB(x)

[
KW
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∫

d3 w VABC,AB(x,w)ΨW
ABC(x,w)

]
(102)

for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels for the (S, I) = (−2, 0) channel

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as

ϕWi
AB(r,ki

AB)e−Wit = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|Wi〉 (103)

for i = 0, 1, 2, where AB = ΛΛ, NΞ and ΣΣ, and ki
AB satisfies

Wi =
√

(ki
AB)2 + m2

A +
√

(ki
AB)2 + m2

B. (104)
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incoming wave has a definite ! and is consist of AB state only , in order to extract three observables
for each ! (δ1

l (W ), δ2
l (W ) and θ(W )) at all values of W . Of course, since VXY,V Z is the leading order

approximation in the velocity expansion of UXY,V Z(x; y), results for three observables δ1
l (W ), δ2

l (W )
and θ(W ) at W != W1,W2 are also approximated ones and might be different from the exact values.
By performing an additional extraction of VXY,V Z(x) at (W3,W4) != (W1,W2), we can test how good
the leading order approximation is.

The method considered above can be generalized to inelastic scattering where a number of particles
is not conserved. For illustration, let us consider the scattering A+B → A+B and A+B → A+B+C
where the total energy W satisfies mA + mB + mC < W < mA + mB + 2mC .

The following NBS wave functions at the center of mass system are used:

ϕW
AB(x)e−Wt = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|W 〉 (89)

ϕW
ABC(x,y)e−Wt = 〈0|T{ϕA

(
r + x +

y µBC

mC
, t

)
ϕB(r + y, t)ϕC(r, t)}|W 〉, (90)

where
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with
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mB
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C (92)

and 1/µAB = 1/mB + 1/mC . Here y = rB − rC is a relative coordinate between B and C with the
reduced mass µBC , while x = rA −RBC is the one between A and the center of mass of B and C with
RBC = (mBrB + mCrC)/(mB + mC).

We define the non-local potential from the coupled channel equations as
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[
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2µAB
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]
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∫
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+
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]
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where
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with another reduced mass defined by 1/µA,BC = 1/mA + 1/(mB + mC).
We consider the following velocity expansions

UAB,AB(x; z) = [VAB,AB(x) + O(∇x)] δ3(x − z) (95)

UAB,ABC(x; z,w) = [VAB,ABC(x,w) + O(∇x)] δ3(x − z) (96)

UABC,AB(x,y; z) = [VAB,ABC(x,y) + O(∇x)] δ3(x − z) (97)

UABC,ABC(x,y; z,w) = [VABC,ABC(x,y) + O(∇x,∇y)] δ3(x − z)δ3(y − w), (98)
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where the hermiticity of the non-local potentials gives VAB,ABC(x,y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
AB(x) = VAB,AB(x)ϕW

AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(

VABC,AB(x,y) VABC,ABC(x, y)
)

=
(

KW1
ABC(x,y) KW2

ABC(x,y)
)

×
(

ΨW1
AB(x) ΨW2

AB(x)
ΨW1

ABC(x,y) ΨW2
ABC(x, y)

)−1

. (101)

Using the hermiticity relation that VAB,ABC(x, y) = VABC,AB(x,y), we can extract VAB,AB from the
first equation as

VAB,AB(x) =
1

ΨW
AB(x)

[
KW

AB(x) −
∫

d3 w VABC,AB(x,w)ΨW
ABC(x,w)

]
(102)

for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels for the (S, I) = (−2, 0) channel

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as

ϕWi
AB(r,ki

AB)e−Wit = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|Wi〉 (103)

for i = 0, 1, 2, where AB = ΛΛ, NΞ and ΣΣ, and ki
AB satisfies

Wi =
√

(ki
AB)2 + m2

A +
√

(ki
AB)2 + m2

B. (104)
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7-2. S=-2, I=0  coupled channel

mN = 939 MeV, mΛ = 1116 MeV, mΣ = 1193 MeV, mΞ= 1318 MeV

S=-2 System(I=0)

MΛΛ = 2232 MeV < MNΞ = 2257 MeV < MΣΣ= 2386 MeV
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Figure 18: The coupled channel potential matrix from the NBS wave function for Set 1. The vertical
axis is the potential strength in unit of [MeV], while the horizontal axis is the relative distance between
two baryons in unit of [fm]. Taken from Ref. [53].

Using the notation that

Ki
AB(r) =

1

2µAB

(
∇2 + (ki

AB)2
)
ϕWi

AB(r, ki
AB) (105)

where 1/µAB = 1/mA + 1/mB, the coupled channel 3 × 3 potential matrix can be obtained as

VAB,CD(r) =
∑

i

Ki
AB(r)

[
ϕWi

CD(r,ki
CD)

]−1
. (106)

Here the last factor is the inverse of the 3 × 3 matrix ϕWi
CD(r,ki

CD) with indices i and CD.
Gauge configurations generated on a 163 × 32 lattice at a # 0.12 fm ( therefore L # 1.9 fm)

in 2+1-flavor full QCD simulation are employed to calculate the coupled channel potentials at three
different values of the light quark mass with the fixed bare strange quark mass[53]. Quark propagators
are calculated with the spatial wall source at t0 with the Dirichlet boundary condition in time at
t = t0 + 16. The wall source is placed at 16 different time slices on each gauge configuration, in order
to enhance the signals, together with the average over forward and backward propagations in time.
Corresponding hadron masses and number of gauge configurations are given in table 7.

The coupled channel potential matrix VAB,CD from the NBS wave function for Set 1 is shown in
Figure 18. We observe the flavor dependence of the height of repulsive core at short distance region:
The ΣΣ potential has the strongest repulsive core of these three channels. It is interesting to see that
off-diagonal parts of the potential matrix roughly satisfy the unitary relation that VAB,CD = VCD,AB

within statistical errors. We also observe that the off-diagonal parts are similar in magnitude for VΛΛ,ΣΣ

and VNΞ,ΣΣ, but are much smaller for VΛΛ,NΞ than others.
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where the hermiticity of the non-local potentials gives VAB,ABC(x,y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
AB(x) = VAB,AB(x)ϕW

AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(

VABC,AB(x,y) VABC,ABC(x, y)
)

=
(

KW1
ABC(x,y) KW2

ABC(x,y)
)

×
(

ΨW1
AB(x) ΨW2

AB(x)
ΨW1

ABC(x,y) ΨW2
ABC(x, y)

)−1

. (101)

Using the hermiticity relation that VAB,ABC(x, y) = VABC,AB(x,y), we can extract VAB,AB from the
first equation as

VAB,AB(x) =
1

ΨW
AB(x)

[
KW

AB(x) −
∫

d3 w VABC,AB(x,w)ΨW
ABC(x,w)

]
(102)

for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels with S = −2 and I = 0

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as

ϕWi
AB(r,ki

AB)e−Wit = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|Wi〉 (103)

for i = 0, 1, 2, where AB = ΛΛ, NΞ and ΣΣ, and ki
AB satisfies

Wi =
√

(ki
AB)2 + m2

A +
√

(ki
AB)2 + m2

B. (104)

34

NBS wave functions

0 0.5 1 1.5

0

1000

2000

3000

V
(r

)[
M

eV
]

r[fm]

ΛΛ−ΛΛ
V

0 0.5 1 1.5-100

0

100

200

300

0 0.5 1 1.5

0

1000

2000

3000

V
(r

)[
M

eV
]

r[fm]

ΝΞ−ΝΞ
V

0 0.5 1 1.5-100

0

100

200

300

0 0.5 1 1.5

0

1000

2000

3000

V
(r

)[
M

eV
]

r[fm]

ΣΣ−ΣΣ
V

0 0.5 1 1.5-100

0

100

200

300

0 0.5 1 1.5

-3000

-2000

-1000

0

V
(r

)[
M

eV
]

r[fm]

ΛΛ−ΝΞ
V

0 0.5 1 1.5-300

-200

-100

0

100

0 0.5 1 1.5

0

1000

2000

3000

V
(r

)[
M

eV
]

r[fm]

ΛΛ−ΣΣ
V

0 0.5 1 1.5-100

0

100

200

300

0 0.5 1 1.5

-3000

-2000

-1000

0

V
(r

)[
M

eV
]

r[fm]

ΝΞ−ΣΣ
V

0 0.5 1 1.5-300

-200

-100

0

100

Figure 18: The coupled channel potential matrix from the NBS wave function for Set 1. The vertical
axis is the potential strength in unit of [MeV], while the horizontal axis is the relative distance between
two baryons in unit of [fm]. Taken from Ref. [53].

Using the notation that

Ki
AB(r) =

1

2µAB

(
∇2 + (ki

AB)2
)
ϕWi

AB(r, ki
AB) (105)

where 1/µAB = 1/mA + 1/mB, the coupled channel 3 × 3 potential matrix can be obtained as

VAB,CD(r) =
∑

i

Ki
AB(r)

[
ϕWi

CD(r,ki
CD)

]−1
. (106)

Here the last factor is the inverse of the 3 × 3 matrix ϕWi
CD(r,ki

CD) with indices i and CD.
Gauge configurations generated on a 163 × 32 lattice at a # 0.12 fm ( therefore L # 1.9 fm)

in 2+1-flavor full QCD simulation are employed to calculate the coupled channel potentials at three
different values of the light quark mass with the fixed bare strange quark mass[53]. Quark propagators
are calculated with the spatial wall source at t0 with the Dirichlet boundary condition in time at
t = t0 + 16. The wall source is placed at 16 different time slices on each gauge configuration, in order
to enhance the signals, together with the average over forward and backward propagations in time.
Corresponding hadron masses and number of gauge configurations are given in table 7.

The coupled channel potential matrix VAB,CD from the NBS wave function for Set 1 is shown in
Figure 18. We observe the flavor dependence of the height of repulsive core at short distance region:
The ΣΣ potential has the strongest repulsive core of these three channels. It is interesting to see that
off-diagonal parts of the potential matrix roughly satisfy the unitary relation that VAB,CD = VCD,AB

within statistical errors. We also observe that the off-diagonal parts are similar in magnitude for VΛΛ,ΣΣ

and VNΞ,ΣΣ, but are much smaller for VΛΛ,NΞ than others.
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where the hermiticity of the non-local potentials gives VAB,ABC(x,y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
AB(x) = VAB,AB(x)ϕW

AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(

VABC,AB(x,y) VABC,ABC(x, y)
)

=
(

KW1
ABC(x,y) KW2

ABC(x,y)
)

×
(

ΨW1
AB(x) ΨW2

AB(x)
ΨW1
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)−1
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Using the hermiticity relation that VAB,ABC(x, y) = VABC,AB(x,y), we can extract VAB,AB from the
first equation as

VAB,AB(x) =
1

ΨW
AB(x)

[
KW

AB(x) −
∫

d3 w VABC,AB(x,w)ΨW
ABC(x,w)

]
(102)

for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels with S = −2 and I = 0

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as

ϕWi
AB(r,ki

AB)e−Wit = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|Wi〉 (103)

for i = 0, 1, 2, where AB = ΛΛ, NΞ and ΣΣ, and ki
AB satisfies

Wi =
√

(ki
AB)2 + m2

A +
√

(ki
AB)2 + m2
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where the hermiticity of the non-local potentials gives VAB,ABC(x,y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
AB(x) = VAB,AB(x)ϕW

AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(

VABC,AB(x,y) VABC,ABC(x, y)
)

=
(
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ABC(x,y) KW2
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)

×
(
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)−1
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Using the hermiticity relation that VAB,ABC(x, y) = VABC,AB(x,y), we can extract VAB,AB from the
first equation as

VAB,AB(x) =
1
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AB(x)

[
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d3 w VABC,AB(x,w)ΨW
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]
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for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels with S = −2 and I = 0

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as

ϕWi
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AB)e−Wit = 〈0|T{ϕA(r + x, t)ϕB(r, t)}|Wi〉 (103)

for i = 0, 1, 2, where AB = ΛΛ, NΞ and ΣΣ, and ki
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where the hermiticity of the non-local potentials gives VAB,ABC(x,y) = VABC,AB(x,y).
At the leading order of the velocity expansions, the coupled channel equations become

KW
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AB(x) +
∫

d3 w VAB,ABC(x,w)ϕW
ABC(x,w) (99)

KW
ABC(x, y) = VABC,AB(x,y)ϕW

AB(x) + VABC,ABC(x, y)ϕW
ABC(x,y). (100)

By considering two values of energy such that W = W1,W2, we can determine VABC,AB and VABC,ABC

from the second equation as
(
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=
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Using the hermiticity relation that VAB,ABC(x, y) = VABC,AB(x,y), we can extract VAB,AB from the
first equation as
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1
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[
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(102)

for W = W1,W2. A difference of VAB,AB(x) between two estimates at W1 and W2 gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain VAB,AB, VAB,ABC = VABC,AB and VABC,ABC , we can solve the coupled channel
Schrödinger equations in the infinite volume, in order to extract physical observables. As W increase
and becomes larger than mA+mB+nmC , the inelastic scattering A+B → A+B+nC becomes possible.
As in the case of A+B → A+B+C in the above, we can define the coupled channel potentials including
this channel, though calculations of the NBS wave functions for multi-hadron operators become more
and more difficult in practice.

7.2 Coupled channels with S = −2 and I = 0

As an application of the method in the previous subsection, we consider BB potentials for the S = −2
and I = 0 channel, which consist of the ΛΛ, NΞ and ΣΣ components in terms of low-lying octet baryons.
Mass differences of these components are quiet small such that 2mΛ = 2232 Mev, mN + mΣ = 2257
MeV and 2mΣ = 2386 MeV. Using diagonalized source operators in lattice QCD simulations, the NBS
wave functions should be extracted at three different values of energy as
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Figure 18: The coupled channel potential matrix from the NBS wave function for Set 1. The vertical
axis is the potential strength in unit of [MeV], while the horizontal axis is the relative distance between
two baryons in unit of [fm]. Taken from Ref. [53].

Using the notation that

Ki
AB(r) =

1

2µAB

(
∇2 + (ki

AB)2
)
ϕWi

AB(r, ki
AB) (105)

where 1/µAB = 1/mA + 1/mB, the coupled channel 3 × 3 potential matrix can be obtained as

VAB,CD(r) =
∑

i

Ki
AB(r)

[
ϕWi

CD(r,ki
CD)

]−1
. (106)

Here the last factor is the inverse of the 3 × 3 matrix ϕWi
CD(r,ki

CD) with indices i and CD.
Gauge configurations generated on a 163 × 32 lattice at a # 0.12 fm ( therefore L # 1.9 fm)

in 2+1-flavor full QCD simulation are employed to calculate the coupled channel potentials at three
different values of the light quark mass with the fixed bare strange quark mass[53]. Quark propagators
are calculated with the spatial wall source at t0 with the Dirichlet boundary condition in time at
t = t0 + 16. The wall source is placed at 16 different time slices on each gauge configuration, in order
to enhance the signals, together with the average over forward and backward propagations in time.
Corresponding hadron masses and number of gauge configurations are given in table 7.

The coupled channel potential matrix VAB,CD from the NBS wave function for Set 1 is shown in
Figure 18. We observe the flavor dependence of the height of repulsive core at short distance region:
The ΣΣ potential has the strongest repulsive core of these three channels. It is interesting to see that
off-diagonal parts of the potential matrix roughly satisfy the unitary relation that VAB,CD = VCD,AB

within statistical errors. We also observe that the off-diagonal parts are similar in magnitude for VΛΛ,ΣΣ

and VNΞ,ΣΣ, but are much smaller for VΛΛ,NΞ than others.
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Figure 19: Transition potentials in the flavor SU(3) IR basis. Red, blue and green symbols correspond
to results of Set1, Set2 and Set3, respectively. The result of the flavor SU(3) symmetric limit at the
same strange quark mass is also plotted with brown symbols [43]. Taken from Ref. [53].

In order to compare the results of potential matrix calculated in three configuration sets, we trans-
form the potentials from the particle basis to the flavor SU(3) irreducible representation (IR) basis
as

V IR = U †V U =




V1,1 V1,8 V1,27

V8,1 V8,8 V8,27

V27,1 V27,8 V27,27



 (107)

where U is an unitary transformation matrix whose explicit form is given in Appendix B. The potential
matrix in the IR basis is convenient and a good measure of the SU(3) breaking effect by comparing
three configuration sets since it should be diagonal in the SU(3) symmetric limit.

In Figure 19, the results of the potential matrix in the IR basis are compared among different
configuration sets, together with the one in the flavor SU(3) symmetric limit on top of the diagonal
parts of the potential matrix. As the pion mass decreases, the repulsive core in the V27,27 potential
increases. The V1,27 and V8,27 transition potentials are consistent with zero within error bar. On the
other hand, it is noteworthy that the flavor SU(3) symmetry breaking effect becomes manifest in the
V1,8 transition potential.

7.3 Time dependent method

One of practical difficulties for the extraction of the NBS wave function and the potential from the cor-
relation function Eq.(24) on the lattice is to satisfy the ground state saturation in numerical simulations
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7-3. Time dependent method
Ground state saturation should be satisfied for all r. 

It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)〈0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2〉 + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus 〈0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2〉
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}J (t0)|0〉 (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2〉〈2N, Wn, s1, s2|J (t0)|0〉

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = 〈2N,Wn, s1, s2|J (0)|0〉. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn!=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.
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methods usually give the consistent results within statistical errors, the first method (the t dependence
method) sometimes leads to the result different from those determined by the latter two (called the r
dependent method together) at the value of t−t0 usually employed in numerical simulations. Although,
in principle, the increase of t−t0 is needed in order to see an agreement between the t and r dependence
methods, it is difficult to increase it in practice due to larger statistical errors at larger t − t0 for the
two-baryon system.

In order to overcome this practical difficulty, the method to extract the potential from the NBS
wave function has been extended as follows. Let us consider the correlation function Eq.(24) again:

F (r, t) =
∑

W≤Wth

AW φW (r)e−Wt + O(e−Wtht). (108)

If t is large enough so that contributions from e−Wtht terms can be neglected5, we have

H0F (r, t) "
∑

W

AW

∫
d3r′[EW δ(3)(r − r′) − U(r, r′)]ϕW (r′)e−Wt (109)

where EW = k2
W /(2µ) = (W 2 − 4m2

N)/(4mN) with µ = mN/2. By using the non-relativistic approxi-

mation that W = 2
√

k2
W + m2

N = 2mN + k2
W /mN + O(k4

W /m3
N),

[

H0 +
d

dt
+ 2mN

]

F (r, t) = −
∫

d3r′U(r, r′)F (r, t) " −V LO(r)F (r, t) (110)

where the velocity expansion is introduced in the last line and higher other than the leading order terms
are omitted there. The leading order potential is therefore given by

V LO(r) = −

[
H0 + d

dt + 2mN

]
F (r, t)

F (r, t)
(111)

or

V LO(r) = −

[
H0 + d

dt

]
R(r, t)

R(r, t)
(112)

where R(r, t) = F (r, t)/e−2mN t. Here it is assumed that O(e−Wtht) contributions can be neglected for
large t. The non-relativistic formula for V LO(r) above can be easily generalized to the case that masses
of two particles are different, by the replacement that R(r, t) = F (r, t)/e−(mA+mB)t. Note also that the
potential extracted in this method automatically satisfies that V LO(r) → 0 as r → 0 without adjusting
the origin of the potential. This property may be used to check whether this extraction works correctly
or not.

On the lattice, the t derivative should be approximated by the t difference. In practice, one may
adopt a particular method for the t difference, in order to reduce statistical as well as systematic errors
for V LO(r).

5This limitation for t can be loosened if the coupled channel potentials are introduced as in the previous subsections.
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Relativistic formulation mA = mB
The non-relativistic approximation can be removed by using the second order derivative in t as

V LO(r) =

[

−H0 +
1

4mN

d2

dt2
− mN

]

F (r, t)

F (r, t)
, (113)

as long as e−Wtht is negligibly small. For this method to apply, two particles have the same mass.
Statistical errors of the second order difference on the lattice must be kept small in numerical simulations.

One may introduce a more general correlation function as

F (x,y, t) =
∫

d3x1d
3y1〈0|T{N(x1 + x, t)N(x1, t)}T{N(y1 + y, 0)N(y1, 0)}|0〉. (114)

Using this new quantity, we have
[

H0 −
1

4mN

d2

dt2
+ mN

]

R(x,y, t) = −
∫

d3 zU(x,z)F (z,y, t), (115)

from which the non-local potential is extracted as

U(x, y) =
∫

d3z

[

−H0 +
1

4mN

d2

dt2
− mN

]

F (x,z, t) · F̃−1(z,y, t). (116)

Here F̃−1(x, y, t) is the approximated inverse of the hermitian operator F (x, y, t), defined by

F̃−1(x,y, t) =
∑

λn "=0

1

λn(t)
vn(x, t)v†

n(y, t) (117)

where λn(t) and v(x, t) are an eigenvalue and a corresponding eigenvector of F (x,y, t), respectively,
and zero eigenvalues are removed in the summation. Since the modified potential such that

Û(x,y) = U(x,y) +
∑

λn=0

cnvn(x, t)v†
n(y, t) (118)

with ∀{cn} also satisfies the same Schrödinger equation, the non-local potential is NOT unique, and
U(x, y) is scheme dependent, as discussed before.

7.4 Bound H dibaryon in flavor SU(3) limit

As an application of the method in the previous subsection, let us consider the singlet potential in the
flavor SU(3) limit in order to investigate whether the bound H dibaryon exists or not in this case.

At the leading order of the velocity expansion, the central potential is defined in this method by

V (X)
C (r) = −

[

H0 +
d

dt

]

R(r, t − t0)

R(r, t − t0)
, (119)

which is calculated on 163 × 32, 243 × 32 and 323 × 32 lattices at a = 0.121(2) fm and three values
of the quark mass, where the PS meson mass and the octet baryon mass are given by (mPS,mB) =
(1015(1)MeV, 2030(2)MeV), (837(1)MeV, 1748(1)MeV) and (673(1)MeV, 1485(2)MeV) on a 323 × 32
lattice[54].

To check the qualitative consistency with previous results, the central potential in the 27-plet channel
is plotted in Fig. 20 obtained in three different lattice volumes with L = 1.94, 2.90, 3.87 fm at mps =

38
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symmetric correlation function
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FIG. 1: Flavor 27-plet potential V (27)
C (r) obtained for lattice

sizes L = 1.94, 2.90, 3.87 fm at mps = 1015 MeV and (t −
t0)/a = 10.

volumes with L = 1.94, 2.90, 3.87 fm at mps = 1015
MeV and (t − t0)/a = 10. This is the case correspond-
ing to the NN potential in the 1S0 channel. Compared
with statistical errors, the L dependence is found to be
negligible. The t dependence is also small as long as
(t − t0)/a ≥ 9. Note that we do not need overall shift
of the potential: it approaches zero automatically as r
increases. The figure shows a repulsive core at short dis-
tance surrounded by an attractive well at medium and
long distances, which is qualitatively consistent with our
previous results in quenched and full QCD simulations
reviewed in [19].

Shown in Fig.2(a) and Fig.2(b) are the volume depen-
dence and the quark mass dependence of the central po-
tential in the flavor-singlet channel V (1)

C (r), respectively.
In both figures, we take (t− t0)/a = 10 and have checked
that the potentials do not have appreciable change with
respect to the choice of t. We find that the flavor-singlet
potential has an “attractive core” and its range is well lo-
calized in space. Because of the latter property, we find
no significant volume dependence of the potential within
the statistical errors as seen in Fig.2(a). We find that the
long range part of the attraction tends to increase as the
quark mass decreases [Fig.2(b)].

We fit the resultant potential by the following analytic
function composed of an attractive Gaussian core plus
a long range (Yukawa)2 attraction: V (r) = b1e−b2 r2

+
b3(1−e−b4 r2

)
(
e−b5 r/r

)2
. With the five parameters, b1 –

b5, we can fit the function to the lattice results reasonably
well with χ2/dof # 1. The fitted result for L = 3.87 fm
is shown by the dashed line in Fig.2(a).

Finally, using the potential fitted by the function, we
solve the Schrödinger equation in the infinite volume and
obtain the energies and the wave functions for the present
quark masses in the flavor SU(3) limit. It turns out that,
in each quark mass, there is only one bound state with
the binding energy of 30–40 MeV. In Fig.3(a), the energy
and the root-mean-square (rms) distance of the bound
state are plotted in the case of (t − t0)/a = 9, 10, 11 at
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FIG. 2: Flavor-singlet potential V (1)
C (r) at (t − t0)/a = 10.

(a) Results for L = 1.94, 2.90, 3.87 fm at mps = 1015 MeV.
(b) Results for L = 3.87 fm at mps = 1015, 837, 673 MeV.

mps = 673 MeV and L = 3.87 fm, where errors are esti-
mated by the jackknife method. Although the statistical
error increases as t increases, we observe small changes
of central values, which will be included as the system-
atic errors in our final results. Fig.3(b) shows the energy
and the rms distance of the bound state at each quark
mass obtained from the potential with L = 3.87 fm and
(t − t0)/a = 10. Despite that the potential has quark
mass dependence, the resultant binding energies of the
H-dibaryon are insensitive in the present range of the
quark masses. This is due to the fact that the increase of
the attraction toward the lighter quark mass is partially
compensated by the increase of the kinetic energy for
the lighter baryon mass. It is noted that there appears
no bound state for the potential of the 27-plet channel in
the present range of the quark masses.

The final results of the binding energy in the SU(3)
limit B̃H and the rms distance

√
〈r2〉 are given below,

with statistical errors (first) and systematic errors from
the t-dependence(second).

mps = 1015 MeV : B̃H = 32.9(4.5)(6.6) MeV
√

〈r2〉 = 0.823(33)(40) fm
mps = 837 MeV : B̃H = 37.4(4.4)(7.3) MeV

√
〈r2〉 = 0.855(29)(61) fm

mps = 673 MeV : B̃H = 35.6(7.4)(4.0) MeV
√

〈r2〉 = 1.011(63)(68) fm
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SU(3) limit Real world
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H ?
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Real world ? coupled channel analysis with SU(3) breaking is needed.

2011年3月15日火曜日



7-5. Three nucleon force (TNF)
pn

n

8.1 Three nucleon force

Recent precise calculations of few-nucleon systems clearly point that the 2 nucleon force alone is in-
sufficient to understand the nuclei, which calls for three (and/or more) nucleon forces. Actually, the
three nucleon force (TNF) is supposed to play an important and nontrivial role in various phenomena
in nuclear and astrophysics. For the binding energies of light nuclei, the attractive TNF is required to
reproduce the experimental data. On the other hand, the repulsive TNF is necessary to reproduce the
empirical saturation density of symmetric nuclear matter. For the EoS of asymmetric nuclear matter,
repulsive TNF is required to explain the observed maximum neutron star mass.

Pioneered by Fujita-Miyazawa [55], the TNF has been mainly studied from the two-pion exchange
picture with the ∆-excitation. In addition, the epulsive TNF is often introduced phenomenologi-
cally [56]. Recently, the TNF based on chiral EFT is developing [57], but the unknown low-energy
constants can be obtained only by the fitting to the experimental data. Since the TNF is originated
by the fact that the nucleon is not a fundamental particle, it is essential to study the TNF from the
fundamental DoF, i.e., quarks and gluons.

In. Ref. [58] such first-principle calculations of the TNF in lattice QCD has been reported. If
the potential method is applied to the three nucleon (3N) system, the straightforward calculation
is impossible due to the significantly enlarged degree of freedom (DoF). In Ref. [58], two different
approaches have been considered.

The NBS wave function for 3N is defined by

ϕW (r12, r123)e
−Wt = 〈0|N(x1, t)N(x2, t)N(x3, t)|W 〉 (120)

where r12 ≡ x1 −x2, r123 ≡ x3 − (x1 + x2)/2 are the Jacobi coordinates, and |W 〉 is the 3N state with
energy W . At the leading order of the velocity expansion, the NBS wave function satisfies



− 1

2µ12
∇2

r12
− 1

2µ123
∇2

r123
+

∑

i<j

V2N,ij(xi − xj) + VTNF(r12, r123)



 ϕW (r12, r123) = EϕW (r12, r123)

(121)
where V2N,ij(xi − xj) denotes the potential between (i, j)-pair, VTNF(r12, r123) the TNF, µ12 = mN/2,
µ123 = 2mN/3 the reduced masses. If ϕW (r12, r123) is calculated for all r12, r123 and all V2N,ij(xi − xj)
are available by lattice calculations, VTNF(r12, r123) can be extracted. Unfortunately, this is not the case:
Since both r12 and r123 have L3 DoF, the calculation cost is more expensive by a factor of L3 compared
to the 2N system. Furthermore, the number of diagrams to be calculated in the Wick contraction tends
to diverge with a factor of Nu! × Nd! (Nu,d are numbers of u,d quarks in the system). It is also noted
that not all 2N potentials are available in lattice QCD at this moment: Only parity-even 2N potentials
have been obtained so far.

The first method in Ref. [58] to avoid these problems is to consider the effective 2N potential in the
3N system by taking the summation over the location of the spectator nucleon N(x3),

ϕW (r12) =
∑

x3

ϕW (r12, r123) =
∑

r123

ϕW (r12, r123). (122)

The effective potential between N(x1) and N(x2) is then defined by

[

− 1

2µ12
∇2

r12
+ Veff(r12)

]

ϕW (r12) = EϕW (r12). (123)

In this calculation, the DoF of r123 is integrated out beforehand, and thus the calculation cost is reduced
by a factor of ∼ 1/L3, compared to the straightforward calculation. The difference Veff ("r)−V2N("r) can
be considered to be the “finite density effect” in the 3N system. Some of this effect are attributed to
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2µ123
∇2

r123
+

∑

i<j

V2N,ij(xi − xj) + VTNF(r12, r123)



 ϕW (r12, r123) = EϕW (r12, r123)

(121)
where V2N,ij(xi − xj) denotes the potential between (i, j)-pair, VTNF(r12, r123) the TNF, µ12 = mN/2,
µ123 = 2mN/3 the reduced masses. If ϕW (r12, r123) is calculated for all r12, r123 and all V2N,ij(xi − xj)
are available by lattice calculations, VTNF(r12, r123) can be extracted. Unfortunately, this is not the case:
Since both r12 and r123 have L3 DoF, the calculation cost is more expensive by a factor of L3 compared
to the 2N system. Furthermore, the number of diagrams to be calculated in the Wick contraction tends
to diverge with a factor of Nu! × Nd! (Nu,d are numbers of u,d quarks in the system). It is also noted
that not all 2N potentials are available in lattice QCD at this moment: Only parity-even 2N potentials
have been obtained so far.

The first method in Ref. [58] to avoid these problems is to consider the effective 2N potential in the
3N system by taking the summation over the location of the spectator nucleon N(x3),

ϕW (r12) =
∑

x3

ϕW (r12, r123) =
∑

r123

ϕW (r12, r123). (122)

The effective potential between N(x1) and N(x2) is then defined by

[

− 1

2µ12
∇2

r12
+ Veff(r12)

]

ϕW (r12) = EϕW (r12). (123)

In this calculation, the DoF of r123 is integrated out beforehand, and thus the calculation cost is reduced
by a factor of ∼ 1/L3, compared to the straightforward calculation. The difference Veff ("r)−V2N("r) can
be considered to be the “finite density effect” in the 3N system. Some of this effect are attributed to
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TNF

numerically demanding L3 more expensive than NN potential

Effective NN potential

8.1 Three nucleon force

Recent precise calculations of few-nucleon systems clearly point that the 2 nucleon force alone is in-
sufficient to understand the nuclei, which calls for three (and/or more) nucleon forces. Actually, the
three nucleon force (TNF) is supposed to play an important and nontrivial role in various phenomena
in nuclear and astrophysics. For the binding energies of light nuclei, the attractive TNF is required to
reproduce the experimental data. On the other hand, the repulsive TNF is necessary to reproduce the
empirical saturation density of symmetric nuclear matter. For the EoS of asymmetric nuclear matter,
repulsive TNF is required to explain the observed maximum neutron star mass.

Pioneered by Fujita-Miyazawa [55], the TNF has been mainly studied from the two-pion exchange
picture with the ∆-excitation. In addition, the epulsive TNF is often introduced phenomenologi-
cally [56]. Recently, the TNF based on chiral EFT is developing [57], but the unknown low-energy
constants can be obtained only by the fitting to the experimental data. Since the TNF is originated
by the fact that the nucleon is not a fundamental particle, it is essential to study the TNF from the
fundamental DoF, i.e., quarks and gluons.

In. Ref. [58] such first-principle calculations of the TNF in lattice QCD has been reported. If
the potential method is applied to the three nucleon (3N) system, the straightforward calculation
is impossible due to the significantly enlarged degree of freedom (DoF). In Ref. [58], two different
approaches have been considered.

The NBS wave function for 3N is defined by

ϕW (r12, r123)e
−Wt = 〈0|N(x1, t)N(x2, t)N(x3, t)|W 〉 (120)

where r12 ≡ x1 −x2, r123 ≡ x3 − (x1 + x2)/2 are the Jacobi coordinates, and |W 〉 is the 3N state with
energy W . At the leading order of the velocity expansion, the NBS wave function satisfies



− 1

2µ12
∇2

r12
− 1

2µ123
∇2

r123
+

∑

i<j

V2N,ij(xi − xj) + VTNF(r12, r123)



 ϕW (r12, r123) = EϕW (r12, r123)

(121)
where V2N,ij(xi − xj) denotes the potential between (i, j)-pair, VTNF(r12, r123) the TNF, µ12 = mN/2,
µ123 = 2mN/3 the reduced masses. If ϕW (r12, r123) is calculated for all r12, r123 and all V2N,ij(xi − xj)
are available by lattice calculations, VTNF(r12, r123) can be extracted. Unfortunately, this is not the case:
Since both r12 and r123 have L3 DoF, the calculation cost is more expensive by a factor of L3 compared
to the 2N system. Furthermore, the number of diagrams to be calculated in the Wick contraction tends
to diverge with a factor of Nu! × Nd! (Nu,d are numbers of u,d quarks in the system). It is also noted
that not all 2N potentials are available in lattice QCD at this moment: Only parity-even 2N potentials
have been obtained so far.

The first method in Ref. [58] to avoid these problems is to consider the effective 2N potential in the
3N system by taking the summation over the location of the spectator nucleon N(x3),

ϕW (r12) =
∑

x3

ϕW (r12, r123) =
∑

r123

ϕW (r12, r123). (122)

The effective potential between N(x1) and N(x2) is then defined by

[

− 1

2µ12
∇2

r12
+ Veff(r12)

]

ϕW (r12) = EϕW (r12). (123)

In this calculation, the DoF of r123 is integrated out beforehand, and thus the calculation cost is reduced
by a factor of ∼ 1/L3, compared to the straightforward calculation. The difference Veff ("r)−V2N("r) can
be considered to be the “finite density effect” in the 3N system. Some of this effect are attributed to
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picture with the ∆-excitation. In addition, the epulsive TNF is often introduced phenomenologi-
cally [56]. Recently, the TNF based on chiral EFT is developing [57], but the unknown low-energy
constants can be obtained only by the fitting to the experimental data. Since the TNF is originated
by the fact that the nucleon is not a fundamental particle, it is essential to study the TNF from the
fundamental DoF, i.e., quarks and gluons.

In. Ref. [58] such first-principle calculations of the TNF in lattice QCD has been reported. If
the potential method is applied to the three nucleon (3N) system, the straightforward calculation
is impossible due to the significantly enlarged degree of freedom (DoF). In Ref. [58], two different
approaches have been considered.

The NBS wave function for 3N is defined by

ϕW (r12, r123)e
−Wt = 〈0|N(x1, t)N(x2, t)N(x3, t)|W 〉 (120)

where r12 ≡ x1 −x2, r123 ≡ x3 − (x1 + x2)/2 are the Jacobi coordinates, and |W 〉 is the 3N state with
energy W . At the leading order of the velocity expansion, the NBS wave function satisfies
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where V2N,ij(xi − xj) denotes the potential between (i, j)-pair, VTNF(r12, r123) the TNF, µ12 = mN/2,
µ123 = 2mN/3 the reduced masses. If ϕW (r12, r123) is calculated for all r12, r123 and all V2N,ij(xi − xj)
are available by lattice calculations, VTNF(r12, r123) can be extracted. Unfortunately, this is not the case:
Since both r12 and r123 have L3 DoF, the calculation cost is more expensive by a factor of L3 compared
to the 2N system. Furthermore, the number of diagrams to be calculated in the Wick contraction tends
to diverge with a factor of Nu! × Nd! (Nu,d are numbers of u,d quarks in the system). It is also noted
that not all 2N potentials are available in lattice QCD at this moment: Only parity-even 2N potentials
have been obtained so far.

The first method in Ref. [58] to avoid these problems is to consider the effective 2N potential in the
3N system by taking the summation over the location of the spectator nucleon N(x3),

ϕW (r12) =
∑

x3

ϕW (r12, r123) =
∑

r123

ϕW (r12, r123). (122)

The effective potential between N(x1) and N(x2) is then defined by

[
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r12
+ Veff(r12)

]

ϕW (r12) = EϕW (r12). (123)

In this calculation, the DoF of r123 is integrated out beforehand, and thus the calculation cost is reduced
by a factor of ∼ 1/L3, compared to the straightforward calculation. The difference Veff ("r)−V2N("r) can
be considered to be the “finite density effect” in the 3N system. Some of this effect are attributed to
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three nucleon force (TNF) is supposed to play an important and nontrivial role in various phenomena
in nuclear and astrophysics. For the binding energies of light nuclei, the attractive TNF is required to
reproduce the experimental data. On the other hand, the repulsive TNF is necessary to reproduce the
empirical saturation density of symmetric nuclear matter. For the EoS of asymmetric nuclear matter,
repulsive TNF is required to explain the observed maximum neutron star mass.

Pioneered by Fujita-Miyazawa [55], the TNF has been mainly studied from the two-pion exchange
picture with the ∆-excitation. In addition, the epulsive TNF is often introduced phenomenologi-
cally [56]. Recently, the TNF based on chiral EFT is developing [57], but the unknown low-energy
constants can be obtained only by the fitting to the experimental data. Since the TNF is originated
by the fact that the nucleon is not a fundamental particle, it is essential to study the TNF from the
fundamental DoF, i.e., quarks and gluons.

In. Ref. [58] such first-principle calculations of the TNF in lattice QCD has been reported. If
the potential method is applied to the three nucleon (3N) system, the straightforward calculation
is impossible due to the significantly enlarged degree of freedom (DoF). In Ref. [58], two different
approaches have been considered.

The NBS wave function for 3N is defined by

ϕW (r12, r123)e
−Wt = 〈0|N(x1, t)N(x2, t)N(x3, t)|W 〉 (120)

where r12 ≡ x1 −x2, r123 ≡ x3 − (x1 + x2)/2 are the Jacobi coordinates, and |W 〉 is the 3N state with
energy W . At the leading order of the velocity expansion, the NBS wave function satisfies
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where V2N,ij(xi − xj) denotes the potential between (i, j)-pair, VTNF(r12, r123) the TNF, µ12 = mN/2,
µ123 = 2mN/3 the reduced masses. If ϕW (r12, r123) is calculated for all r12, r123 and all V2N,ij(xi − xj)
are available by lattice calculations, VTNF(r12, r123) can be extracted. Unfortunately, this is not the case:
Since both r12 and r123 have L3 DoF, the calculation cost is more expensive by a factor of L3 compared
to the 2N system. Furthermore, the number of diagrams to be calculated in the Wick contraction tends
to diverge with a factor of Nu! × Nd! (Nu,d are numbers of u,d quarks in the system). It is also noted
that not all 2N potentials are available in lattice QCD at this moment: Only parity-even 2N potentials
have been obtained so far.

The first method in Ref. [58] to avoid these problems is to consider the effective 2N potential in the
3N system by taking the summation over the location of the spectator nucleon N(x3),

ϕW (r12) =
∑

x3

ϕW (r12, r123) =
∑

r123

ϕW (r12, r123). (122)

The effective potential between N(x1) and N(x2) is then defined by

[
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r12
+ Veff(r12)

]

ϕW (r12) = EϕW (r12). (123)

In this calculation, the DoF of r123 is integrated out beforehand, and thus the calculation cost is reduced
by a factor of ∼ 1/L3, compared to the straightforward calculation. The difference Veff ("r)−V2N("r) can
be considered to be the “finite density effect” in the 3N system. Some of this effect are attributed to
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“finite density effect” in 3N system

2011年3月15日火曜日



-100

 0

 100

 200

 300

 0  0.5  1  1.5  2  2.5

V e
ff 

(r
) [

M
eV

]

r [fm]

-15

-10

-5

 0

 5

 10

 15

 0  0.5  1  1.5  2  2.5

V e
ff 

(r
) -

 V
2N

 (r
) [

M
eV

]

r [fm]

Figure 23: (Left) Effective 2N potentials, where red, blue, brown points correspond to V I=1,S=0
C,eff ,

V I=0,S=1
C,eff , V I=0,S=1

T,eff potential, respectively. (Right) The difference between the effective 2N and the

genuine 2N for V I=0,S=1
T potential. Taken from Ref. [58].

the genuine 2N potential with the nontrivial 3N correlation, while others are originated by the genuine
TNF.

As the 3N system, the triton channel( I = 1/2, JP = 1/2+) is studied. Since the spectator nucleon
is projected to the S-wave, the possible quantum numbers between the (effective) 2N are only 2S+1LJ =
1S0, 3S1, 3D1. Gauge configurations in 2-flavor QCD on a 163×32 lattice at a " 0.16 fm are employed[59]
for the calculation at mπ " 1.13 GeV and mN " 2.15 GeV.

Fig. 23(Left) show results for Veff (r) in the triton channel at t − t0 = 8, where the constant shift
by energy is not included for the central potentials. It is noteworthy that Veff(r) are obtained in good
precision even though the signal to noise ratio is expected to be worse for more quark in the system.
Fig. 23(Right) gives Veff(r)− V2N(r) for the tensor potential, which is free from the constant shift. The
difference is consistent with zero within several MeV statistical errors. Similar results are reported for
central potentials as well in Ref.[58]. There is no indication of the TNF effect. A possible explanation is
that the TNF effect is suppressed at heavy quark mass. However, basically similar results are obtained
for lighter pion masses(mπ " 0.7 GeV and 0.57 GeV)[58]. Another possibility is that the TNF effect
is suppressed by the summation over the location of the spectator nucleon. While the TNF effect is
expected to be enhanced when all three nucleons are close to each other, such 3-dimensional spacial
configurations have small contributions in the spectator summations.

In order to assess this possibility, the second method has been investigated in Ref.[58], where the
linear setup with r123 = 0 is used for the 3N wave function. In this case, the third nucleon is attached to
(1, 2)-nucleon pair with only S-wave. Considering the total 3N quantum numbers of I = 1/2, JP = 1/2+,
the wave function can be completely spanned by only three bases, which can be labeled by the quantum
numbers of (1, 2)-pair as 1S0, 3S1, 3D1. Therefore, the Schrödinger equation is simplified to the 3 × 3
coupled channel equations with the bases of ϕ1S0 , ϕ3S1 , ϕ3D1 . Even in this case the subtraction of V2N

remains nontrivial: the parity-odd potentials, which must be subtracted, are not available in lattice
QCD at this moment. The subtraction problem of parity-odd potentials can be avoided in the triton
by using the symmetric wave function,

ϕS ≡ 1√
6

[
− p↑n↑n↓ + p↑n↓n↑ − n↑n↓p↑ + n↓n↑p↑ + n↑p↑n↓ − n↓p↑n↑

]
. (124)

Combined with the Pauli principle, it is automatically guaranteed that any 2N-pair couples with even
parity only, since this wave function is anti-symmetric in spin/isospin spaces for any 2N-pair. Therefore
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2-flavor QCD a ! 0.16 fm, L ! 2.6 fm
mπ ! 1.13 GeV, mN ! 2.15 GeV

Doi for HAL QCD

• effective NN can be obtained in good precision.

• The difference is consistent with zero within MeV statistical error. 

• almost no “density effect”

• heavy pion ?  

• TNF effect is suppressed by integration ?

tensor

Triton(I = 1/2, JP = 1/2+)

tensor
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Figure 24: (Left) The wave function with linear setup in the triton channel. Red, blue, brown points
correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].

the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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Figure 23: (Left) Effective 2N potentials, where red, blue, brown points correspond to V I=1,S=0
C,eff ,

V I=0,S=1
C,eff , V I=0,S=1

T,eff potential, respectively. (Right) The difference between the effective 2N and the

genuine 2N for V I=0,S=1
T potential. Taken from Ref. [58].

the genuine 2N potential with the nontrivial 3N correlation, while others are originated by the genuine
TNF.

As the 3N system, the triton channel( I = 1/2, JP = 1/2+) is studied. Since the spectator nucleon
is projected to the S-wave, the possible quantum numbers between the (effective) 2N are only 2S+1LJ =
1S0, 3S1, 3D1. Gauge configurations in 2-flavor QCD on a 163×32 lattice at a " 0.16 fm are employed[59]
for the calculation at mπ " 1.13 GeV and mN " 2.15 GeV.

Fig. 23(Left) show results for Veff (r) in the triton channel at t − t0 = 8, where the constant shift
by energy is not included for the central potentials. It is noteworthy that Veff(r) are obtained in good
precision even though the signal to noise ratio is expected to be worse for more quark in the system.
Fig. 23(Right) gives Veff(r)− V2N(r) for the tensor potential, which is free from the constant shift. The
difference is consistent with zero within several MeV statistical errors. Similar results are reported for
central potentials as well in Ref.[58]. There is no indication of the TNF effect. A possible explanation is
that the TNF effect is suppressed at heavy quark mass. However, basically similar results are obtained
for lighter pion masses(mπ " 0.7 GeV and 0.57 GeV)[58]. Another possibility is that the TNF effect
is suppressed by the summation over the location of the spectator nucleon. While the TNF effect is
expected to be enhanced when all three nucleons are close to each other, such 3-dimensional spacial
configurations have small contributions in the spectator summations.

In order to assess this possibility, the second method has been investigated in Ref.[58], where the
linear setup with r123 = 0 is used for the 3N wave function. In this case, the third nucleon is attached to
(1, 2)-nucleon pair with only S-wave. Considering the total 3N quantum numbers of I = 1/2, JP = 1/2+,
the wave function can be completely spanned by only three bases, which can be labeled by the quantum
numbers of (1, 2)-pair as 1S0, 3S1, 3D1. Therefore, the Schrödinger equation is simplified to the 3 × 3
coupled channel equations with the bases of ϕ1S0 , ϕ3S1 , ϕ3D1 . Even in this case the subtraction of V2N

remains nontrivial: the parity-odd potentials, which must be subtracted, are not available in lattice
QCD at this moment. The subtraction problem of parity-odd potentials can be avoided in the triton
by using the symmetric wave function,

ϕS ≡ 1√
6

[
− p↑n↑n↓ + p↑n↓n↑ − n↑n↓p↑ + n↓n↑p↑ + n↑p↑n↓ − n↓p↑n↑

]
. (124)

Combined with the Pauli principle, it is automatically guaranteed that any 2N-pair couples with even
parity only, since this wave function is anti-symmetric in spin/isospin spaces for any 2N-pair. Therefore
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Figure 24: (Left) The wave function with linear setup in the triton channel. Red, blue, brown points
correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].

the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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Figure 24: (Left) The wave function with linear setup in the triton channel. Red, blue, brown points
correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].

the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].
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channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.
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8. Conclusions 

• the potential method is new but very useful to investigate 
baryon interactions in lattice QCD.

• the method can be easily also applied to meson-baryon and 
meson-meson interactions.

• three body force can be analyzed.

• various extensions of the method will be looked for.  
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BS amplitude A = (ka, sa) = (k0,!k, sa)

B = (kb, sb) = (k0,−!k, sb)

helicityk0 =
√

!k2 + m2
N

np

!k −!k

Na
α = εABC(uACγ5d

B)qC,a
α =

(
p
n

)

C = γ2γ4 q =
(

u
d

)

For simplicity, we assume a != b ( I = 0 or 1 ) and x0 > y0.

Complete set 1 =
∑

s,c

∫
d3p

(2π)32p0
|N c("p, s)〉〈N c("p, s)| +

∑

X !=Nc

|X〉 1
2EX

〈X|

1 particle out-state others

ϕαβ(x, y; AB) = 〈0|T{Na
α(x)N b

β(y)}|Na(A)N b(B)〉in

ϕelastic
αβ (x, y) =

∑

s,c

∫
d3p

(2π)32p0
〈0|Na

α(x)|N c(#p, s)〉〈N c(#p, s)|N b
β(y)|NaN b〉

ϕinelastic
αβ (x, y) =

∑

X !=Nc

〈0|Na
α(x)|X〉 1

2EX
〈X|N b

β(y)|NaN b〉

ϕαβ(x, y, AB) = ϕelastic
αβ (x, y) + ϕinelastic

αβ (x, y)
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Elastic contribution
spinors

reduction formula

〈0|Na
α(x)|N c(!p, s)〉 = δab

√
Zauα(!p, s)e−ipx

Na
α(p) =

∫
d4x eipx 1√

Za
Na

α(x)

= 〈0|Ba
out(!p, s)N b

β(y)|NaN b〉
= −〈0|N b

β(y)Ba
in(!p, s)|NaN b〉 − iu(!p, s)(γ · p − mN )〈0|T{Na(p)N b

β(y)}|NaN b〉

= −(2π)32k0δssaδ(3)(p − k)
√

Zbu(−#k, sb)e−ikby

D(p)

= −
√

Zb

∫
d4q

(2π)4
e−iqy〈0|T{Na(p)N b

β(q)Na(ka)N b(kb)}|0〉D(ka)u("k, sa)D(kb)u(−"k, sb)

“Off-shell T matrix”

T̂ abab
sβsasb(p, q, ka, kb) = i[ūD]α(!p, s)iDββ′(q)Gabab

αβ′γδ(p, q, ka, kb)[Du]γ(!k, sa)[Du]δ(−!k, sb)

q = ka + kb − p = (2k0 − p0,−!p)

ϕelastic
αβ (x, y) =

∑

s

∫
d3p

(2π)32p0

√
Zauα(#p, s)e−ipx〈Na(#p, s)|N b

β(y)|NaN b〉

i(2π)4δ(p + k − ka − kb)Gabab
αβγδ
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ϕelastic
αβ (x, y) = −

√
ZaZbuα("k, sa)uβ(−"k, sb)e−ik0(x+y)0ei#k#r

+
√

ZaZb
∑

s

∫
d3p

(2π)32p0
uα("p, s)e−ip0x0−q0y0ei#p#r

×
[

1
m − γ · q − iε

]

ββ′
T̂ abab

sβ′sasb(p, q, ka, kb)

incoming wave

!r = !x − !y

ka

kb

p

q
T̂

Using

1
m − γ · q − iε

= (m + γq)
[
i
π

4p
δ(p − k) + P

p0 + k0

4k0(p2 − k2)

]

∑

s

u(−!p, s)ū(−!p, s) = m + γ · q

Final result

ϕelastic
αβ (x, y)
√

ZaZb
= −uα("k, sa)uβ(−"k, sb)e−ik0(x+y)0ei#k#r

+
ik

32πk0

∫ 1

−1
d cos θ e−ik0(x+y)0eikr cos θuα("p, s)uβ(−"p, sd)T abab

ssdsasb("p,−"p,"k,−"k)|p=k

+
∑

s

∫
d3p

(2π)3
uα("p, s)e−ip0x0−q0y0ei#p#r(m + γ · q)ββ′

p0 + k0

8p0k0

1
p2 − k2

T̂ abab
sβ′sasb(p, q, ka, kb)

T abab
ssdsasb(!p,−!p,!k,−!k) = ūβ(−!p, sd)T̂ abab

sβsasb(p, q, ka, kb)|q0=k0on-shell T matrix
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Similarly  “inelastic contributions” can be evaluated.

Interaction range R

Take x0 → y0 and consider the spin singlet state (1S0).

at r = |!r| > R
R

V != 0

V = 0

V
1S0(r, k) = −(∇2 + k2)ϕ

1S0("r, k) → 0

k = |!k|

r > R

k

16πk0
T1S0(|p| = k, k) = eiδ0(k) sin δ0(k)

phase shift

ϕ
1S0(r, k) ∼ eiδ0(k)

kr
sin(kr + δ0(k))

ϕ
1S0(r, k) ∼ j0(kr) +

k

16πk0
T1S0(|p| = k, k)[n0(kr) + ij0(kr)]

E < Einelastic
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