2. phase transition and

critical scaling




Critical phenomenon

Phase transition: a drastic change of system properties
<= singularity of the partition fn. (free en.) at the trans. pt.
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Lattice with finite extent:
mathematically well-defined analytic system. i
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Non-analyticities appear only in the thermodyn. im. (Ny —> ),

.e.
singularities caused by long-range modes (massless modes).

We may describe the singular properties around a phase trans.
by an effective theory of long-range modes.
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Long-range modes and G-L theory

[example] 2nd order transition of a ferromagnetic spin system

high T. disordered low T: ordered

correlation length (e 1/mass gap) long range order

lof the order parameterS (g( 0) - ( N#0 r— o0

T < z
Ic

The order parameter carries the d.o.l. for the long-range mode.

The critical properties near the Z2nd order transition
<= effective theory of the order param.. Ginsburg-Landau theory
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How to extract the long-range modes

Integrate out the short range modes below a scale bxa.

7 = / Dpe 5@ = / D¢ e @) ¢ = p(\ > ba)

a — a = ba v a0 fa)
- | //j‘i > 72
£ — & =gfbp @ &+

This block transformation defines a flow (RG flow) in the infinite-dimensional coupl. param. space:

S(@) =Y :0i(¢) — S'(¢) =D g 0:i(¢)

{9:} — {¢}} = R{g} — {¢/} =R g} — -
o
o

O
—

The goal of this flow is the eff. theory of the long-range modes!
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RG flow and FP

et us Introduce several terms:

Fixed point (FP) invariant point under the block transformation
§ — gl - f/b corr: length in units of a (a’).

Thus, FP => € =0 or o (the converse is not always true).

. . , *
We are interested in long-range modes. Let us denote FP with § = o0 as .

Critical surface: {points} which flow into a g% R*{g} = {9}

€ = o on the crit. surface

=> 7)nd order transition on the crit. surface
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RG flow and FP

For simplicity, let us consider the case g* is isolated,

crit. surface)

(finite-dimensional)
coupling parameter space
of the model under investigation

cross section of the crit. surface
with the model parram. space
= 2nd order trans. line

Because we are interested in the long-range modes around the transition, consider a point in the
initial coupl. paaram. space near (but not on) the trans. line, and apply block transformations.

Due to the flow on the crit. surface, the point will first flows along the crit. surface towards g*

Because € is decreasing by the block transformations, the flow will eventually deviate from the crit.

surface where § = o0, and will flow along a line (Renormalized Trajectory) starting from the g*
towards & = 0. RT reflects the properties of the IR eff. theory.
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RG flow around g~ (o

G
=g th — g=gi 1, K= By(b)h; + O '\\
J

Rearrange the basis operators O; so that Bjj Is diagonalizea:
I _ 1LY;
h, = b%h;
Yi : critical exponent / anormalous dimension

* y;>0 => h;—> large with block transf.  “relevant” => the direction of RT
*x yi<0 => hi—>0 “irrelevant” => directions on the crit. surface
* yi=0 “marginal’ <= g¥*is not isolated
g™ continuous in these directions

yi = — (dimension of O;) + quantum corrections

For the singularities around the transition point, only “relevant” operators are relevant.

Possible variety of relevant operators <= spatial dimension, symmetry, etc.
However, the number is limited because both field and derivative increase the dim. of O..
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Critical scaling

[example] 2nd order ferromagnetic transition of 3d spin system
relevant O; hi

s?2~FE t = (T.-1)/T. => free energy
sl~M h external magnetic field I'= F(, h) + less singular terms

Because Z is invariant under the block transformation, F is so too up to a trivial scale factor.
Fe,h)— b Flb"t,b"h)= F(t,h)

From this equation, we obtain a chain of scaling relations.

Specific heat, magnetization, susceptibilities:

J C(t,h=0)= V{<E2> - <E>2}= a—zF(z‘,hﬁ = i[b“’F(b”t,b”h)J

ot by OF oo
_ bzw-d:%z F(x,oﬁx_bnt = ¢l@=2w ) 88722F(x,0)(x_1 <™, a=(d-2y)y,
Mt h=0)x ¢ B=d-,)
2(t,h=0)= V{<M2>—<M>2}°< i, =2y, -d)y,
Mt =0,h) b, 16 =(d-,)/y,
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Critical scaling (2)

correlation length:

E(t,h)=bEp e, b h) = E(t,h=0)xt™, v=1/y,
correlation function G(k;t =h= O) oc 2 (k — O), n=d+2-2y,
(hyper)-scaling relations:
a=2-dv=2-p+1) f=0-2+n)2,y =v(2-n)=B6-1),6 =(d+2-n)/(d-2+7)
scaling function:
Fle,h)=bFlb"t,6"h)
— M(t,h) _ byh_dM(bytt’byhh)= h(d_yh )/th(h_yz/yht,l)= hl/éfM (t/hl//ﬁ’é )
= xle.h)=h"1 g (t/n)

pseudo-critical point at h # 0, ‘
defined as the peak position of the scsceptiblility: M

TC _Tpc - h1//ja
pc TC

- h(l/é)—l

4

X

A max

etc.
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Finite size scaling

We extend the scaling arguments to systems with finite volume L4,
=> F gets a new parameter L, but the b-dep. of L is known!!

L—=L=b"L
Ft,h,L)=b6Fb"t,b" h,67'L)

= y(t,h=0,L)=p"" ;((byft,o,b‘lL)= e X(Ly’t,(),l)
-7 ()= 7 (1)
K (L) L, T =T, (L) o L7,

The case of |st order transition

Formally follows a scaling similar to the 2nd order case
<= spin wave approximation, double Gaussian approximation, etc.

Knn (L) V ~ L
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Universality

Different points are attracted to the same g*and then RTs from that.

In the infinite dimensional parameter space, we have model parameter spaces for other systems too.
When the points on different systems are attracted to the same g% they have the same (“‘universal’)
IR effective theory and thus the same critical properties.

Because the variety of possible effective IR theories is limited, the variety of the critical property
(“universality class”) is also limited. On the other hand, a system may have different regions in the
model parameter space for different universality classes.

system |
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