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Matsubara correlator for mesons
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◮ 1.5 Tc , Nt = 24, mq = 0
◮ Chiral symmetry restoration seen
◮ ρ correlator < 10% away from free correlator
◮ More discrepancy in pion and scalar channel
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Matsubara correlator for mesons
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◮ 1.5 Tc , Nt = 24, mq = 0
◮ Chiral symmetry restoration seen
◮ ρ correlator < 10% away from free correlator
◮ More discrepancy in pion and scalar channel
◮ No plateau in effective mass
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Matsubara correlators for smeared operators

Take smeared operators optimized at T=0 for meson states.
Look at effect of increasing temperature.
Anisotropic lattice, Nt = 20, 16, 12 correspond to 0.93, 1.15, 1.5
Tc .
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Pole and screening masses
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Spectral function

To connect the Matsubara correlator with real time observables, we
define the spectral function

ρ(q) =

∫

dtd3xe iq.x〈
1

2
[φ(x), φ+(0)]〉

Clearly, ρ(q) = 1
2(G>(q) − G<(q))

Exercise. Show that G<(q) = e−βq0
G>(q)

Therefore G<(q) = 2nB(q0)ρ(q)
Exercise. Show that

GR(q) =

∫

dp0

π

ρ(p0, ~q)

p0 − q0 − iǫ

Therefore ρ(q0, ~q) = ImGR(q0, ~q)
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Spectral function and Matsubara correlator

Exercise. Show that

GE (Q̃) =

∫

∞

−∞

dp0

π

ρ(p0, ~q)

p0 − i q̃0

Then, using the summation formula

T
∑

ωb

e iωbt

ω2
b + ω2

=
nB(ω)

2ω

(

e(β−t)ω + etω
)

we get,

GE (τ) =

∫

∞

0

dp0

π
ρ(p0)

cosh(p0(β/2 − t))

sinh(p0β/2)
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Thermal photon production

Photon production processes i → f γ

Sλ
fi (Q) = −ieqf

∫

d4xe iQ.xǫλµ(Q)〈f |jµ(x)|i〉

q0 dΓ

d3q
=

1

Ω · 2(2π)3
1

Z (β)

∑

if λ

eβEi |Sλ
fi (Q)|2

= −
e2q2

f

2(2π)3

∫

d4xe iQ.xgµν

∑

i

〈i |jν(0)jµ(x)|i〉
e−βEi

Z (β)

= −
e2q2

f

2(2π)3
gµνG<

µν(Q)

= −
αq2

f

2π2

gµνρµν(Q)

eβq0
−1
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dilepton production

Dilepton production i → fl(p1)̄l(p2 = Q − p1)

Sfi(p1, p2) = −i
e2qf

Q2
ū(p1)γ

µv(p2) ·

∫

d4xe iQ.x〈f |jµ(x)|i〉

dΓ =
1

Ω

∑

fi

e−βEi

Z
|Sfi |

2 ·
d3p1

(2π)32E1

d3p2

(2π)32E2

dΓ

d4Q
= −

e4q2
f

96π5Q4
Q2gµνG<

µν(Q)

= −
α2q2

f

6π3Q2

gµνρµν(Q)

eβq0 − 1
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spectral function and screening correlator

stable ≈ δ(ω2 − m2) resonance ≈ ωΓ
(ω2

−m2)2+Γ2m2 cut ≈ ω2

Screening correlator G (z) =

∫

∞

−∞

dpz

2π
e ipzz

∫

∞

0
dp0

σ(p0, pz)

2p0

Free theory
ω2(~p,T ) ∼ m2(T ) + A2(T )~p2

mH
scr(T ) = 2πT

mH
scr(T ) = mH

pole(T )/A(T )

T. Hashimoto et al., NPB400(’93)267

Need to glean ρ(ω) from Matsubara correlator

G (τi ) =
∑

ij

K (τi , ωj)ρ(ωj), K (τi , ωj) =
coshωj(τi −

1
2T )

sinh
ωj

2T

Direct inversion not possible.
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Analysis techniques

◮ Make a guess of form of the spectral function, with few
unknown parameters. Fit the parameters (possibly with prior
information).

◮ Incorporate prior information into the problem using Bayesian
technique.

◮ P(ρ|D;α,m) ∝ P(D|ρ;α,m)P(ρ|α,m)
◮ P(D|ρ;α,m) ∼ e−L=χ2/2 has zero modes if there are flat

directions in parameter space not determined by data
◮ if P(ρ|α,m) suitably chosen, the problem is regulated
◮ Maximum entropy method: P(ρ|α,m) = eαS where

S =

Nω
∑

i=1

ρ(ωi ) − m(ωi ) − ρ(ωi ) log

(

ρ(ωi )

m(ωi )

)

Asakawa, Nakahara & Hatsuda, Prog. Part. Nucl. Phys. 46(’01) 459
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Maximum Entropy Method

◮ find ρα(ω) such that

δ(αS − L)

δρ
|ρ=ρα(ω) = 0

◮ Search for solution in the singular space of the kernel K (τi , ωj)

◮

KT (τi , ωj) = UjkσkVki , i , k = 1,Nτ , j = 1,Nω

◮ Writing ρ(ωi ) = m(ωi ) exp(
∑

l alul(ωi )) where ul are the
eigenvectors of K in the singular space, one needs to solve for
bl

◮ Calculate P(α|Dm) and integrate over α

R. K. Bryan, Eur. Biophys. J. 18 (’90) 165

Saumen Datta Correlation Functions at Finite Temperature(2)



Charge current from lattice

Measurement of electric conductivity in gluon plasma:
connected to low ω limit of emission rate of soft photons

σ(T ) =
1

6
lim
ω→0

ρii (ω,T )

ω

S. Gupta, PLB 597(’04)57; Aarts, et al., PRL 99 (’07)022002;
Ding et al., arXiv:1012.4963

First two references use staggered valence quark, employ Bayesian
analysis.
Ding et al use clover valence quark,assume a form for the spectral
function, and do a fit.

ρii (ω) = 2χqZ
ωΓ/2

ω2 + (Γ/2)2

+
3

2π
(1 + k(T ))ω2 tanh

ω

4T
(1 + exp((ω2

0 − ω2)/ω∆ω))−1
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Electric conductivity
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Charmonia in QGP

J/ψ as probe of deconfinement

Matsui & Satz, PLB178(’86)416

◮ Screening in plasma
→ reduced binding between
c̄c

◮ J/ψ was estimated to
dissolve at around 1.1 Tc

◮ large branching into
dileptons −→ suitable as
probe for deconfinement
transition

ψ
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Direct lattice study
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Point-point operators.
Smearing can help in isolating ground state
compare smeared correlators below and above Tc

Umeda et al., IJMP A16 (’01) 2216; Ohno et al.(WHOT-QCD),
Lattice2010(arXiv:1011.1728)
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Smeared operators

Basis of Gaussian smeared operators with various smearing radii
Variational analysis to isolate ground state

“No clear evidence of dissociation of J/ψ (left) and ηc (right) up
to 1.4 Tc”
Smeared operators: difficult to connect to a thermal observable!
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Spectral function based analysis

Use point-point operator
Maximum entropy analysis to extract spectral function
by giving information about the high energy structure of σH(ω)
Datta, et al., NP(PS)119(’03)487; Isotropic lattice (PRD 69,094507(’04))
Asakawa and Hatsuda, Anisotropic lattice (PRL92,012001 (’04))
Jakovác et al., Anisotropic lattice, improved action (PRD75,014506(’07))
Ding et al, Isotropic lattice(Lattice 2010 (arXiv:1011.0695))

Aarts et al., Anisotropic lattice, 2-flavor QCD (PRD76, 094513(’07))
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Analysis tools

At high temperatures, low ω part sensitive to the prior information
about high ω part

◮ Supply high ω information from low temperature studies

◮ Compare high temperature correlators with correlators
“reconstructed” from spectral function at low temperature

Reconstructed correlator

Grecon,T∗(τ,T ) =

∫

dω σ(ω,T ∗)K (ω, τ,T )

Deviation of G (τ,T ) from Grecon(τ,T ) indicate medium
modification
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Results for J/ψ and ηc
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1S charmonia survive till high temperatures

Datta et al., PRD 2004

The small change in J/ψ associated with transport

Umeda, PRD 75(’07) 094502; Datta & Petreczky, J.Phys.G
G35(’08)104114Saumen Datta Correlation Functions at Finite Temperature(2)



Spectral function
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ηc and J/ψ show no weakening upto 1.5 Tc
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Spread of Results

◮ Introduction of the maximum entropy method has led to
insights into behavior of charmonia in plasma, but
uncertainties of the method, in particular dependence on the
prior model, gets reflected in variation of conclusions between
different groups.

◮ Asakawa & Hatsuda found essentially no change upto 1.67 Tc ,
but no sign of a peak for > 1.78Tc .

◮ Mocsy & Petreczky pointed out that small change in correlator
does not necessarily mean small change in the low ω structure.

◮ Ding et al. use finer lattices, find very small change between
the finite temp. correlator and reconstructed correlator. They,
however, include structure in default model at very low ω and
find considerably weaker peak at 1.46 Tc .

◮ Skullerud et al found results similar to ours for 2-flavor QCD.
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Other results

◮ Υ and ηb have been studied using clover fermions (Datta et

al., hep-lat/0603002) and NRQCD (Aarts et al, PRL 106(’11)

061602). Seen to exist above 2 Tc .
◮ Shear viscosity of gluon plasma has been measured by

studying the correlators of the off-diagonal elements of the
energy-momentum tensor

η = π lim
ω→0

ρT12,T12(ω)

ω

Karsch & Wyld, PRD 35 (’87) 2518; Nakamura & Sakai, PRL 94
(’05) 072305; Meyer, PRD 76(’07) 101701

Meyer: write ρ(ω) = m(ω) · (1 +
∑

l alul(ω)) where ul are the
singular directions of the kernel, and iteratively solve for al .

η

s
= 0.134(33) at 1.65Tc

= 0.102(56) at 1.24Tc
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Other results (contd.)

Perturbation theory gives a larger value for η
s
, while RHIC results

seem to prefer a small value.

◮ Bulk viscosity can be measured from correlator of the trace of
the energy-momentum tensor

ζ(T ) =
π

9
lim
ω→0

ρTii ,Tii (ω)

ω

ζ

s
= 0.008(7)0.15

0 at 1.65Tc

= 0.065(17)0.37
0.01 at 1.24Tc

= 0.73(3)2.0
0.5 at 1.02Tc

Meyer, PRL 100(’08) 162001

Ignoring bulk viscosity justified in RHIC?
Perturbative result ∼ 0.02α2

s
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Summary

◮ In the last decade, there has been considerable activity in
lattice study of various observables connected to hot QCD,
through an analysis of the Matsubara correlators.

◮ Various analysis tools have been invented and adopted.

◮ Interesting insights have been obtained.

◮ But the field is still far from having reached maturity, and so
far, results are more qualitative than quantitative.

◮ Since quark gluon plasma seems to be far from perturbative,
and lattice is the only tool available for nonperturbative
calculations in QCD, the activity in this field is bound to grow.
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