

EOS

$$\epsilon = -\frac{1}{V} \frac{\partial \ln Z}{\partial T^{-1}}, \quad p = T \frac{\partial \ln Z}{\partial V} \quad \text{with} \quad Z = \text{Tr} e^{-H/T} = \int_{b.c.} \mathcal{D}\phi \, e^{-S}$$

To continuously vary T and V independently, we need to (temporally) introduce anisotropic lattice.

$$a_s \neq a_t$$

$$1/T = N_t a_t, \quad V = (N_s a_s)^3$$

This requires anisotropic beta functions for the variation of a_s and a_t independently. They can in principle be estimated by exploring observables in high-dimensional anisotropic coupling parameter space through a systematic study on anisotropic lattices. --- But not easy.

To avoid anisotropic beta functions, the methods discussed in the following subsections are usually adopted.

A crucial point to be noted is that the combination

$$T^{-1}\frac{\partial}{\partial T^{-1}} + 3V\frac{\partial}{\partial V} \propto a_t \frac{\partial}{\partial a_t} + a_s \frac{\partial}{\partial a_s}$$

is nothing but a uniform scale transformation, and thus can be evaluated on just isotropic lattices too.

$$\epsilon = -\frac{1}{V} \frac{\partial \ln Z}{\partial T^{-1}}, \quad p = T \frac{\partial \ln Z}{\partial V} \quad \text{ with } \quad Z = \mathrm{Tr} e^{-H/T} = \int_{b.c.} \mathcal{D} \phi \, e^{-S}$$

Trace anomaly

$$\frac{\epsilon - 3p}{T^4} = N_t^4 \left\{ \left\langle a \frac{dS}{da} \right\rangle - \left\langle a \frac{dS}{da} \right\rangle_{T=0} \right\} = \frac{N_t^3}{N_s^3} \sum_i a \frac{db_i}{da} \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\}$$

lattice beta functions along LCP

$$b = (\beta, \kappa_{ud}, \kappa_s, \cdots) \equiv (b_1, b_2, \cdots)$$

measured by the simulation. *T*=0 subtraction for renormal.

Integral method for p

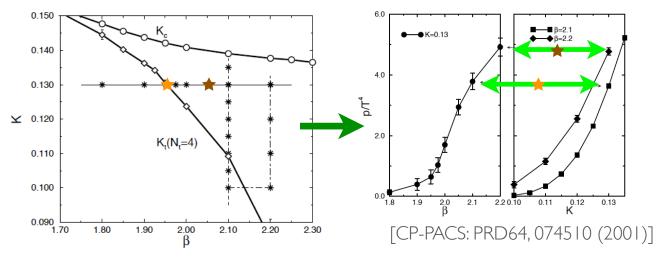
Differentiate and integrate a thermodyn, relation $\;p=(T/V)\ln Z\;$

$$p = \frac{T}{V} \int_{b_0}^b db \, \frac{1}{Z} \frac{\partial Z}{\partial b} = -\frac{T}{V} \int_{b_0}^b \sum_i db_i \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\}$$
Such that $p(b_0) \approx 0$
numerical integration in the coupling param. space

Integral method for p

$$p = \frac{T}{V} \int_{b_0}^b db \, \frac{1}{Z} \frac{\partial Z}{\partial b} = -\frac{T}{V} \int_{b_0}^b \sum_i db_i \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\}$$
Such that $p(b_0) \approx 0$
numerical integration in the coupling param. space

The integration path is free to choose as far as $p(b_0) \approx 0$



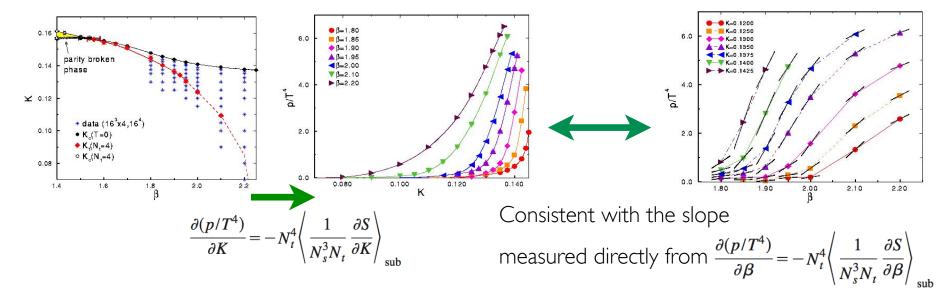
- RG-improved gauge + Nf=2 clover-improved Wilson
- $m_{PS}/m_V = 0.65-0.95 \ (m_{\pi} \approx 600-1000 \ MeV)$
- $N_t = 4, 6$

An alternative test:

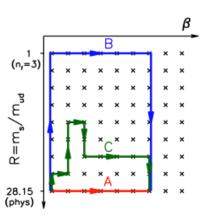
From the previous test, we learn that integration in \mathbf{k} leads to smaller errors.

[CP-PACS: PRD64, 074510 (2001)]

- RG-improved gauge + Nf=2 clover-improved Wilson
- $m_{PS}/m_V = 0.65-0.95 \ (m_{\pi} \approx 600-1000 \ MeV)$
- $N_t = 4, 6$



Generalized method taking into account all possible path' Borsanyi et al. [arXiv:1007.2580].



beta functions

$$arac{db_i}{da}$$
 with $b=(oldsymbol{eta}, oldsymbol{\kappa}_{ud}, oldsymbol{\kappa}_{s}, \cdots) \equiv (b_1, b_2, \cdots)$

In the multi-dimensional parameter space of QCD, we first need to know the line of constant physics (LCP) for the world underinvestigation.

LCP

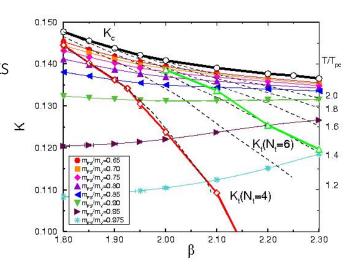
In the scaling region, LCP is defined as the points where the dimension-less ratios of observables are the same at T=0.

Different LCP's represent different world (different proton mass, different electron mass, etc.). On a LCP, different point corresponds to the same world with different lattice spacings.

Off the scaling region, precise location of LCP depends on the definition.

[example] CP-PACS, PR D64('01)074510 lwasaki gauge + N_F =2 clover-improved Wilson quarks LCP: $m_{PS}/m_V(\tau=0)$ = constant Lines of constant T/T_{pc} for N_t =4 where T_{pc} determined on the same LCP

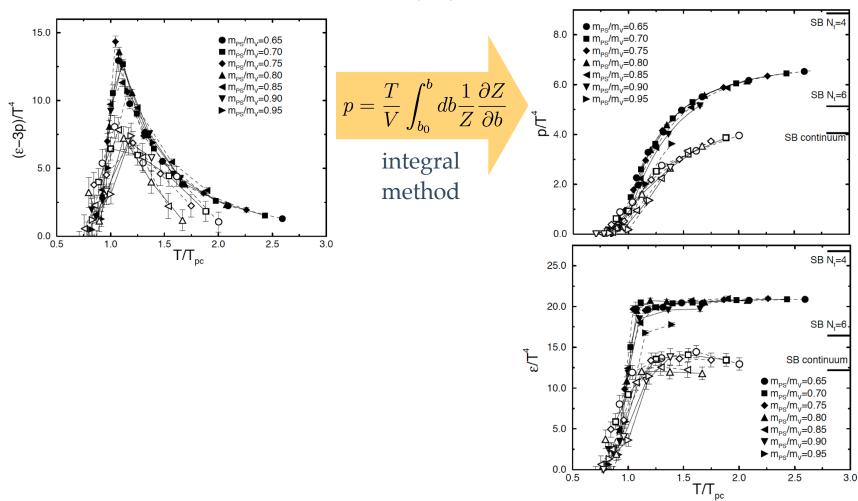
Beta functions are defined as the change of b_i along LCP.



Results for $N_F=2$ with clover-improved Wilson quarks

AliKhan et al. (CP-PACS) PRD64('01)

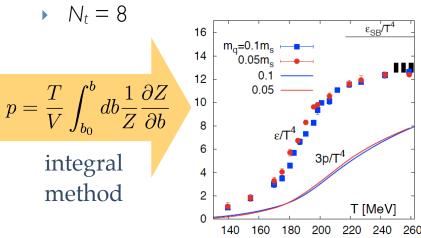
- RG-improved gauge + clover-improved Wilson
- $m_{PS}/m_V = 0.65 0.95 \ (m_{\pi} \approx 600 1000 \ MeV)$
- $N_t = 4, 6$

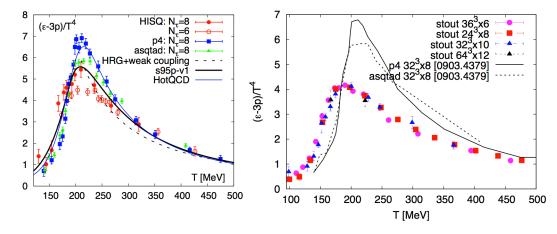


Recent results for $N_F=2+1$ with various improved staggered quarks

Chen et al. (HotQCD) PRD81('10)

- 8
 7 $(\epsilon 3p)/T^4$ 6
 5
 4
 3
 2
 0.05m_s: N_T=8
 HRG
 T [MeV]
- tree-level Symanzik gauge + p4-improved stag.
- $m_s \approx \text{``physical''}, m_l/m_s = 0.05 (m_{\pi}^{pNG} \approx 154 \text{ MeV})$





180 200 220 240

Difference among different stag. quarks = errors due to the remaining taste violation

HotQCD and Wuppertal-Budapest proceedings of Lattice 2010

(Our) motivations

- Results from staggered-type quarks should be cross-checked by other lattice quarks whose theoretical basis is rigid.
- Conventional EOS calculation requires a large scale systematic simulation, and is still expensive with Wilson-type and chiral lattice quarks.

A large fraction of the cost $\leq T = 0$ simulations

- Determination of basic information about the simulation point: (lattice scale, etc.)
- \triangleright Determination of LCP, and non-perturbative beta functions at all T > 0 simulation points
- \triangleright T = 0 subtractions => T = 0 simulations needed at all T > 0 simulation points

With the fixed scale approach, all T > 0 simulations are done at the same point of the coupling parameter space.

- ✓ All the simulations are automatically on the same LCP.
- $\mathbf{V} = \mathbf{0}$ simulations needed only at one point.
- ☑ Scale, non-perturbative beta functions, etc. needed only at this point too.

We may reduce the cost for T = 0 simulations.

$$\epsilon = -\frac{1}{V} \frac{\partial \ln Z}{\partial T^{-1}}, \quad p = T \frac{\partial \ln Z}{\partial V} \quad \text{with} \quad Z = \text{Tr} e^{-H/T} = \int_{b.c.} \mathcal{D}\phi \, e^{-S}$$

Trace anomaly

$$\frac{\epsilon - 3p}{T^4} = N_t^4 \left\{ \left\langle a \frac{dS}{da} \right\rangle - \left\langle a \frac{dS}{da} \right\rangle_{T=0} \right\} = \frac{N_t^3}{N_s^3} \sum_i a \frac{db_i}{da} \left\{ \left\langle \frac{\partial S}{\partial b_i} \right\rangle - \left\langle \frac{\partial S}{\partial b_i} \right\rangle_{T=0} \right\}$$
 lattice beta functions along LCP

$$b = (\beta, \kappa_{ud}, \kappa_s, \cdots) \equiv (b_1, b_2, \cdots)$$

measured on the lattice T=0 subtractions for renorm.

Because all the simulations are done at one point in the coupling parameter space, the conventional integral method in the coupling parameter space is not applicable.

T-integration method for p

Umeda et al., PRD79, 05 | 50 | ('09)

Using a thermodyn. relation at $\mu=0$:

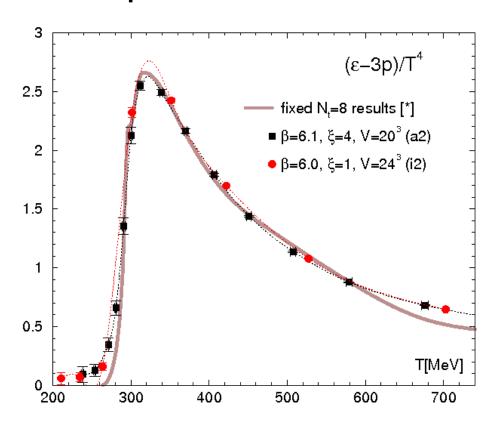
Thermodyn, relation at
$$\mu$$
=0:
$$T\frac{\partial}{\partial T}\left(\frac{p}{T^4}\right) = \frac{\epsilon - 3p}{T^4} \quad \Longrightarrow \quad \frac{p}{T^4} = \int_{T_0}^T dT \, \frac{\epsilon - 3p}{T^5} \, dT \, \frac{\epsilon$$

Disadvantages/challenges:

- The resolution in T is limited due to the discreteness of Nt.
 - => interpolation in T
 - <= a should be sufficiently small / odd Nt programs / combine different β in a scaling region / ...</p>
- Large statistics required at low T (large Nt) to compete a big cancellation by the T=0 subtraction

Test in quenched QCD

Umeda et al., PRD79, 05 | 50 | ('09)



Results compared for

- \bigstar isotropic lattices (as~0.095fm, Nt=3-10 => T=200-700MeV, Ls~1.5fm)
- \star anisotropic lattice with ξ =4 (4-times smaller at => 4-times finer T-resolution)
- ★ result of the fixed Nt approach (Nt=8 by Boyd el al. NPB469(96): Ns=32 => Ls~2.7fm around Tc)

Note: effects due to small Ls are physical finite volume effects, i.e not a matter of the algorithm.

Besides understandable deviations, results consistent with each other

- consistent with the fixed Nt approach
- T-interpolation under control on the isotropic lattice
- → computation costs much reduced

fixed scale approach vs. fixed Nt approach

Pros and cons:

- \blacksquare A common T=0 simulation enough for all T=0 subtractions.
 - We can even borrow publicly available high statistic configurations on **ILDG**
- Automatically on a LCP w/o fine tuning.
- T=0 simulation costs redusable.
- T/T_c $T/T_$

lattice cutoff 1/a [GeV]

1/a

3

The resolution in *T* is limited because *Nt* is discrete. => under control for EOS (see Umeda et al., PRD79, 051501 ('09))

At high T: (T>2-3Tc) | Nt too small => another source of errors | Keep the lattice volume large.

Low T / More costs due to larger Nt.

around Tc: Keep the lattice spacing small.

fixed Nt approach

powerful at high T

coarse at low T

complementary!

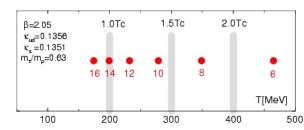
Trial calculation in N_F =2+1 QCD

Umeda et al. (WHOT-QCD Collab.)

- T=0 simulation: on $28^3 \times 56$ by CP-PACS/JLQCD Phys. Rev. D78 (2008) 011502
 - RG-improved Iwasaki glue + clover-improved Wilson quarks

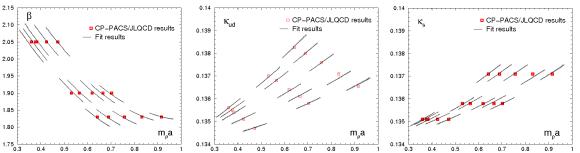
-
$$\beta$$
=2.05, κ_{ud} =0.1356, κ_{s} =0.1351 ($m_{\pi} \sim 634 \mathrm{MeV}, \ \frac{m_{\pi}}{m_{\rho}} = 0.63, \ \frac{m_{\eta_s s}}{m_{\phi}} = 0.74$)

- $V\sim (2 \text{ fm})3$, a=0.07 fm,
- configurations available on the ILDG/ILDG
- T>0 simulations: on $32^3 \times Nt$ (Nt=4, 6, ..., 14, 16) lattices RHMC algorithm, same parameters as the T=0 simulation



Beta functions <= T=0 meson mass data at 3 (β) \times 5 (κ_{ud}) \times 2 (κ_{s}) = 30 data points

$$\text{fit } \beta, \mathsf{K}_{\mathsf{ud}}, \mathsf{K}_{\mathsf{s}} \text{ as functions of } (am_{\rho}), \left(\frac{m_{\pi}}{m_{\rho}}\right), \left(\frac{m_{\eta_{ss}}}{m_{\phi}}\right) \quad \Longrightarrow \quad \left. a\frac{db}{da} = am_{\rho} \left. \frac{\partial b}{\partial (am_{\rho})} \right|_{\mathsf{L}} \right.$$



$$a\frac{do}{da} = am_{\rho} \left. \frac{\partial o}{\partial (am_{\rho})} \right|_{\text{LCP}}$$

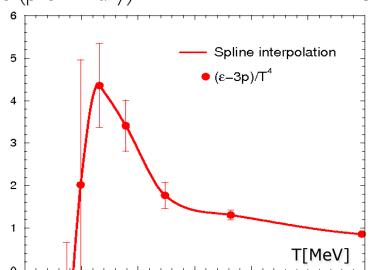
with LCP defined by

$$\frac{m_{\pi}}{m_{\rho}} = \text{const.}, \quad \frac{m_{\eta_{ss}}}{m_{\phi}} = \text{const.}$$

$$\left(a\frac{\partial \beta}{\partial a}, a\frac{\partial \kappa_{ud}}{\partial a}, a\frac{\partial \kappa_{s}}{\partial a}\right)_{\text{simulation point}} = (-0.334(4), 0.00289(6), 0.00203(5))$$
 (statistical errors only)

Trial calculation in N_F =2+1 QCD

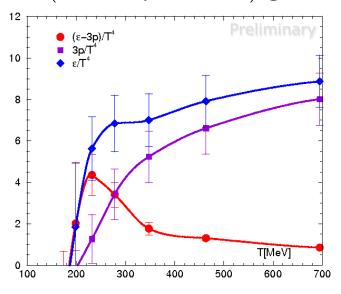
EOS (preliminary)



400

500

Umeda et al. (WHOT-QCD Collab.) @ Lattice 2010



More works needed

100

• more statistics at low T

200

300

• better T-resolution => odd Nt? / combine with other ß on the LCP

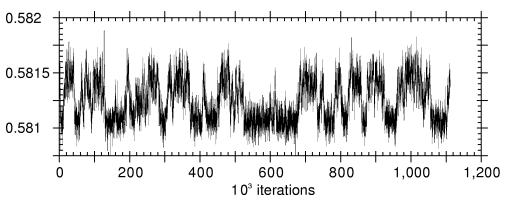
600

- more refined method to evaluate beta functions? => reweighting?
- just on the physical point (using T=0 configurations generated by the PACS-CS Collab.)

700

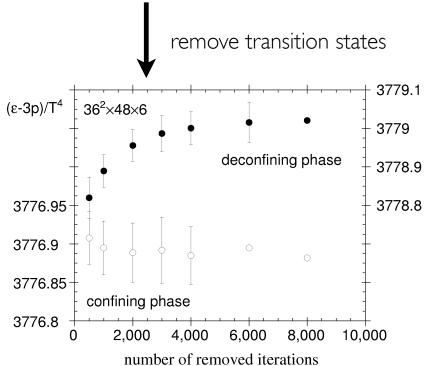
Latent heat

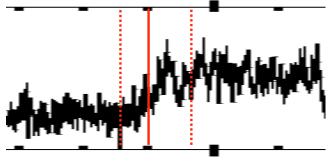
When the transition is 1st order,



Plaquette history at *Tc* Iwasaki et al., PR D46('92)4657 36²×48×6, 1150.000 iterations bin=100

Flip-flop among two phases visible.





p is continuous at $Tc => \Delta \varepsilon$

results for SU(3) YM theory:

 $Nt \quad \Delta \epsilon / T_C^4$

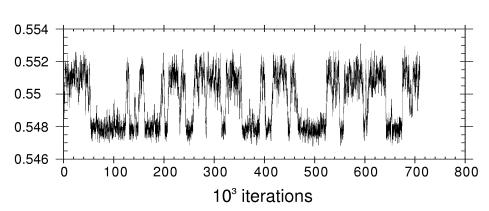
Standard 4 2.27(5)

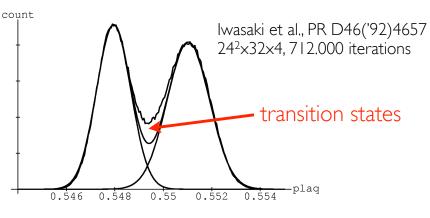
6 1.53(4)

Symanzik 4 1.40--1.57 (9--12)

Interface tension

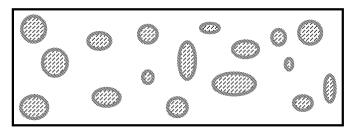
When the transition is 1st order,



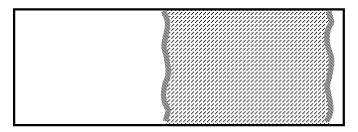


We now extract information from the transition states.

When two phases coexists with a non-zero interface tension:

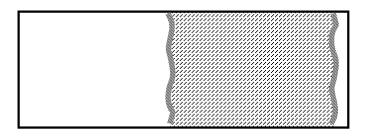


Large interface area => less probable



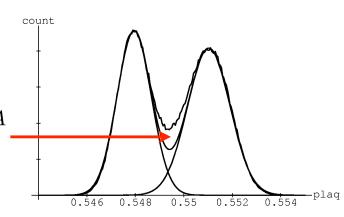
Minimum interface area with p.b.c => dominant contribution

Interface tension



Interface area approximately known.

=> The probability to have such transition state $\propto e^{-\sigma_I A}$



In actual calculation, we take into account the effects of

- * lattice geometry
- * parallel transports
- * capillary wave collections on the interface

See Iwasaki et al., PR D49('94)3540 for details.

For the case of SU(3) YM, $\sigma_I/T_C^3 \approx 0.15 - 0.16$

Many other interesting quantities

entropy density / sound velocity / ...

transport coefficients / ...

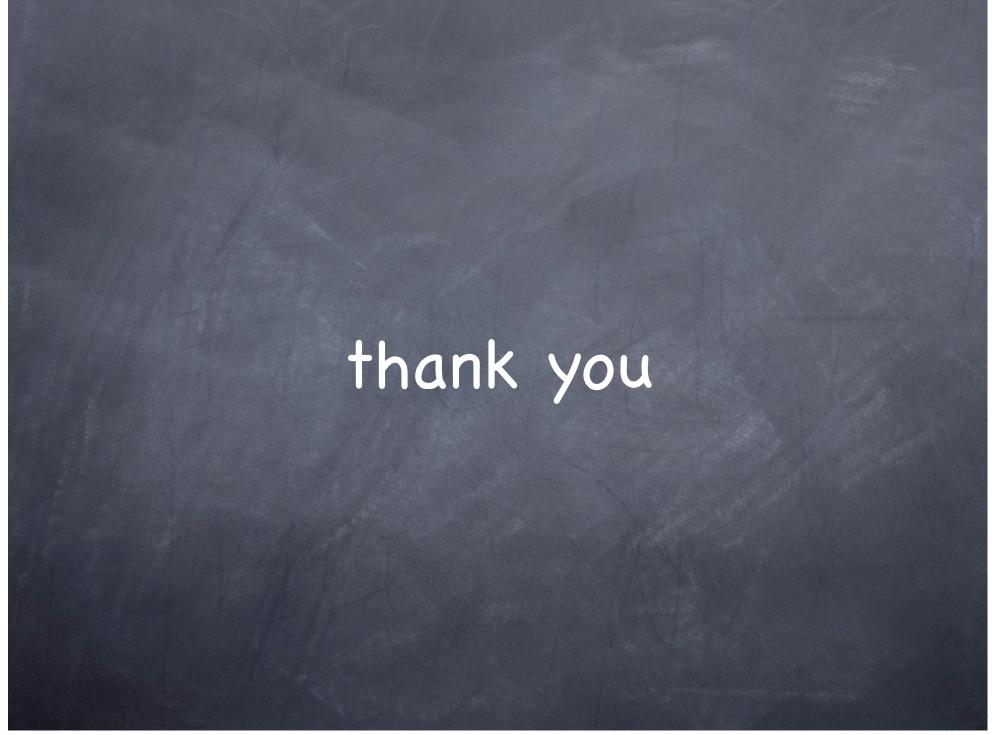
heavy quark potential / screening masses / effective couplings / ...

spectral functions / ...

to investigate

dissociation of charmonia / effective masses and decay rates of them at T>0 / ...

Young powers and many new ideas are starved for!!



What will happen at $\mu \neq 0$?

Similar to the high T case,

- erestoration of the chiral symmetry when the thermal energy > potential barrier between the sectors. $\mu \sim M_N/3$
- breakdown of confinement high density => short average distances between quarks asymptotic freedom: $g(\mu)$ —> 0 as μ —> ∞ . $\mu \sim \Lambda_{\rm OCD} \sim O(100)$ MeV

=> visit the lectures by Atsushi Nakamura