
Multilevel Algorithms
Pushan Majumdar

(Department of Theoretical Physics, Indian Association for the Cultivation of

Science, Jadavpur, Kolkata)



Observables in non-Abelian gauge theories

〈O〉 = Z−1
∫

DADψ̄Dψ O e−S (1)

where S = ψ̄D/ (A)ψ+ F2(A).

Even if we drop the fermions, S is quartic in A. Functional

integral cannot be done analytically.

Two options :

1) Expand e−S as a series in g.

2) Estimate the integral numerically.

(1) works for small values of g and leads to perturbative QCD.

(2) is fully non-perturbative, but requires a discretization for

implementation. This leads to lattice gauge theory.



Wilson’s LGT : Discretization maintaining gauge invariance.
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finite lattice spacing : UV cut off finite lattice size : IR cut off

Periodic boundary conditions to avoid end effects ⇒ T
4 topology.

Finally one must extrapolate to zero lattice spacing.
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dimension of the integral : 4 ×N4

domain of integration : manifold of the group SU(3)

Not possible to do exactly − use sampling techniques



Heat-Bath update for pure SU(2) lattice gauge theory

Change in action due to changing a single

link.

Probability of a link U is given by

P(U) ∝ exp( 1
2 β Tr (U×sum of staples))

where dU = 1
2π2 δ(s

2−1) d4s is the invari-

ant Haar measure of the group SU(2).
staples

If U ∈ SU(2) then U = s0 + isiσi where σi are Pauli matrices.

Using this parametrization it is possible to generate U ’s with the

required probability.

As if the link to be updated is brought in contact to a heat - bath.

Unlike Metropolis the acceptance probability in heat-bath algo-

rithms is one.



Confinement on the lattice

• Mechanism of Confinement : On the lattice there is evidence

of flux tube formation.

• Conjecture : Flux tube ≡ bosonic

string.
q− q

• Effective theories for flux tubes (hadronic strings) .

• Zero-mass fluctuations of the string → power corrections to

static quark potential

Coefficient of leading correction: Universal & One loop ex-

act: Lüscher term - value = −(d−2)π
24



Observables for pure Yang-Mills theories on the lattice

• Polyakov loop correlators:

Accurate ground state energy.

〈P †P(r)〉 =
∞∑

i=0

bi exp[−Ei(r)Nt]
t=0

t=Nt

Polyakov  Loopcorrelator

• Wilson loops :

Suitable for excited states

W (r,∆T) =
∑

α
βαi β

α
j e

−Eα(r)∆T t=T

t=T

1

2

qq
Wilson  Loop

flux tube

_

• The string pictures holds at large r ⇒ large loops.



• Note that W (r,∆T) ∝ exp(−r∆T)

• Since we need large r, we must either work with small ∆T ,

or have the means to extract exponentially suppressed signals

from the noise.

• 1st alternative requires using asymmetric lattices and a very

large number of basis states.

• Advances in algorithms (e.g. multilevel schemes) ∗ and com-

puting power now allow for exponential error reduction and

reliable extraction of expectation values of large Wilson loops.

∗These are special algorithms which work only for pure Yang-Mills theories



Error reduction by multihit

U

staples

multihitU

staples

Replacing the link U by the averaged link Ū gives a smaller

variance for the final observable.

Ū ≡
∫
dU exp[(β/N)ReTr(US)]U
∫
dU exp[(β/N)ReTr(US)]

While computing the expectation value of an observable,

more than one link can be simultaneously replaced by their



averages as long as no two such links are on the same pla-

quette.

For SU(2), the analytic expression for Ū is given by

Ū = KS−1I2(βK)

I1(βK)
where K = |detS|

1
2.

For higher N ’s it is more convenient to estimate Ū by Monte

Carlo integration.

For SU(3) a semi-analytic method due to de Forcand &

Roiesnel is much more efficient than Monte Carlo integra-

tion.

The multilevel algorithm can be thought of as a generaliza-

tion of the multihit procedure.



Algorithm - Ground State

• a⊗ b = T1(2,2,2,2)

•
(T1)ijkl(T2)jmln=(Tp1)imkn
Averaging is carried out for

Tp1.

• The averaged Tp’s are

multiplied together to form

the averaged propagator

Tf.

• L1, L2 & Tf are multiplied

together to produce the Wil-

son loop.

a b

T1

T1

T2

Tp1

Tp1

Tp2
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L2
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 NB



Important parameters of the algorithm : time slice thickness
- Tp1 & the number of sublattice updates iupd.
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2-link norm vs iupd for r=2,4,6 and 8 at β = 3 (3-d SU(2)
LGT).



Error on 〈W (12, 12)〉at β = 5 with iupd.

iupd meas average error time

100 100 1.47 × 10−8 1.53 × 10−8 59m

200 100 6.13 × 10−9 4.6 × 10−9 115m

400 100 1.11 × 10−8 2.8 × 10−9 229m

800 100 9.39 × 10−9 2.1 × 10−9 454m

1600 100 1.17 × 10−8 1.81 × 10−9 899m

Ratio of error between iupd of 100 & 1600 is 8.45.

Error of sample mean ∝ 1√
n

where n is the number of mea-

surements.

Therefore ratio of times should have been 8.452 = 71.45 but

is only 15.2.



• Potential between static qq̄ pair: (series in r−n)

V (r) ∼ σr+ V̂ − c/r+ · · ·

Arvis : Ground state of Nambu-Goto string :

VArvis = σr

(

1 − (d− 2)π

12σr2

)1/2

Potential turns complex at r = rc (tachyons).

We look at the first and a scaled second derivative of V (r).

f(r̄) = V (r) − V (r − 1) with r̄ = r+
a

2
+ O(a2)

c(r̃) =
r̃3

2
[V (r+ 1) + V (r − 1) − 2V (r)] with r̃ = r+ O(a2)

r̄ & r̃ reduce lattice artefacts.



String predictions (d=3)

L.O. f(r) = σ+

(
π

24

)
1

r2
c(r) = − π

24

N.L.O. f(r) = σ+

(
π

24

)
1

r2
+

(
π

24

)2 3

2σr4
c(r) = − π

24

(
1 +

π

8σr2

)

Arvis f(r) = σ

(
1 − π

12σr2

)−1/2
c(r) = − π

24

(
1 − π

12σr2

)−3
2
.

Perturbation theory

Vpert(r) = σpertr+
g2CF
2π

ln g2r+ (higher order terms) (2)

σpert =
7g4CFCA

64π with CF = 3/4 and CA = 2.



β r0/a r values lattice iupd # of meas.

5.0 3.9536(3) 2 − 8 363 16000 1600

(ts=2) 7 − 9 403 32000 3200

8 − 12 483 48000 20800

7.5 6.2875(10) 4 − 8 483 8000 1100

(ts=4) 7 − 12 643 18000 1100

11 − 16 643 36000 7200

13 − 17 643 48000 6700

10.0 8.6022(8) 2 − 7 483 16000 2850

(ts=4) 6 − 9 483 16000 200

8 − 14 843 24000 1100

13 − 19 843 36000 2250

12.5 10.916(3) 2 − 9 483 16000 2700

(ts=6) 8 − 14 723 24000 1150



r20f(r) vs r/r0
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fpert(r) : 1-loop perturbation theory.
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Error ∝ r4 3-d SU(2) LGT
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Interpolating curves

3−d SU(3) Luscher & Weisz

: r  =3.300
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Non-monotonicity of the approach to the Lüscher term.



Excited states of the flux tube

Behaviour under charge conjugation and parity − CP

P: Reflect in qq̄ axis : x(κ) → −x(κ)
C: Interchange q and q̄ : x(κ) → x(r − κ)

Combinations ⇔
symmetry channels. string

axis

Transverse
direction
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Algorithm - Excited states
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A wilson-loop with dif-

ferent sources at the

ends, that lie in the

middle of the time-

slices. The slices with

the solid lines are the

time slices with fixed

lines during the sublat-

tice updates.



W1 W2 W3
r New Old New Old New Old

4 0.44 0.15 2.7 7.0 9.2 100
5 0.63 0.21 2.7 8.3 8.6 100
6 0.86 0.28 2.7 4.5 8.8 100
7 1.1 0.35 2.9 7.3 8.8 100
8 1.4 0.45 3.1 5.5 9.5 100
9 1.7 0.56 3.6 10 11 100
10 2.1 0.74 4.2 11 14 100
11 2.7 1.0 5.8 27 22 100
12 3.5 1.7 8.6 88 44 100

Percentage errors for Wilson loops for energies E1, E2 and E3.

β = 5 , T = 8 with r varying between 4− 8. Time ≈ 1100 mins.

Old method: 730 mesurements with no source averaging.

New method: 50 mesurements with 12000 updates for source

averaging.

2-link averaging was same for both methods.



Energy of the string excited states

L.O. En = σr+ µ+
π

r
(n− d− 2

24
)

N.L.O En = σr+ µ+
π

r
(n− d− 2

24
) − π2

2σr3
(n− d− 2

24
)2

Arvis En = σr(1 +
2π

σr2
(n− d− 2

24
))1/2

We will look mostly at the energy difference En −Em.

Correction factors

λ(T) = α1e
−ET

(

1 +
α2

α1
e−δT

)

− 1

T2 − T1
log

λ(T2)

λ(T1)
= Ē +

1

T2 − T1

[
α2

α1
e−δT1

(
1 − e−δ(T2−T1)

)]

.



Excited state energies at β = 5 and β = 7.5.
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Energy difference at β = 5 and β = 7.5.
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The distance corresponding to r
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σ = 4 is about 1.6 fermi.

At r
√
σ = 4 and ∆E10 the difference between the L.O. and Arvis

curves are < 10%. For ∆E20 the difference is about 20%.

For ∆E20 at β = 7.5, the corrections are still not fully under

control.
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Glueball correlator

• 〈C(t1, t0)〉conn = 〈O(t1)O(t0)〉 − 〈O(t1)〉〈O(t0)〉

O ≡ Re(
∑

ij=1,2,3

Pij) : Scalar glueball

O ≡ Im(Pij) : Axial − vector.

Pij : Plaquette in the ij plane.

State with momentum ~k :
∑

~x

O(~x)ei
~k·~x

• Time dependence of correlator :

〈C(t1, t0)〉conn ≈ α
[
e−m(t1−t0) + e−m(Nt−(t1−t0))

]



• Scalar channel : non-zero VEV.
Derivative to suit the multi-level algorithm.

∂t1∂
∗
t0
〈C(t1, t0)〉 ≈ −α

[
e−m(t1−t0)(1 − e−m)2 + e−m(Nt−(t1−t0))(em − 1)2

]
.

• In scalar channel (only ~k = 0) both
∂t∂

∗
t0
〈C(t, t0)〉 and ∂∗t ∂t0〈C(t, t0)〉 where

∂t∂
∗
t0
〈C(t, t0)〉 = 〈

∑

ij

[
Pij(t+ 1) − Pij(t)

]∑

ij

[
Pij(t0) − Pij(t0 − 1)

]
〉

(3)

• Axial-vector : zero and non-zero ~k.

〈C(~k, t, t0)〉ij = 〈[Im
∑

~x

ei
~k·~xPij(~x, t)][Im

∑

~x

e−i
~k·~xPij(~x, t0)]〉
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Evaluation of the glueball
correlator using the 
multi−level algorithm.

The thick black lines are
held fixed during the 
sublattice averaging.
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Flux tube profile

• Distribution of electric field in flux tube

a) thickness of flux-tube

b) parameters for effective theory (dual superconductivity)

• 〈O〉 =
〈P ∗PO〉
〈P ∗P 〉 − 〈O〉

eg: Electric Field : OE(n) = iθ̄µν = i(θµν − 2πnµν(n))

1

1=Nt+1

3

5

Nt-1

m m + R i

+ + .... +
[P*PO] =

1

3Ns3(Nt/2) ms, i

n



Conclusions

• We have seen how to achieve exponential error reduction in

computation with pure Yang-Mills theories. The observables

that people have looked at are

– Ground state of the flux tube : M.Lüscher, P.Weisz

– Excited states of the flux tube : P.Majumdar, Bastian Brandt

– Profile of the flux tube : P.Majumdar, Y.Koma, M.Koma

– Breaking of the flux tube : S.Kratochvila, Ph. de Forcrand

– 3-quark potential : C.Alexandrou, Ph. de Forcrand, O. Jahn



– Glueball spectrum in SU(3) : H.B.Meyer

– Glueball spectrum in U(1) : P.Majumdar, Y.Koma, M.Koma

• The multilevel algorithm has to be applied in different ways

for different observables. There is no single algorithm which

works for everything. So one needs to think a bit before

applying the algorithm.

Thank You


