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Observables in non-Abelian gauge theories
(O) = 7~} /DAD?ZD@D O e S (1)
where S = I (A)yp + F2(A).

Even if we drop the fermions, S is quartic in A. Functional
integral cannot be done analytically.

Two options :
1) Expand e—® as a series in g.
2) Estimate the integral numerically.

(1) works for small values of g and leads to perturbative QCD.
(2) is fully non-perturbative, but requires a discretization for
implementation. This leads to lattice gauge theory.



Wilson's LGT : Discretization maintaining gauge invariance.

Space-time lattice
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finite lattice spacing : UV cut off finite lattice size : IR cut off
Periodic boundary conditions to avoid end effects = T4 topology.

Finally one must extrapolate to zero lattice spacing.



ACTION : S(Fields(x) , bare couplings)

Finite Lattice (Finite degrees of freedom):N* points

INPUT | | , Feynman path integral
simulation -S
S, N algorithm <0>= Oe
J Field Space

Numerical Simulation
Fast Computers

CPU¢ﬂme
OUTPUT
result + errors - [ Raw data for observables
statistical & analysis
systematic

dimension of the integral : 4 x N4
domain of integration : manifold of the group SU(3)
Not possible to do exactly — use sampling techniques



Heat-Bath update for pure SU(2) lattice gauge theory

Change in action due to changing a single /
link. Y
Probability of a link U is given by ' '
P(U) « exp( 3 B Tr (Uxsum of staples)) / /
where dU = 2—71T2 5(s2—1) d*s is the invari-

ant Haar measure of the group SU(2). V staples

If U € SU(2) then U = sg + is;0; where o; are Pauli matrices.
Using this parametrization it is possible to generate U's with the
required probability.

As if the link to be updated is brought in contact to a heat - bath.

Unlike Metropolis the acceptance probability in heat-bath algo-
rithms is one.



Confinement on the lattice

Mechanism of Confinement : On the lattice there is evidence
of flux tube formation.

Conjecture : Flux tube = bosonic %:3

: q q
string.

Effective theories for flux tubes (hadronic strings) .

Zero-mass fluctuations of the string — power corrections to
static quark potential
Coefficient of leading correction: Universal & One loop ex-

act: Lischer term - value = —(dgi)”




Observables for pure Yang-Mills theories on the lattice

e Polyakov |loop correlators:
Accurate ground state energy.

(PP = 3 by expl—Ei(r)N]
1=0

e Wilson loops :
Suitable for excited states

W(r,AT) =) 3735 e La(r)AT

t=0

Polyakov Loopcorrelator

A t:Tz

. , t:Tl
q q
Wilson Loop

e [ he string pictures holds at large »r = large loops.



e Note that W(r, AT) x exp(—rAT)

e Since we need large r, we must either work with small AT,
or have the means to extract exponentially suppressed signals
from the noise.

e 1st alternative requires using asymmetric lattices and a very
large number of basis states.

e Advances in algorithms (e.g. multilevel schemes) * and com-
puting power now allow for exponential error reduction and
reliable extraction of expectation values of large Wilson loops.

*These are special algorithms which work only for pure Yang-Mills theories



Error reduction by multihit

A A,
Y AU/ Yy _mutthit Y U/ Y

staples staples

Replacing the link U by the averaged link U gives a smaller
variance for the final observable.
[dU exp[(B/N)Re Tr(US)|U

U [dU exp[(B/N)Re Tr(US)]

While computing the expectation value of an observable,
more than one link can be simultaneously replaced by their



averages as long as no two such links are on the same pla-
quette.

For SU(2), the analytic expression for U is given by
_ I>(BK
0= g1 2(BK)

I1(BK)

For higher N's it is more convenient to estimate U by Monte

Carlo integration.

1
where K = |detS|2.

For SU(3) a semi-analytic method due to de Forcand &
Roiesnel is much more efficient than Monte Carlo integra-
tion.

T he multilevel algorithm can be thought of as a generaliza-
tion of the multihit procedure.



Algorithm - Ground State

a®b= T1(2,2,2,2)

(T1)ik(T2) jmin=CTPL)imkn
Averaging is carried out for
Tpl.

The averaged Tp's are
multiplied together to form
the averaged propagator
TT.

L1, L2 & Tf are multiplied
together to produce the Wil-
son loop.

NB:
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Important parameters of the algorithm : time slice thickness
- Tpl & the number of sublattice updates iupd.
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2-link norm vs iupd for r=2,4,6 and 8 at 8 = 3 (3-d SU(2)
LGT).



Error on (W(12,12))at 8 = 5 with iupd.

iupd meas average error time
100 100 1.47x10"° 153x10"° 59m
200 100 6.13x10792 4.6x 102 115m
400 100 1.11x1078 28x10"92 229m
800 100 9.39x1079 21x109 454m
1600 100 1.17x1078% 1.81x10792 899m

Ratio of error between iupd of 100 & 1600 is 8.45.

Error of sample mean « % where n is the number of mea-
surements.

Therefore ratio of times should have been 8.452 = 71.45 but

is only 15.2.



e Potential between static qg pair: (series in »r—7)

V() ~or4+V —c/r4---

Arvis . Ground state of Nambu-Goto string :

(d — 2)w> 1/2

120712

Potential turns complex at r = r. (tachyons).

Varvis = or (1 -

We look at the first and a scaled second derivative of V(r).

fr-I-%-I—O(aQ)

f(r) = V(r)—V(r—-1) with r

7:'3
c(r) = E[V(T +1)4+V((r—-1)—-2V(r)] with 7~

r 4+ C’)(a2)

r & r reduce lattice artefacts.



String predictions (d=3)

LO.f(r) = o+ (214> riz c(r) = —%
NLO.f() = ot (m) o+ (2) 2y =1 (1+,.7)
3

Perturbation theory

g°Cr

Vpert(r) = opertr + In g°r + (higher order terms) (2)

4
opert = YA with Cp = 3/4 and Cy = 2.



6] ro/a r values lattice iupd  # of meas.
5.0 3.9536(3) 28 363 16000 1600
(ts=2) 7-9 403 32000 3200
8—12 483 48000 20800
7.5 6.2875(10) 4-38 483 8000 1100
(ts=4) 7—-12 643 18000 1100
11—-16 643 36000 7200
13—17 643 48000 6700
10.0 8.6022(8) 27 483 16000 2850
(ts=4) 6—9 483 16000 200
8—14 843 24000 1100
13—-19 843 36000 2250
12.5 10.916(3) 29 483 16000 2700
(ts=6) 8—14 723 24000 1150




r%f(fr) VS r/rg
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fpert(r) : 1-loop perturbation theory.
Dotted line : rgf(r) — 1.65, locates the Sommer scale. (3-d
SU(2) LGT)



Error < r* 3-d SU(2) LGT
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Interpolating curves
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Non-monotonicity of the approach to the Luscher term.



Excited states of the flux tube

Behaviour under charge conjugation and parity — CP
P: Reflect in gqq axis : z(k) — —x(k)
C: Interchange g and ¢ : z(k) — z(r — k)

Transverse

Combinations < direction

symmetry channels. s I O ]
c-:I--II-:): <’—\_+\—‘ + ]—\_I__\—‘)
== )
= L )
_+:<_’—\__\—‘ + ]—\_l__\—‘)



Algorithm - EXxcited states

A wilson-loop with dif-
ferent sources at the
ends, that lie in the
middle of the time-
slices. The slices with
the solid lines are the
time slices with fixed
lines during the sublat-
tice updates.



W1 Wo W3
New OlIld | New OIld | New Old
0.44 0.15 | 2.7 7.0] 9.2 100
0.63 0.21 | 2.7 8.3 | 8.6 100
0.86 0.28 | 2.7 45 | 8.8 100
1.1 0.35 ] 2.9 7.3 | 8.8 100
1.4 0.45] 3.1 5.5]19.5 100
1.7 0.56 ]| 3.6 10 | 11 100
2.1 0.74 | 4.2 11 | 14 100
2.7 1.0 | 5.8 27 | 22 100
3.5 1.7 | 8.6 88 | 44 100

= =
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Percentage errors for Wilson loops for energies Fq, E> and Es3.

B8 =5,T =8 with r varying between 4 —8. Time = 1100 mins.
Old method: 730 mesurements with no source averaging.

New method: 50 mesurements with 12000 updates for source
averaging.

2-link averaging was same for both methods.



Energy of the string excited states

d— 2
LO. FE, = ar—l—,u—l—z(n——)
T 24
d—2 2 d— 2
N.LO F, = ar—|—,u—|—i(n t 3(n—2—4)2
Arvis [E, = ar(l—l——(n——))1/2

We will look mostly at the energy dlfference E, — Enm.

Correction factors

MNT) = age 1 (1 -+ %e(ﬁ)

Q]

l0g =
Qg

. 1 )‘(TQ) E _I_ 1 [a2€—5T1 (1 . 6—5(T2—T1))
1o — T A(T7) 1> — T



Excited state energies at =5 and 8 = 7.5.

e

corrected values.

Filled symbols :

naive values

Open symbols :
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Energy difference at 3 =5 and 8 = 7.5.
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The distance corresponding to ry/o = 4 is about 1.6 fermi.
At r/oc = 4 and AFEp the difference between the L.O. and Arvis
curves are < 10%. For AFE»>qg the difference is about 20%.
For AE>g at 8 = 7.5, the corrections are still not fully under

control.
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E> requires a better
“wave function” as
we approach con-
tinuum limit.

Used source (b) to
couple strongly to
E>.

Plot shows E5 val-
ues using source (a)
and (b).

Values using (b) co-
incide with the cor-
rected values from
(a), but have lower
error bars.



Glueball correlator

o (C(t1,%0))conn = (O(t1)O(t0)) — (O(t1))(O(t0))

O=Re( >  P;):Scalar glueball
ij=1,2,3

O = Im(F;;) : Axial — vector.

P’i':

j - Plaquette in the ¢5 plane.

State with momentum k : ZO(f)ei’f'f
7

e [ime dependence of correlator :
(C(t1,t0))conn =~ o [e_m(tl_tO) + e—m(Nt—(tl—to))}



e Scalar channel : non-zero VEV.
Derivative to suit the multi-level algorithm.

01,05, (C(t1,t0)) ~ —a [e7™1710) (1 — 7 m)2 4 emm(Nim(f1=t0)) (g — 1)2]
e In scalar channel (only k = 0) both
8t8;<0<0(t,t0)> and 8z<8t0<0(t,to)> where

1 (C (¢ 10)) = (3 |Pyj(t + 1) = Piy(1)] X | Py(to) — Pyjto — 1))
1] Y]
(3)

e AXxial-vector : zero and non-zero k.

—

(C(F, 1, 10))i; [ImZe k¥ p, (z, t)][ImZe_iE'fPM(f, to)])



Evaluation of the glueball
correlator using the

multi—level algorithm.

The thick black lines are
held fixed during the
sublattice averaging.

[}

forward?t derivative

backward derivative
]

t+1
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% Error on axial-vector correlator at At = 2 after a 10 hr run on a 1.5 GHz
AMD Athlon PC. 124 lattice.
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% Error on the scalar glueball correlator at At = 2 after a 10 hr run on a
1.5GHz AMD Athlon PC. 124 lattice.



correlator
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Scalar glueball correlator at 3 =1.0 4-d U(1) LGT
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Flux tube profile

e Distribution of electric field in flux tube
a) thickness of flux-tube
b) parameters for effective theory (dual superconductivity)

o (0) =100 —(0)

PPOl=——— 3|

 3NS3(NY2) &




Conclusions

e Ve have seen how to achieve exponential error reduction in
computation with pure Yang-Mills theories. The observables
that people have looked at are

— Ground state of the flux tube : M.Liischer, P.Weisz

— EXxcited states of the flux tube : P.Majumdar, Bastian Brandt
— Profile of the flux tube : P.Majumdar, Y.Koma, M.Koma

— Breaking of the flux tube : S.Kratochvila, Ph. de Forcrand

— 3-quark potential : C.Alexandrou, Ph. de Forcrand, O. Jahn



— Glueball spectrum in SU(3) : H.B.Meyer

— Glueball spectrum in U(1) : P.Majumdar, Y.Koma, M.Koma

e [ he multilevel algorithm has to be applied in different ways
for different observables. There is no single algorithm which
works for everything. So one needs to think a bit before
applying the algorithm.

T hank You



